Title:
Mitochondrial DNA distributions indicate colony propagation by single matri-lineages in the social spider Stegodyphus dumicola (Eresidae)
Publication Year:
2002
Abstract:
Colony-dwelling social spiders of the genus Stegodyphus are characterized by high colony turnover, within-colony mating, inbreeding and skewed sex ratios. These phenomena may purge genetic variation from the entire species gene pool. Social Stegodyphus have previously been discussed as ecologically unstable and evolutionary dead ends. We investigated the distribution and age (sequence divergence) of mitochondrial DNA variation for inferences of colony propagation, colony discreteness and maintenance of genetic variation in the social spider S. dumicola. In contrast to our expectations, we found abundant mtDNA variation, consisting of 15 haplotypes belonging to four haplotype lineages. Lineage divergence ranged between 2.75 and 6% for the gene ND1. Nearly all colonies (86%) were monomorphic and even neighbour colonies showed fixed differences. Simulations show that genetic drift in multifounder colonies cannot alone explain monomorphism within colonies. Haplotypes in polymorphic colonies and from neighbouring colonies were always genealogically similar. Monomorphism and the genealogical pattern among colonies suggest 'clonal' colony propagation involving single matrilineages. The divergence of haplotype lineages and distribution of haplotypes imply that colony turnover is not high enough to purge genetic variation in the species gene pool, and that S. dumicola as a species is old enough to question the instability (in ecological time) of a social spider. Keywords: mitochondrial DNA, Namibia, propagule dispersal, social spider, population structure.
Publication Title:
Biological Journal of the Linnean Society
Volume:
76
Issue:
4
Pages:
591-600
Item Type:
Journal Article
Language:
en