Title:

Water balance and osmoregulation in Stenocara gracilipes, a wax-blooming tenebrionid beetle from the Namib Desert

Author(s):
Publication Year:
2001
Abstract:

Dehydration (10 days at 27°C) of the Namib tenebrionid Stenocara gracilipesresulted in a rapid weight loss (17.5%), and a substantial decline in haemolymph volume (72%). Although the lipid content decreased significantly, metabolic water production was insufficient to maintain total body water (TBW). Rehydration (no food) resulted in increases in haemolymph volume, body weight (sub-normal), and TBW to normality. Haemolymph osmolality, sodium, potassium, chloride, amino acids, and sugars (trehalose and glucose), were all subject to osmoregulatory control during both dehydration and rehydration. Major osmolar effectors in this species are sodium, chloride, and amino acids, with most of the contribution to regulation of haemolymph osmolality coming from changes in the levels of these constituents. Changes in amino acid levels are not the result of interchange with soluble protein during dehydration (the possibility exists during extended rehydration, however). Despite faecal losses of sodium being low (8.2% of that removed from the haemolymph during dehydration), sodium concentrations do not return to normal during rehydration. Chloride concentrations increase supra-normally when access to water is allowed, and remain elevated throughout the rehydration period. Although faecal loss of potassium greatly exceeded the amount removed from the haemolymph (by approximately 1.8 times), haemolymph potassium levels were strongly regulated during rehydration. S. gracilipes demonstrates an exquisite capacity to regulate haemolymph osmolality under conditions of both acute water-shortage and -abundance. Together with an efficient water economy (drinking when fog-water is available, and a superb water conservation mechanism in the form of wax-bloom production), this must serve to contribute to long-term survival of this species in an otherwise harsh abode. Keywords: Water balance, Osmoregulation, Stenocara gracilipes, Wax bloom, Tenebrionidae, Namib Desert.

Publication Title:

Journal of Insect Physiology

Volume:
47
Issue:
12
Pages:
1429-1440
Item Type:
Journal Article
Language:
en

EIS custom tag descriptions