Experiments Testing the Causes of Namibian Fairy Circles

Publication Year:

The grasslands on the sandy soils of the eastern edge of the Namib Desert of Namibia are strikingly punctuated by millions of mostly regularly-spaced circular bare spots 2 to 10 m or more in diameter, generally with a margin of taller grasses. The causes of these so called fairy circles are unknown, but several hypotheses have been advanced. In October 2009, we set up experiments that specifically tested four hypothesized causes, and monitored these 5 times between 2009 and 2015. Grass exclusion in circles due to seepage of subterranean vapors or gases was tested by burying an impermeable barrier beneath fairy circles, but seedling density and growth did not differ from barrier-less controls. Plant germination and growth inhibition by allelochemicals or nutrient deficiencies in fairy circle soils were tested by transferring fairy circle soil to artificially cleared circles in the grassy matrix, and matrix soil to fairy circles (along with circle to circle and matrix to matrix controls). None of the transfers changed the seedling density and growth from the control reference conditions. Limitation of plant growth due to micronutrient depletion within fairy circles was tested by supplementing circles with a micronutrient mixture, but did not result in differences in plant seedling density and growth. Short-range vegetation competitive feedbacks were tested by creating artificially-cleared circles of 2 or 4 m diameter located 2 or 6 m from a natural fairy circle. The natural circles remained bare and the artificial circles revegetated. These four experiments provided evidence that fairy circles were not caused by subterranean vapors, that fairy circle soil per se did not inhibit plant growth, and that the circles were not caused by micronutrient deficiency. There was also no evidence that vegetative feedbacks affected fairy circles on a 2 to 10 m scale. Landscape-scale vegetative self-organization is discussed as a more likely cause of fairy circles.

Publication Title:

Plos ONE

Item Type:
Journal Article

EIS custom tag descriptions