Title:

Knowledge-based systems as decision support tools in an ecosystem approach to fisheries: Comparing a fuzzy-logic and a rule-based approach

Publication Year:
2008
Abstract:

In an ecosystem approach to fisheries (EAF), management must draw on information of widely different types, and information addressing various scales. Knowledge-based systems assist in the decision-making process by summarising this information in a logical, transparent and reproducible way. Both rule-based Boolean and fuzzy-logic models have been used successfully as knowledge-based decision support tools. This study compares two such systems relevant to fisheries management in an EAF developed for the southern Benguela. The first is a rule-based system for the prediction of anchovy recruitment and the second is a fuzzy-logic tool to monitor implementation of an EAF in the sardine fishery. We construct a fuzzy-logic counterpart to the rule-based model, and a rule-based counterpart to the fuzzy-logic model, compare their results, and include feedback from potential users of these two decision support tools in our evaluation of the two approaches. With respect to the model objectives, no method clearly outperformed the other. The advantages of numerically processing continuous variables, and interpreting the final output, as in fuzzy-logic models, can be weighed up against the advantages of using a few, qualitative, easy-to-understand categories as in rule-based models. The natural language used in rule-based implementations is easily understood by, and communicated among, users of these systems. Users unfamiliar with fuzzy-set theory must "trust" the logic of the model. Graphical visualization of intermediate and end results is an important advantage of any system. Applying the two approaches in parallel improved our understanding of the model as well as of the underlying problems. Even for complex problems, small knowledge-based systems such as the ones explored here are worth developing and using. Their strengths lie in (i) synthesis of the problem in a logical and transparent framework, (ii) helping scientists to deliberate how to apply their science to transdisciplinary issues that are not purely scientific, and (iii) representing vehicles for delivering state-of-the-art science to those who need to use it. Possible applications of this approach for ecosystems of the Humboldt Current are discussed. Keywords: Decision support, Ecosystem approach to fisheries, Pelagic ecosystem, Expert system, Fuzzy logic, Rule-based, Crisp logic, Southern Benguela.

Publication Title:

Progress in Oceanography

Volume:
79
Issue:
2-4
Pages:
390-400
Item Type:
Journal Article
Language:
en

EIS custom tag descriptions