Visual analytics of sensor movement data for cheetah behaviour analysis
Current tracking technology such as GPS data loggers allows biologists to remotely collect large amounts of movement data for a large variety of species. Extending, and often replacing interpretation based on observation, the analysis of the collected data supports research on animal behaviour, on impact factors such as climate change and human intervention on the globe, as well as on conservation programs. However, this analysis is difficult, due to the nature of the research questions and the complexity of the data sets. It requires both automated analysis, for example, for the detection of behavioural patterns, and human inspection, for example, for interpretation, inclusion of previous knowledge, and for conclusions on future actions and decision making. For this analysis and inspection, the movement data needs to be put into the context of environmental data, which helps to interpret the behaviour. Thus, a major challenge is to design and develop methods and intuitive interfaces that integrate the data for analysis by biologists. We present a concept and implementation for the visual analysis of cheetah movement data in a web-based fashion that allows usage both in the field and in office environments. Keywords: Visual analytics, animal movement analysis, machine learning, web-based systems, animal behaviour.
Journal of Visualization
Attachment | Size |
---|---|
Visual analytics of sensor movement data for cheetah behaviour analysis.pdf | 937.91 KB |