Title:

Origin and diagenetic evolution of gypsum and microbialitic carbonates in the Late Sag of the Namibe Basin (SW Angola)

Publication Year:
2016
Abstract:

Ephemeral evaporitic conditions developed within the uppermost part of the transgressive Late Sag sequence in the Namibe Basin (SW Angola), leading to the formation of extensive centimetre- to metre-thick sulphate-bearing deposits and correlative microbialitic carbonates rich in pseudomorphs after evaporite crystals. The onshore Pre-Salt beds examined in this study are located up to 25 m underneath the major mid-Aptian evaporitic succession, which is typified at outcrop by the gypsiferous Bambata Formation and in the subsurface by the halite-dominated Loeme Formation. Carbonate-evaporite cycles mostly occur at the top of metre-thick regressive parasequences, which progressively onlap and overstep landward the former faulted (rift) topography, or fill major Pre-Salt palaeo-valleys. The sulphate beds are made up of alabastrine gypsum associated with embedded botryoidal nodules, dissolution-related gypsum breccia, and are cross-cut by thin satin-spar gypsum veins. Nodular and fine-grained fabrics are interpreted as being diagenetic gypsum deposits resulting from the dissolution and re-crystallisation of former depositional subaqueous sulphates, whereas gypsum veins and breccia result from telogenetic processes. The carbonates display a broader diversity of facies, characterised by rapid lateral variations along strike. Thin dolomitic and calcitic bacterial-mediated filamentous microbialitic boundstones enclose a broad variety of evaporite pseudomorphs and can pass laterally over a few metres into sulphate beds. Dissolution-related depositional breccias are also common and indicate early dissolution of former evaporite layers embedded within the microbialites. Sulphate and carbonate units are interpreted as being concomitantly deposited along a tide-dominated coastal supra- to intertidal- sabkha and constitute high-frequency hypersaline precursor events, prior to the accumulation of the giant saline mid-Aptian Bambata and Loeme Formations. Petrographic and geochemical analyses reveal successive dissolution, re-crystallisation and cementation phases that occurred during burial, uplift and exhumation, implying a complex diagenetic evolution of both gypsum and carbonates, influenced by pore fluids of diverse composition which distinctly varied from meso- to telogenetic domains. Keywords: Early Aptian, Diagenesis, Stromatolites, Evaporites, Namibe Basin, Angola.

Publication Title:

Sedimentary Geology

Volume:
In Press, Accepted Manuscript
Item Type:
Journal Article
Language:
en