

Protecting and connecting landscapes stabilizes populations of the Endangered savannah elephant

Ryan M. Huang^{1*}, Celesté Maré¹, Robert A. R. Guldemond^{1*}, Stuart L. Pimm^{1,2}, Rudi J. van Aarde¹

The influence of protected areas on the growth of African savannah elephant populations is inadequately known. Across southern Africa, elephant numbers grew at 0.16% annually for the past quarter century. Locally, much depends on metapopulation dynamics—the size and connections of individual populations. Population numbers in large, connected, and strictly protected areas typically increased, were less variable from year to year, and suffered less from poaching. Conversely, populations in buffer areas that are less protected but still connected have more variation in growth from year to year. Buffer areas also differed more in their growth rates, likely due to more threats and dispersal opportunities in the face of such dangers. Isolated populations showed consistently high growth due to a lack of emigration. This suggests that “fortress” conservation generally maintains high growth, while anthropogenic-driven source-sink dynamics within connected conservation clusters drive stability in core areas and variability in buffers.

Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

INTRODUCTION

African savannahs cover 13.5 million km², almost half of the continent, of which 10% is protected (1) and 2.2 million km² (16%) sustain globally Endangered savannah elephants (*Loxodonta africana*) (2). These savannahs are also home to half a billion people, leading to high levels of human-wildlife conflict. How do conservation actions mitigate these threats? One solution, conservation “fortresses,” creates relatively small, isolated habitat islands that keep elephants in and humans out. This separation reduces human-wildlife conflict (3) but limits dispersal since fences or adjacent human-dominated landscapes prevent movement. An alternative solution found throughout southern Africa is clusters of well-protected areas [International Union for Conservation of Nature (IUCN) categories I to IV] that form a core area connected to less-protected buffer areas (often IUCN categories V and VI) that allow for human activities (4). This arrangement embodies UNESCO’s Man and the Biosphere Programme concept of multiple land uses (5–7). Given these contrasting approaches, we ask how elephant populations respond to combinations of landscape size, connectivity, and protected status.

Conservation fortresses are not specific to elephants. Used across the globe, these protected fragments stem from a long history of Western land-use models that emphasized human-free landscapes (8, 9). Such stringent protection reduces forest loss (10, 11), sustains large mammals (12–14), and provides ecological services to neighboring communities (15). For example, separating humans from wildlife using fences reduces conflict (16, 17) and prevents disease transmission from wildlife to livestock (18, 19). However, such protectionism comes with both ecological and social costs.

First, when segregating people and wildlife, evictions and exclusions of local communities foster resentment and poverty, which can undermine conservation efforts (20–22). Alternatively, the inclusion of communities in conservation decision-making may promote habitat recovery and sustainable use (23, 24), allow equitable

distribution of economic benefits (25, 26), and prevent encroachment from external groups (27).

Second, conservation fortresses tend to be relatively small and isolated. Metapopulation theory and island biogeography suggest that they will lose species (28–31). To achieve larger, connected, protected areas, UNESCO proposes a model where a buffer surrounds a well-protected core. This model has instances of social injustice (8) but aspires to promote a more sustainable coexistence of people and wildlife. The evidence of its efficacy is mixed (32). Designating buffer zones may ease anthropogenic pressure on high-quality core areas but at the cost of habitat degradation in the surrounding areas (33). Although there are several known cases where designating biosphere reserves reduces poverty while keeping biodiversity intact, these instances are few (34). For example, marine ecosystems show some success; no-take protected areas may sustain fish populations and allow spillover into adjacent fisheries (35).

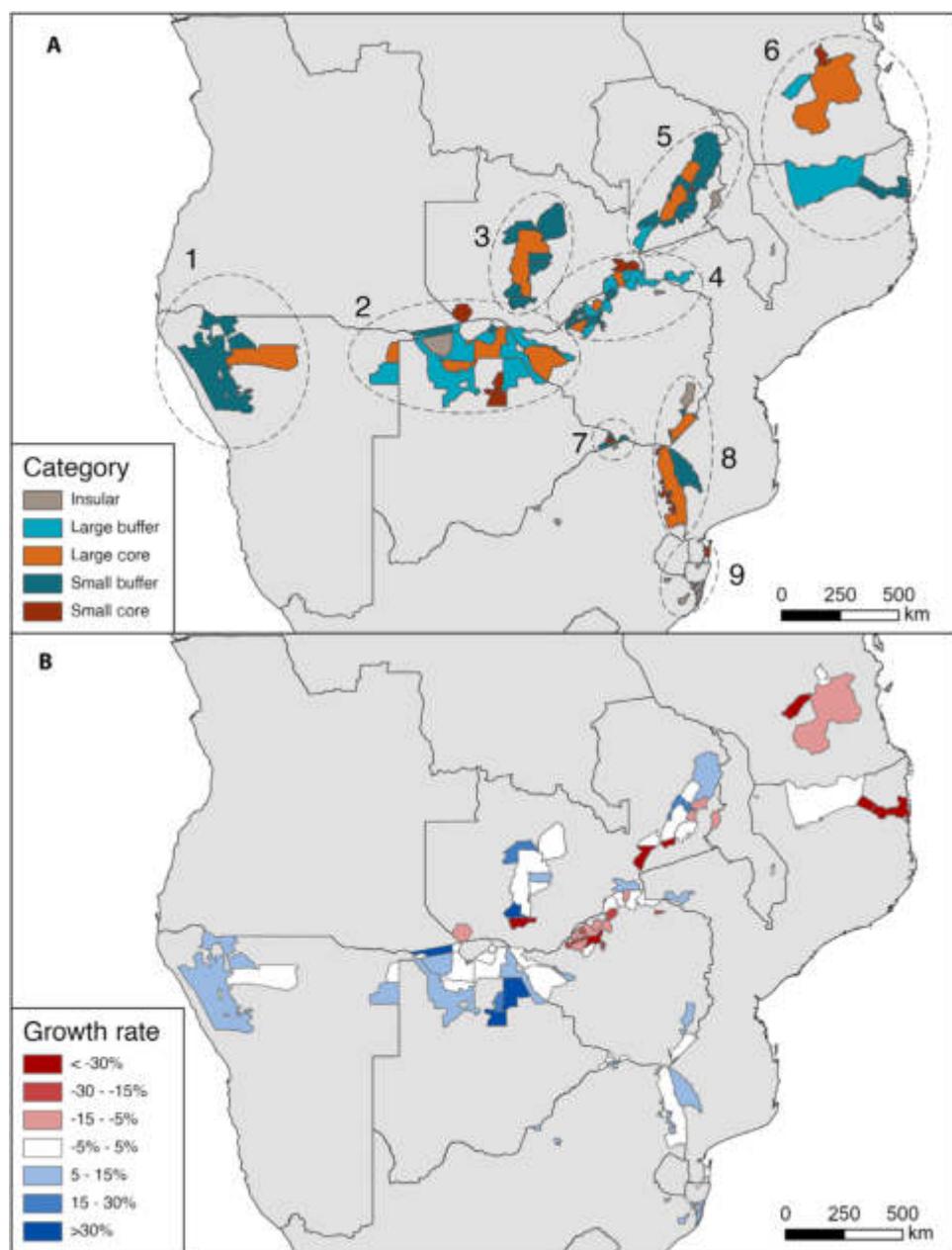
Third, conservation fortresses are isolated. Notwithstanding the pros and cons of the core and buffer model, such an arrangement allows connections between populations. In contrast, fences prevent release from overcrowding (36, 37), disrupt movement (38, 39), and reduce genetic variability (40). Reestablishing connections and developing corridors mitigate these consequences (41, 42) and allow for a functioning metapopulation (43–45). Corridor success is further augmented when including local people (46, 47). Despite metapopulation theory’s acceptance in conservation management, empirical evidence of the benefits of connectivity is limited (41).

Southern Africa has set aside large portions of land for wildlife protection (48) and thus provides a natural experiment to test variations in protected area design. Home to 70% of Africa’s savannah elephants (1, 2), these protected areas are a patchwork of fragments, varying in size, level of protection, and connectivity (38, 49). This region can potentially restore a continuous savannah elephant metapopulation and has been studied extensively. Thus, there is abundant literature and surveys on elephant population numbers.

Here, we consider protected landscape arrangements by explaining how combinations of current designations of land use affect elephant population growth rates. We collected 713 survey estimates of elephant population sizes from 103 protected areas from Tanzania southward. We calculated population changes over 24 years (between

¹Conservation Ecology Research Unit, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa. ²Nicholas School of the Environment, Duke University, Durham, NC, USA.

*Corresponding author. Email: ryan@ryanmhuang.com (R.M.H.); robert.guldemond@up.ac.za (R.A.R.G.)


1995 and 2020) to identify key spatial drivers of growth. Given the ever-present threat of poaching to African elephants, we also tested how regionally high levels of poaching influence these rates.

RESULTS

In southern Africa, savannah elephants are widely but unevenly distributed across nine conservation clusters (regional groupings of mostly adjacent protected areas) (Fig. 1A) (4). These clusters cover

an area of 525,957 km² and account for over 290,000 elephants across 103 protected areas.

We grouped individual protected areas into one of five categories based on average elephant population size across surveys (<1000 or >1000 individuals), IUCN classification (I to IV as core populations and V, VI, or not reported as buffers), and connectivity (Table 1). We categorize any protected area separated from all others by either human land use or fences as “insular.” Most of these display the characteristics of a typical conservation fortress: small in size,

Fig. 1. Map of protected area category designations and their annual elephant population growth rates. We assigned protected areas to one of five categories (A) based on average elephant population size across surveys (<1000 or >1000 individuals), IUCN classification (I to IV as core populations and V, VI, or not reported as buffers), and connectivity. We calculated annual elephant population growth rates for each individual protected area from 1995–2020 (B). Dashed ovals identify separate clusters (numbers match those in Table 2). This map only displays boundaries for protected areas analyzed (with the exception of Addo Elephant National Park and Niassa-Selous corridor; see the Supplementary Materials). Source: World Database on Protected Areas (81).

Table 1. Definitions of protected area categories. We assign protected areas to one of five categories based on three criteria: level of protection (IUCN category), average population size, and connectivity. We defined connected protected areas as any that are open to the movement of individuals with an adjacent protected area. We consider all closed populations that do not exchange individuals with neighboring protected areas as insular.

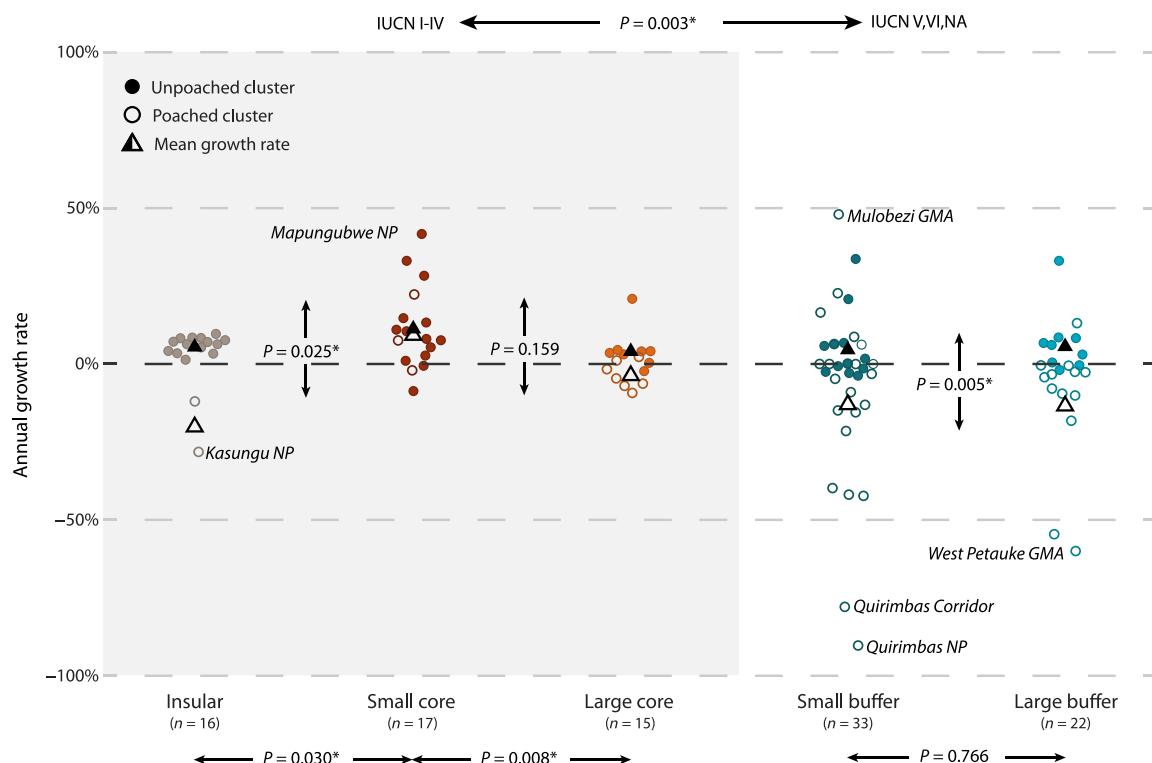
Category	Protection	Size	Connectivity
Large core	IUCN I–IV	>1000	Open
Small core	IUCN I–IV	≤1000	Open
Large buffer	IUCN V, VI, NA	>1000	Open
Small buffer	IUCN V, VI, NA	≤1000	Open
Insular	IUCN I–IV*	≤1000*	Closed

*The criteria are a generalization, and there are exceptions.

protected, and isolated from the wider landscape. Last, recognizing that some regions experience higher levels of poaching than others, we categorized protected areas from the Kafue, Luangwa, Niassa, and Zambezi clusters (clusters 3 to 6 in Fig. 1A and Table 2) a priori as regions that experienced relatively higher incidences of poaching (Fig. 2) (50–53).

Half of the elephants live in core areas, with less than 5% of the region's elephants in insular areas (Table 2). While the buffer areas account for the remaining 45%, elephants have disappeared from some areas entirely (see Supplementary Text). By the most recent estimates, 10 buffer populations and 1 insular population (Mavuradonha Wilderness Area in Zimbabwe) have no remaining elephants. While most of these were small populations (<1000 individuals) that lost a few hundred elephants, the West Petauke Game Management Area in Zambia lost 2500 elephants over 13 years.

After using a density-independent diffusion approximation model (54) to calculate growth rates for each protected area (our analytical


units), we identified several regions of concern. The Niassa cluster in Tanzania and Mozambique (cluster 6 in Fig. 1A and Table 2) has been particularly hard hit. Its overall decline was 8.6%, but some protected areas declined annually by as much as 90%. Some of these declines are significant, such as the Selous Game Reserve (a large core population in the Niassa cluster), losing nearly 1493 elephants per year for 20 years. Both the Luangwa and Zambezi clusters (clusters 4 and 5 in Fig. 1A and Table 2) also experienced declines of 6.61% and 5.03%, respectively (Table 2 and Fig. 1B), primarily due to high incidences of poaching in these regions (50–52, 55).

Despite declines in these three regions, the other six clusters show stable or increasing elephant populations. The Chobe cluster (cluster 2 in Fig. 1A and Table 2), home to 59% of the elephants in southern Africa (Table 2), appears to be the most stable region, with a weighted average growth of 2.71%. The next most populous cluster, Limpopo (cluster 8 in Fig. 1A and Table 2), has the second-highest growth rate at 4.88%, reflecting active protection and management.

Table 2. Summary of average elephant population sizes and weighted annual growth rates by category and cluster. This table displays the sum of the average elephant population sizes for all protected areas within each category for each cluster from 1995 to 2020 (number of protected areas shown in parentheses). The five categories are based on average elephant population size across surveys (<1000 or >1000 individuals), IUCN classification (I to IV as core populations and V, VI, or not reported as buffers), and connectivity. Clusters are regional groupings of protected areas (cluster numbers match the map in Fig. 1). At the right is the weighted growth rate of the clusters based on each protected area's average proportional contribution to the overall cluster. At the bottom are the average growth rates for each category, with standard deviations in parentheses. See Supplementary Text for a detailed description of each cluster and protected area.

Cluster	Insular	Small core	Large core	Small buffer	Large buffer	Total	Weighted growth rate
1. Etosha	–	–	2,281 (1)	665 (1)	–	2,946 (2)	4.78%
2. Chobe	9,329 (1)	1,614 (3)	73,087 (5)	854 (2)	85,459 (10)	170,343 (21)	2.71%
3.* Kafue	–	–	3,011 (1)	979 (7)	–	3,990 (8)	3.83%
4.* Zambezi	45 (1)	894 (1)	8,402 (3)	2,994 (5)	17,716 (7)	30,051 (17)	–5.03%
5.* Luangwa	163 (1)	54 (1)	8,688 (2)	3,408 (6)	1,112 (1)	13,424 (11)	–6.61%
6.* Niassa	–	798 (1)	23,005 (1)	1,330 (3)	15,126 (4)	40,259 (9)	–8.60%
7. Mapungubwe	73 (1)	603 (2)	–	649 (4)	–	1,325 (7)	4.22%
8. Limpopo	1,025 (1)	2,786 (8)	19,738 (2)	1,317 (5)	–	24,866 (16)	4.88%
9. Maputo	945 (7)	215 (1)	–	–	–	1,160 (8)	5.58%
Other	1,789 (4)	–	–	–	–	1,789 (4)	–
Total (n)	13,368 (16)	6,963 (17)	138,212 (15)	12,197 (33)	119,413 (22)	290,153 (103)	0.16%
Average growth rate (SD)	2.92% (9.7%)	11.5% (13.2%)	0.8% (7.1%)	–6.3% (27.5%)	–4.4% (19.9%)		

*The cluster experienced higher poaching levels.

Fig. 2. Comparison of elephant growth rates by category. Dot plot showing annual growth rates for 103 protected areas categorized based on size, IUCN category, connectivity, and regional poaching levels (open versus closed icons). Triangles indicate the mean growth rate for each category. Annotated P values show the results from ANOVA analyses described in the main text (* indicates statistical significance). The shaded area specifies the categories under IUCN I to IV protection.

Growth rates between different categories

Level of protection

When comparing protected areas by spatial attribute categories, we find hierachal effects of landscape arrangement on elephant populations. First, protection plays a significant role ($F_{1,101} = 9.26, P = 0.003$; Fig. 2). Areas with IUCN protection I to IV (core and insular areas) have a significantly higher average annual growth rate (5.99%) than buffer areas (IUCN V, VI, or not reported) that allow human activities, which declined by 5.71%. Buffers also show more variation across annual growth rates, ranging from an increase of 48% to a decline of 90%.

After accounting for protection, we subdivide the protected areas into our five categories (large and small cores, large and small buffers, and insular areas), each with high and low levels of regional poaching. Using a series of two-way analyses of variance (ANOVAs), we examine the nuanced and sometimes opposing ways size, connectivity, and poaching affect growth.

Regional poaching

Although we categorized protected areas as having high or low levels of poaching from the literature, our calculated declines generally support previous findings (Fig. 1 and Table 2) (50–53). However, these population declines are not universal but depend on the level of protection.

Among core protected areas, there is no significant difference between whether they are located in a more poached region or not ($F_{1,29} = 2.09, P = 0.159$; Fig. 2). In contrast, for buffer areas, there is a strongly significant difference ($F_{1,52} = 8.73, P = 0.005$; Fig. 2).

The most reasonable explanation for this is that stronger protection mitigates or prevents the consequences of poaching. Of concern,

however, is the apparent effect of poaching in insular populations ($F_{1,30} = 5.58, P = 0.025$; Fig. 2), which generally experience similar protection as cores. This result stems from only two insular protected areas in the poached regions. Possible explanations include more potential points of entry or lack of refuge and escape routes for elephants (56, 57).

Population size

Comparing populations based on average population size reveals another pattern. Growth in large populations (>1000 individuals) is closer to 0% and has smaller standard deviations than their smaller counterparts (Table 2). The difference is significant between core populations ($F_{1,29} = 8.05, P = 0.008$; Fig. 2), where small populations have a much higher average growth rate (11.5%) than their larger counterparts (0.8%). Small core growth rates are much higher than the ecological maximum of 6% for elephants by births and deaths alone (58). This can only be achieved through immigration. It means that small core populations must be receiving immigrants to achieve growth rates this high. However, large cores do not show the same high rates. This is likely because adding a few individuals to small populations results in larger relative changes in growth. It is more difficult for larger populations in the thousands to receive a proportionally similar number of immigrants.

The difference in growth rates between large and small buffer areas does not show the same significance ($F_{1,52} = 0.09, P = 0.766$), given the wide variation of growth rates among buffers. Again, given that many of these rates are above the maximum ecological rate from births alone, this variation is likely due to fluctuations in elephant numbers from immigration and emigration. Such movements are often in

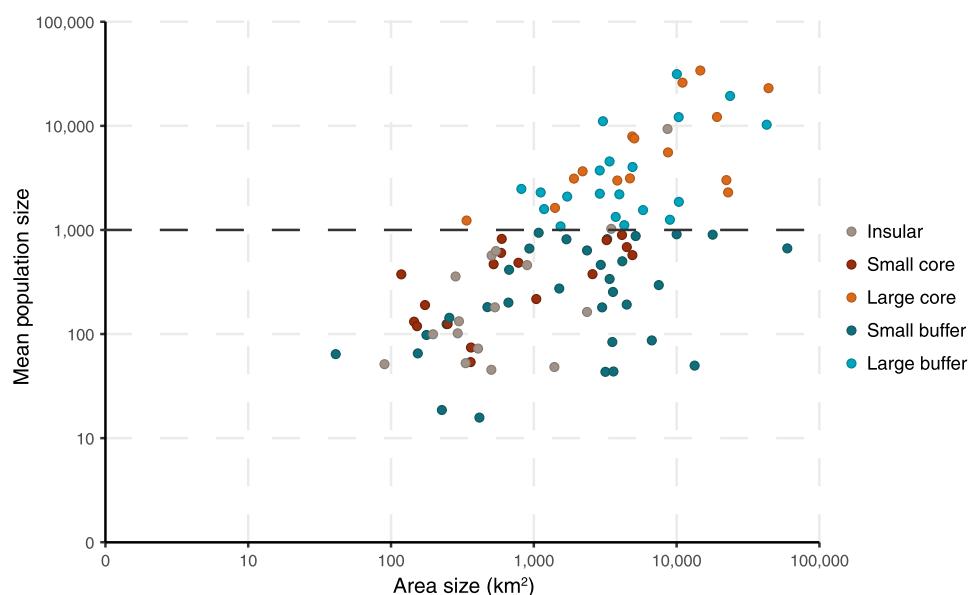
response to external threats such as poaching and land conversion, which are more common in buffer areas than core areas (51, 52, 59).

As expected, population size correlates with area ($r^2 = 0.413$, $P < 0.001$; Fig. 3). This suggests that area size has a similar effect on growth rates as average population size. The larger a protected area is, the more elephants it is likely to have and to sustain the population at a stable growth rate of 0%.

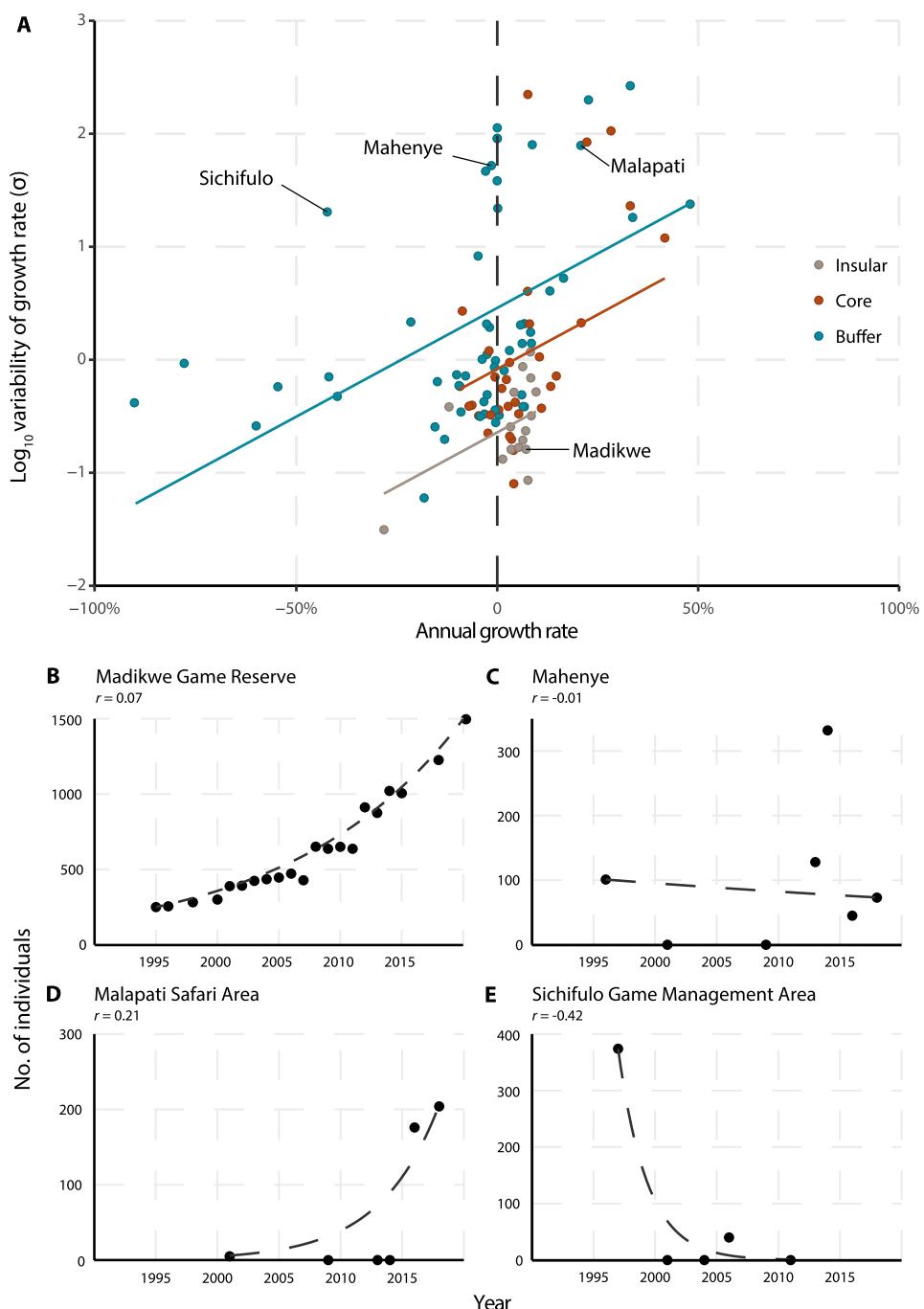
Connectivity

Last, given the subsuming effects of protection and size, we compare the growth rates of insular populations versus their most similar equivalents, small cores, to reveal the effect of connectivity. On average, insular populations grow at 2.92% annually, whereas similar-sized connected populations have a significantly higher growth rate (11.5%, $F_{1,30} = 5.16$, $P = 0.030$). As described previously, this high growth rate in small cores must be partly driven by dispersal, which is impossible in closed, insular protected areas. (A few insular population growth rates may also exceed the limit from births alone following the occasional translocation of individuals.) Notable is the strong consistency of growth rates among the unpoached, insular protected areas. Without the two poached, insular protected areas, the average annual growth rate of the remaining populations is 5.40%, close to the effective maximum growth rate in closed populations. This is a realistic result, given the lack of dispersal opportunities for these individuals.

Growth rate variation within individual populations


An advantage of the diffusion-approximation approach to calculating growth rates is that it allows one to measure the variability in growth between surveys. Rather than assuming that deviations from a smooth curve are measurement errors about the model fit, we can test whether connectivity affects the variability in population growth. Some of the variability may reflect counting errors, but some suggests movements of elephants in and out of the population.

An analysis of covariance (ANCOVA) of \log_{10} (standard deviation of interannual rates within a population) against the overall growth


rate and core/buffer/insular status shows a statistically significant effect ($F_{3,99} = 14.72$, $P < 0.001$; Fig. 4A). For a given population growth rate, insular populations show the most consistent year-after-year growth. For instance, Madikwe Game Reserve, an insular population in South Africa, has an overall positive annual growth rate of 7%. Its survey estimates rarely stray far from this average (Fig. 4B). Populations in these isolated fragments may only change through births, deaths, and translocations of individuals [which occurred in Madikwe (60) and explains a growth rate above 6%].

Conversely, buffer areas show the most variation year to year due to several possible effects. Immigration and emigration with nearby populations may cause large changes in growth rates between years, even when the overall growth rate is close to 0%, such as the case in Mahenye in Zimbabwe (Fig. 4C). In other instances, immigration may drive growth rates well above what is possible by births alone, as seen in the Malapati Safari Area of Zimbabwe, where the overall growth rate is 21% (Fig. 4D). Last, many buffer populations, like the Sichifulo Game Management area in Zambia, exhibit large interannual growth variability and declines due to the sudden loss of elephants by emigration, poaching, or both (Fig. 4E). Admittedly, sampling error may be higher for surveys in buffer areas than in insular areas that are often more actively managed. This may increase variability in the reported buffer populations. However, dispersal is a parsimonious explanation for the observed interannual variation and observed growth rates between categories.

Core populations display an intermediate amount of interannual growth rate variability. These areas are less subject to poaching and human activities than their neighboring buffers, suggesting a more consistently suitable environment for elephant populations. Unlike insular populations, cores are connected to other areas. They are subject to immigration and emigration, as evidenced by the average small core growth rate well above the maximum birth and survival rate. This connectivity can result in short-term fluctuations of population numbers.

Fig. 3. Mean elephant population size against protected area size. Protected area size is strongly positively correlated with mean population size ($r^2 = 0.413$, $P < 0.001$). Dashed horizontal line indicates the threshold between small and large populations (<1000 or >1000 individuals). Both axes are plotted on a \log_{10} scale. Area data provided by World Database of Protected Areas (81).

Fig. 4. Covariance analysis evaluating interannual growth rate variability among core, buffer, and insular populations. (A) The ANCOVA results of $\log_{10}(\text{standard deviation of interannual rates within a population})$ against the population's overall growth rate and type of population ($F_{3,99} = 14.72, P < 0.001$). The regression lines show a population type's variability for a given growth rate. The bottom charts show the survey estimates from 1995 to 2020 for (B) Madikwe Game Reserve in South Africa, (C) Mahenye in Zimbabwe, (D) Malapati Safari Area in Zimbabwe, and (E) Sichifulo Game Management Area in Zambia. The dashed line shows the projected growth according to the population growth equation: $n(t) = y_0 \times e^{rt}$.

DISCUSSION

The spatial arrangement and designation of conservation lands determine the fate of elephants and their landscapes. Elephant population growth rates across southern African protected areas follow several patterns:

1) Across sites, more strictly protected areas—i.e., IUCN I to IV—hold populations that typically grow and are much less likely to show sharp declines than populations in buffer areas—i.e., IUCN V, VI, not reported (Table 2 and Fig. 2). In regions with historically high incidences of poaching, protection appears to prevent population

declines. Protected sites also show more consistent changes in numbers from year to year than buffer areas (Fig. 4A).

2) Larger areas hold more elephants (Fig. 3). Across sites, this results in more consistent growth rates (Fig. 2), likely because they are proportionally less affected by immigration and emigration. Among small populations, the arrival or departure of a single herd of a dozen individuals will have an outsized effect on apparent annual growth rates.

3) When considering connectivity, insular populations grow quickly and consistently across sites and years (Figs. 2 and 4 and Table 2). With few exceptions, these growth rates are near the maximum possible by births and deaths alone. Alternatively, small core sites sometimes show very high growth rates (Fig. 2) and more variable increases from year to year, likely due to immigration from areas nearby since they far exceed the rate at which populations can increase otherwise. Some buffer populations show rapid increases in numbers, sometimes exceeding those in comparable cores (Fig. 2). These increases, plus the more variable year-to-year growth rates within buffer sites (Fig. 4), can also reflect movements into these populations.

In short, large, well-protected, and connected areas provide the best solution to conserving elephants and their landscapes. That said, large, strictly protected areas contain only 48% of the region's elephants. Our results have several implications for conservation.

First, across most of Africa, habitat degradation and intensive and chronic poaching for ivory threaten the persistence of many elephant populations (53, 61–64). The Kafue, Niassa, Luangwa, and Zambezi regions have been hard hit by illegal ivory poaching, causing steep declines in numbers (Fig. 1). We recognize that chronic poaching and other illegal activities may drive the apparent patterns, induced by socioeconomic rather than ecological limitations in some buffer populations (65). We do not foresee a scenario where such limitations will disappear soon.

This said, across six of the nine conservation clusters analyzed, covering 320,000 km², elephant populations are numerically stable or increasing (65–69) (Table 2). These six clusters account for 60% of Africa's savannah elephants (1). While savannah elephants across the continent may be listed as Endangered given the myriad of threats they face (70, 71), southern African elephants show a stable growth of 0.16% for the past quarter century. This is remarkable, given that 45% of these elephants cohabit with humans in buffer areas.

Second, conservation activities directed at Africa's elephants should recognize the importance of space and connectivity for the long-term stability of populations (43).

Insular populations seem to flourish (Figs. 2 and 4). That said, they may induce undesirable elephant population growth and eventual densities that initiate management interventions—such as contraceptives or culling—and cause societal conservation conflicts (37, 72). Without the ability to disperse naturally or through management interventions, unrelenting population increases may eventually lead to transient overcrowding (36, 37). The damage to the habitats during such transitions may be long-lasting (73).

As illustrated here, clusters of connected, protected areas with various land-use options can stabilize elephant numbers. Buffers serve a useful conservation function. These areas are the first to face land cover conversion and overexploitation, but their connectivity to other buffer and core populations results in a source-sink dynamic. As elephants become threatened, they may quickly shift to a nearby buffer or core area. They may just as easily flow back when living conditions change or when high densities become problematic. Thus,

connectivity drives stability in the core areas and variability in buffers, an important addition to the limited empirical support of metapopulation theory for conservation management.

Such anthropogenic-driven source-sink dynamics within clusters of conservation areas under various levels of protection may be considered the new baseline for species management. Our call for spatially connecting large, protected areas has been introduced previously. Still, we consider this evidence for managing savannah landscapes to stabilize elephant populations across large swaths of the continent to be the most comprehensive to date.

MATERIALS AND METHODS

Study area

We delineated nine clusters of protected areas spread across nine countries in southern Africa (Namibia, Angola, Botswana, South Africa, Zimbabwe, Zambia, Malawi, Mozambique, southern portion of Tanzania; Fig. 1A and Supplementary Text) (4, 74). Each cluster is a regional grouping of protected areas (e.g., national park or game management area). This analysis includes four populations not associated with any cluster due to their isolation: Addo Elephant National Park, Madikwe Provincial Reserve, Pilanesberg Provincial Reserve of South Africa, and Liwonde National Park in Malawi.

Data collection and filtering

We collated population estimates and counts of elephant populations from the African Elephant Database (75), peer-reviewed publications, and gray literature (65, 69) (see the Supplementary Materials). We only used estimates that met reliability criteria A or B of Thouless *et al.* (1), excluded estimates from wet season surveys, and excluded populations with fewer than three surveys or only reported zero elephants. Where discrete populations were surveyed in their entirety, estimates were retained, even if survey areas may have differed slightly. We combined survey results for some areas to match larger areas reported previously. Our assessment spanned the period from 1995 to 2020 and therefore constitutes one elephant generation [~24 years (76)] to reflect the recent history of populations and to exclude trends that may have been driven by large-scale culling operations and by periods of civil unrest in parts of southern Africa before 1994. We restricted our analysis to southern Africa (Tanzania southward) since this region contains the majority of savanna elephants, is well documented and surveyed, and contains a large number and variation of protected areas, which allows us to test combinations of spatial characteristics. In total, we use 713 surveys from 103 protected areas for our analysis.

Calculating and comparing growth rates

We calculated population growth rates for each protected area from the collected survey estimates using the density-independent diffusion approximation method (54, 77). This method is advantageous for addressing missing survey years and temporal autocorrelation and does not assume that residuals are uncertainty in the model, but possibly true variation over the time period (78). This method requires first calculating the population change between each successive estimate. The growth rate is then the slope of a zero-intercept ordinary least-squares regression of the ln-transformed population change and the square root of the year interval. We calculate weighted growth rates for each cluster by first calculating the mean population size for each protected area and then a total for each cluster. The

proportion each population contributes to the cluster total is the proportional weight of their growth rate to the overall cluster rate.

Assigning protected area categories

We selected four factors a priori that may drive changes in elephant growth rates: level of protection, size, connectivity, and regional poaching.

Level of protection

We categorized levels of protection as either well-protected (IUCN categories I to IV) or less-protected (IUCN V, VI, or not reported). Most southern African countries recognize the IUCN management categories (79). South Africa, however, defines protected areas according to the National Environmental Management (NEM) Protected Areas Act, Act no. 57 of 2003, section 9. We followed Paterson (80) to assign IUCN categories to the protected areas of South Africa.

Size

As a measure of size, we distinguish between large and small populations by calculating average population size across surveys (<1000 or >1000 individuals). We could not use area or density as variables as there are several protected areas that either have a high proportion of land unsuitable for use by elephants (e.g., Makgadikgadi Pans National Park) or have been depopulated by poaching or emigration (e.g., West Petauke Game Reserve). Thus, neither area nor density would accurately reflect the underlying drivers. Furthermore, average population size is a more mechanistically direct driver of the observed variation in growth rates. Nonetheless, the strong positive correlation between the \log_{10} (average population size) and \log_{10} (area size) suggests that average population size may function as a proxy for area. The data on area size come from shapefiles provided by the World Database of Protected Areas (81).

Connectivity

We consider any protected areas that are directly adjacent to another protected area and allow free movement of individuals between protected areas as connected (this includes connections to adjacent protected areas not included in this analysis due to lack of surveys). Should fences or other barriers such as human land use prevent movement to any other protected areas, we classify the protected area as insular. A unique example of this is the Seronga area of the Chobe cluster (cluster 2 in Fig. 1A), which, despite being surrounded by protected areas, does not have free movement because of fences and the Okavango delta (36).

Level of poaching

Last, recognizing that different regions experience varying levels of poaching, which may influence population growth, we assigned populations to higher or lower levels of historical poaching. After reviewing the literature (50–53), we expected that populations from the Kafue, Luangwa, Niassa, and Zambezi clusters (clusters 3 to 6 in Table 2 and Fig. 1) experienced higher levels of poaching.

Using these definitions, we assigned protected areas to one of five categories (Table 1): (i) large cores—large, well-protected, and connected; (ii) small cores—small, well-protected, and connected; (iii) large buffers—large, less-protected, and connected; (iv) small buffers—small, less-protected, and connected; and (v) insular—unconnected. Most insular areas we analyzed are well-protected and small (fewer than 1000 individuals on average).

Statistical analyses of growth rates

Through a series of ANOVAs run in R version 4.2.2 (82), we create a custom hierarchical model. At the highest level, we test the effect of

protection using a one-tailed, one-way ANOVA between the well-protected areas (cores and insular protected areas together) and the less-protected buffers. Next, we subset the data into our five categories and ran two-way ANOVAs to examine the effects of poaching and size on growth rate (between large and small cores, and large and small buffers). Last, we use a two-way ANOVA to test for the role of connectivity and poaching between small cores and insular protected areas. Given their small and well-protected nature, insular areas may only be compared to small cores, which differ only in their connectivity. For our ANOVAs, we did not correct for the experiment-wise error rate since each is an independent a priori comparison.

Finally, we ran an ANCOVA evaluating the differences in the \log_{10} (standard deviation of interannual growth rates for each site) between core, buffer, and insular populations while accounting for the overall growth rate. We assumed normally distributed residuals about regression lines or treatment means in our models. The outliers in buffer areas of the *F*-tests likely reject this assumption, but their removal would not alter the inferences we draw.

Although many of the population surveys may have sampling errors, we do not expect them to significantly alter our results. Such errors are unlikely to be unidirectional (they may either overcount or undercount) and instead simply increase variation in the data. ANOVAs account for this variation when estimating the *P* value. However, the same may not be true for the ANCOVA analysis given that variation is the dependent variable. One could expect insular protected areas with more management to have less sampling error than the less intensively managed buffers and thus less interannual variability. Although we recognize this possible bias, we interpret our ANCOVA results in context with the ANOVA results.

Supplementary Materials

This PDF file includes:

Supplementary Text
Figs. S1 to S14
Legends for tables S1 to S10
Tables S11 to S15
References

Other Supplementary Material for this manuscript includes the following:

Tables S1 to S10

REFERENCES AND NOTES

1. C. R. Thouless, H. T. Dublin, J. J. Blanc, D. P. Skinner, T. E. Daniel, R. D. Taylor, F. Maisels, H. L. Frederick, P. Bouche, *African Elephant Status Report 2016: An Update from the African Elephant Database* (Occasional paper series of the IUCN Species Survival Commission No. 60 IUCN/SSC Africa Elephant Specialist Group, IUCN, 2016), 309 pp.
2. M. J. Chase, S. Schlossberg, C. R. Griffin, P. J. C. Bouché, S. W. Djene, P. W. Elkan, S. Ferreira, F. Grossman, E. M. Kohi, K. Landen, P. Omondi, A. Peltier, S. A. J. Selier, R. Sutcliffe, Continent-wide survey reveals massive decline in African savannah elephants. *PeerJ* **4**, e2354 (2016).
3. A. J. Dickman, Complexities of conflict: The importance of considering social factors for effectively resolving human–wildlife conflict. *Anim. Conserv.* **13**, 458–466 (2010).
4. R. J. van Aarde, S. M. Ferreira, Elephant populations and CITES trade resolutions. *Environ. Conserv.* **36**, 8–10 (2009).
5. M. Batisse, Developing and focusing the biosphere reserve concept. *Nat. Resour.* (1986).
6. N. Ishwaran, A. Persic, N. H. Tri, Concept and practice: The case of UNESCO biosphere reserves. *Int. J. Environ. Sustain. Dev.* **7**, 118–131 (2008).
7. Unesco, Programme on Man and the Biosphere, *Programme on Man and the Biosphere (MAB): Task Force on: Criteria and Guidelines for the Choice and Establishment of Biosphere Reserves: Final Report*: Paris, 20–24 May 1974 (Unesco, 1974).
8. R. P. Neumann, The postwar conservation boom in British colonial Africa. *Environ. Hist.* **7**, 22–47 (2002).

9. D. Brockington, R. Duffy, J. Igoe, *Nature Unbound: Conservation, Capitalism and the Future of Protected Areas* (Earthscan, 2008).
10. R. DeFries, A. Hansen, A. C. Newton, M. C. Hansen, Increasing isolation of protected areas in tropical forests over the past twenty years. *Ecol. Appl.* **15**, 19–26 (2005).
11. L. N. Joppa, S. R. Loarie, S. L. Pimm, On the protection of “protected areas”. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 6673–6678 (2008).
12. C. Packer, A. Loveridge, S. Canney, T. Caro, S. T. Garnett, M. Pfeifer, K. K. Zander, A. Swanson, D. MacNulty, G. Balme, H. Bauer, C. M. Begg, K. S. Begg, S. Bhalla, C. Bissett, T. Bodasing, H. Brink, A. Burger, A. C. Burton, B. Clegg, S. Dell, A. Delsink, T. Dickerson, S. M. Dloniak, D. Druce, L. Frank, P. Funston, N. Gichohi, R. Groom, C. Hanekom, B. Heath, L. Hunter, H. H. Delongh, C. J. Joubert, S. M. Kasiki, B. Kissui, W. Knocke, B. Leathem, P. A. Lindsey, S. D. MacLennan, J. W. McNutt, S. M. Miller, S. Naylor, P. Nel, C. Ng'wenyo, K. Nicholls, J. O. Ongut, E. Okot-Omoya, B. D. Patterson, A. Plumptre, J. Salerno, K. Skinner, R. Slotow, E. A. Sogobohosso, K. J. Stratford, C. Winterbach, H. Winterbach, S. Polasky, Conserving large carnivores: Dollars and fence. *Ecol. Lett.* **16**, 635–641 (2013).
13. H. Bauer, G. Chapron, K. Nowell, P. Henschel, P. Funston, L. T. B. Hunter, D. W. Macdonald, C. Packer, Lion (*Panthera leo*) populations are declining rapidly across Africa, except in intensively managed areas. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 14894–14899 (2015).
14. J. O. Ongut, H. P. Piepho, M. Y. Said, G. O. Ojwang, L. W. Njino, S. C. Kifugo, P. W. Wargute, Extreme wildlife declines and concurrent increase in livestock numbers in Kenya: What are the causes? *PLOS ONE* **11**, e0163249 (2016).
15. J. Hartter, A. C. Goldman, Life on the edge: Balancing biodiversity, conservation, and sustaining rural livelihoods around Kibale National Park, Uganda. *Focus Geogr.* **52**, 11–17 (2009).
16. M. W. Hayward, G. I. Kerley, Fencing for conservation: Restriction of evolutionary potential or a riposte to threatening processes? *Biol. Conserv.* **142**, 1–13 (2009).
17. S. M. Durant, S. Bashir, T. Maddox, M. K. Laurenson, Relating long-term studies to conservation practice: The case of the Serengeti Cheetah Project. *Conserv. Biol.* **21**, 602–611 (2007).
18. K. C. Vercauteren, M. J. Lavelle, N. W. Seward, J. W. Fischer, G. E. Phillips, Fence-line contact between wild and farmed white-tailed deer in Michigan: Potential for disease transmission. *J. Wildl. Manage.* **71**, 1603–1606 (2007).
19. M. E. Gadd, Barriers, the beef industry and unnatural selection: A review of the impact of veterinary fencing on mammals in southern Africa, in *Fencing for Conservation*, M. Somers, M. Hayward, Eds. (Springer, 2012), pp. 153–186.
20. D. Brockington, J. Igoe, Eviction for conservation: A global overview. *Conserv. Soc.* **4**, 424–470 (2006).
21. H. Siurua, Nature above people: Rolston and “fortress” conservation in the South. *Ethics Environ.* **11**, 71–96 (2006).
22. J. A. Oldekop, G. Holmes, W. E. Harris, K. L. Evans, A global assessment of the social and conservation outcomes of protected areas. *Conserv. Biol.* **30**, 133–141 (2016).
23. H.-S. Tai, Development through conservation: An institutional analysis of indigenous community-based conservation in Taiwan. *World Dev.* **35**, 1186–1203 (2007).
24. S. E. F. de Souza, E. Vidal, G. de Freitas Chagas, A. T. Elgar, P. H. Brancalion, Ecological outcomes and livelihood benefits of community-managed agroforests and second growth forests in Southeast Brazil. *Biotropica* **48**, 868–881 (2016).
25. N. M. Dawson, B. Coolsaet, E. J. Sterling, R. Loveridge, N. D. Gross-Camp, S. Wongbusarakum, K. K. Sangha, L. M. Scherl, H. P. Phan, N. Zafra-Calvo, W. G. Lavey, P. Byakagaba, C. J. Idrobo, A. Chenet, N. J. Bennett, S. Mansourian, F. J. Rosado-May, The role of Indigenous peoples and local communities in effective and equitable conservation. *Ecol. Soc.* **26**, 19 (2021).
26. P. V. Rajski, P. Y. Papalambros, Integrated natural resource and conservation development project: A review of success factors from a systems perspective. *Proc. Des. Soc.* **1**, 1867–1876 (2021).
27. D. J. Wrathall, J. Devine, B. Aguilar-González, K. Benessaiah, E. Tellman, S. Sesnie, E. Nielsen, N. Magliocca, K. McSweeney, Z. Pearson, J. Ponstingel, A. R. Sosa, A. Dávila, The impacts of cocaine-trafficking on conservation governance in Central America. *Glob. Environ. Chang.* **63**, 102098 (2020).
28. W. D. Newmark, Isolation of African protected areas. *Front. Ecol. Environ.* **6**, 321–328 (2008).
29. E. O. Wilson, R. H. MacArthur, *The Theory of Island Biogeography* (Princeton Univ. Press, 2016).
30. I. Hanski, Metapopulation dynamics. *Nature* **396**, 41–49 (1998).
31. R. Huang, S. L. Pimm, C. Giri, Using metapopulation theory for practical conservation of mangrove endemic birds. *Conserv. Biol.* **34**, 266–275 (2020).
32. W. Dressler, B. Büscher, M. Schoon, D. Brockington, T. Hayes, C. A. Kull, J. McCarthy, K. Shrestha, From hope to crisis and back again? A critical history of the global CBNRM narrative. *Environ. Conserv.* **37**, 5–15 (2010).
33. W. Xu, X. Li, S. L. Pimm, V. Hull, J. Zhang, L. Zhang, Y. Xiao, H. Zheng, Z. Ouyang, The effectiveness of the zoning of China's protected areas. *Biol. Conserv.* **204**, 231–236 (2016).
34. K. L. Coetzer, E. T. Witkowski, B. F. Erasmus, Reviewing biosphere reserves globally: Effective conservation action or bureaucratic label? *Biol. Rev.* **89**, 82–104 (2014).
35. M. Di Lorenzo, J. Claudet, P. Guidetti, Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. *J. Nat. Conserv.* **32**, 62–66 (2016).
36. R. J. van Aarde, S. L. Pimm, R. Guldemond, R. Huang, C. Maré, The 2020 elephant die-off in Botswana. *PeerJ* **9**, e10686 (2021).
37. R. van Aarde, T. Jackson, S. Ferreira, Conservation science and elephant management in southern Africa: Elephant conservation. *S. Afr. J. Sci.* **102**, 385–388 (2006).
38. R. M. Huang, R. J. van Aarde, S. L. Pimm, M. J. Chase, K. Leggett, Mapping potential connections between Southern Africa's elephant populations. *PLOS ONE* **17**, e0275791 (2022).
39. R. Woodroffe, S. Hedges, S. M. Durant, To fence or not to fence. *Science* **344**, 46–48 (2014).
40. C. W. Epps, P. J. Palsbøll, J. D. Wehausen, G. K. Roderick, R. R. Ramey II, D. R. McCullough, Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. *Ecol. Lett.* **8**, 1029–1038 (2005).
41. S. L. Pimm, E. Willigan, A. Kolarova, R. Huang, Reconnecting nature. *Curr. Biol.* **31**, R1159–R1164 (2021).
42. M. Beger, A. Metaxas, A. C. Balbar, J. A. McGowan, R. Daigle, C. D. Kuempel, E. A. Tremel, H. P. Possingham, Demystifying ecological connectivity for actionable spatial conservation planning. *Trends Ecol. Evol.* **37**, 1079–1091 (2022).
43. R. J. van Aarde, T. P. Jackson, Megaparks for metapopulations: Addressing the causes of locally high elephant numbers in southern Africa. *Biol. Conserv.* **134**, 289–297 (2007).
44. F. Jordán, A. Báldi, K.-M. Orci, I. Rácz, Z. Varga, Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a *Pholidoptera transsylvaniaica* (Orthoptera) metapopulation. *Landsc. Ecol.* **18**, 83–92 (2003).
45. M. Anwar, J. Borah, Functional status of a wildlife corridor with reference to Tiger in Terai Arc Landscape of India. *Trop. Ecol.* **60**, 525–531 (2019).
46. A. P. Kikoti, C. R. Griffin, L. Pamphil, Elephant use and conflict leads to Tanzania's first wildlife conservation corridor. *Pachyderm* **48**, 57–66 (2010).
47. M. Montero-Botey, M. Soliño, R. Pereira, M. Martínez-Jauregui, Exploring rangers' preferences for community-based strategies to improve human-elephant coexistence in African natural corridors. *Anim. Conserv.* **24**, 982–993 (2021).
48. P. A. Lindsey, G. Chapron, L. S. Petracca, D. Burnham, M. W. Hayward, P. Henschel, A. E. Hinks, S. T. Garnett, D. W. Macdonald, E. A. Macdonald, W. J. Ripple, K. Zander, A. Dickman, Relative efforts of countries to conserve world's megafauna. *Glob. Ecol. Conserv.* **10**, 243–252 (2017).
49. J. Wall, G. Wittemyer, B. Klinkenberg, V. LeMay, S. Blake, S. Strindberg, M. Henley, F. Vollrath, F. Maisels, J. Ferwerda, I. Douglas-Hamilton, Human footprint and protected areas shape elephant range across Africa. *Curr. Biol.* **31**, 2437–2445.e4 (2021).
50. S. K. Wasser, L. Brown, C. Mailand, S. Mondol, W. Clark, C. Laurie, B. S. Weir, Genetic assignment of large seizures of elephant ivory reveals Africa's major poaching hotspots. *Science* **349**, 84–87 (2015).
51. V. R. Nyirenda, P. A. Lindsey, E. Phiri, I. Stevenson, C. Chomba, N. Namukonde, W. J. Myburgh, B. K. Reilly, Trends in illegal killing of African elephants (*Loxodonta africana*) in the Luangwa and Zambezi ecosystems of Zambia. *Environ. Nat. Resour. Res.* **5**, 24 (2015).
52. N. Zafra-Calvo, J. M. Lobo, C. Prada, M. Nielsen, N. Burgess, Predictors of elephant poaching in a wildlife crime hotspot: The Ruvuma landscape of southern Tanzania and northern Mozambique. *J. Nat. Conserv.* **41**, 79–87 (2018).
53. S. K. Wasser, K. S. Gobush, Conservation: Monitoring elephant poaching to prevent a population crash. *Curr. Biol.* **29**, R627–R630 (2019).
54. B. Dennis, P. L. Munholland, J. M. Scott, Estimation of growth and extinction parameters for endangered species. *Ecol. Monogr.* **61**, 115–143 (1991).
55. P. A. Lindsey, V. R. Nyirenda, J. I. Barnes, M. S. Becker, R. McRobb, C. J. Tambling, W. A. Taylor, F. G. Watson, M. t'Sas-Rolfs, Underperformance of African protected area networks and the case for new conservation models: Insights from Zambia. *PLOS ONE* **9**, e94109 (2014).
56. R. S. Davis, L. K. Gentle, W. O. Mgoola, E. L. Stone, A. Uzal, R. W. Yarnell, Using camera trap bycatch data to assess habitat use and the influence of human activity on African elephants (*Loxodonta africana*) in Kasungu National Park, Malawi. *Mamm. Biol.* **103**, 121–132 (2023).
57. S. M. Munthali, F. X. Mkanda, The plight of Malawi's wildlife: Is trans-location of animals the solution? *Biodivers. Conserv.* **11**, 751–768 (2002).
58. S. L. Pimm, Imagine immortal elephants. *Oryx* **42**, 2 (2008).
59. S. Schlossberg, M. J. Chase, C. R. Griffin, Poaching and human encroachment reverse recovery of African savannah elephants in south-east Angola despite 14 years of peace. *PLOS ONE* **13**, e0193469 (2018).
60. M. E. Garaï, R. Slotow, R. D. Carr, B. Reilly, Elephant reintroductions to small fenced reserves in South Africa. *IUCN* **3**, 27 (2004).
61. P. C. Lee, M. D. Graham, African elephants *Loxodonta africana* and human-elephant interactions: Implications for conservation. *Int. Zoo Yearb.* **40**, 9–19 (2006).
62. H. S. Riddle, B. A. Schulze, A. A. Desai, L. van der Meer, Elephants—A conservation overview. *J. Threat. Taxa* **2**, 653–661 (2010).

63. G. Wittemyer, J. M. Northrup, J. Blanc, I. Douglas-Hamilton, P. Omondi, K. P. Burnham, Illegal killing for ivory drives global decline in African elephants. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 13117–13121 (2014).

64. L. J. Shaffer, K. K. Khadka, J. Van Den Hoek, K. J. Naithani, Human-elephant conflict: A review of current management strategies and future directions. *Front. Ecol. Evol.* **6**, 235 (2019).

65. A. S. Robson, M. J. Trimble, A. Purdon, K. D. Young-Overton, S. L. Pimm, R. J. van Aarde, Savanna elephant numbers are only a quarter of their expected values. *PLoS ONE* **12**, e0175942 (2017).

66. S. Chamaillé-Jammes, H. Fritz, M. Valeix, F. Murindagomo, J. Clobert, Resource variability, aggregation and direct density dependence in an open context: The local regulation of an African elephant population. *J. Anim. Ecol.* **77**, 135–144 (2008).

67. A. S. Louw, S. MacFadyen, S. Ferreira, C. Hui, Elephant population responses to increased density in Kruger National Park. *Koedoe* **63**, a1660 (2021).

68. G. C. Craig, D. S. C. Gibson, K. H. Uiseb, Namibia's elephants—Population, distribution and trends. *Pachyderm* **62**, 35–52 (2021).

69. J. Junker, R. J. van Aarde, S. M. Ferreira, Temporal trends in elephant *Loxodonta africana* numbers and densities in northern Botswana: Is the population really increasing? *Oryx* **42**, 58–65 (2008).

70. J. Hart, K. Gobush, F. Maisels, S. Wasser, B. Okita-Ouma, R. Slotow, African forest and savannah elephants treated as separate species. *Oryx* **55**, 170–171 (2021).

71. K. S. Gobush, C. T. T. Edwards, D. Balfour, G. Wittemyer, F. Maisels, R. D. Taylor, *Loxodonta africana* (amended version of 2021 assessment) (The IUCN Red List of Threatened Species, 2021).

72. N. Owen-Smith, G. Kerley, B. Page, R. Slotow, R. Van Aarde, A scientific perspective on the management of elephants in the Kruger National Park and elsewhere: Elephant conservation. *S. Afr. J. Sci.* **102**, 389–394 (2006).

73. R. Guldemand, R. Van Aarde, A meta-analysis of the impact of African elephants on savanna vegetation. *J. Wildl. Manag.* **72**, 892–899 (2008).

74. K. Lindsay, M. Chase, K. Landen, K. Nowak, The shared nature of Africa's elephants. *Biol. Conserv.* **215**, 260–267 (2017).

75. IUCN SSC African Elephant Specialist Group, African Elephant Database. (2023); <https://africanelephantdatabase.org/>.

76. G. Wittemyer, D. Daballen, I. Douglas-Hamilton, Comparative demography of an at-risk African elephant population. *PLoS ONE* **8**, e53726 (2013).

77. R. A. Guldemond, C. J. Louw, C. Maré, C. Nørgaard, R. J. van Aarde, Demographic responses of an insular elephant population to removal as a management intervention. *Conserv. Sci. Pract.* **4**, e12741 (2022).

78. L. S. Mills, *Conservation of Wildlife Populations: Demography, Genetics, and Management* (Blackwell, 2007).

79. N. Dudley, *Guidelines for Applying Protected Area Management Categories* (IUCN, 2008).

80. A. Paterson, *Legal Framework for Protected Areas: South Africa* (IUCN, 2009).

81. UNEP-WCMC, IUCN, Protected Planet: The World Database on Protected Areas (WDPA) [Online]. (2023); <https://www.protectedplanet.net/>.

82. R Core Team, *R: A Language and Environment for Statistical Computing* (R Foundation for Statistical Computing, 2022).

83. W. P. du Plessis, G. J. Bredenkamp, W. S. W. Trollope, Development of a technique for assessing veld condition in Etosha National Park, Namibia, using key herbaceous species. *Koedoe* **41**, 19–29 (1998).

84. L. Benitez, J. W. Kilian, G. Wittemyer, L. F. Hughey, C. H. Fleming, P. Leimgruber, P. du Preez, J. A. Stabach, Precipitation, vegetation productivity, and human impacts control home range size of elephants in dryland systems in northern Namibia. *Ecol. Evol.* **12**, e9288 (2022).

85. K. E. Leggett, Home range and seasonal movement of elephants in the Kunene Region, northwestern Namibia. *Afr. Zool.* **41**, 17–36 (2006).

86. M. Tsalyuk, W. Kilian, B. Reineking, W. M. Getz, Temporal variation in resource selection of African elephants follows long-term variability in resource availability. *Ecol. Monogr.* **89**, e01348 (2019).

87. H. Berry, Historical review of the Etosha Region and its subsequent administration as a National Park. *Madoqua* **1997**, 3–12 (1997).

88. Y. de Beer, W. Kilian, W. Versfeld, R. J. van Aarde, Elephants and low rainfall alter woody vegetation in Etosha National Park, Namibia. *J. Arid Environ.* **64**, 412–421 (2006).

89. M. Lindeque, P. Lindeque, Satellite tracking of elephants in northwestern Namibia. *Afr. J. Ecol.* **29**, 196–206 (1991).

90. P. Lindeque, P. Turnbull, Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. *Onderstepoort J. Vet. Res.* **61**, 71–83 (1994).

91. W. C. Turner, P. Imologhome, Z. Havarua, G. P. Kaaya, J. K. E. Mfune, I. D. T. Mpofu, W. M. Getz, Soil ingestion, nutrition and the seasonality of anthrax in herbivores of Etosha National Park. *Ecosphere* **4**, art13 (2013).

92. D. M. Helgren, Historical geomorphology and geoarchaeology in the southwestern Makgadikgadi Basin, Botswana. *Ann. Assoc. Am. Geogr.* **74**, 298–307 (1984).

93. F. D. Eckardt, F. P. D. Cotterill, T. J. Flügel, B. Kahle, M. McFarlane, C. Rowe, Mapping the surface geomorphology of the Makgadikgadi Rift Zone (MRZ). *Quat. Int.* **404**, 115–120 (2016).

94. M. E. Barnes, Effects of large herbivores and fire on the regeneration of *Acacia erioloba* woodlands in Chobe National Park, Botswana. *Afr. J. Ecol.* **39**, 340–350 (2001).

95. R. Scholes, The influence of soil fertility on the ecology of southern African dry savannas. *J. Biogeogr.* **17**, 415–419 (1990).

96. D. K. Mosugelo, S. R. Moe, S. Ringrose, C. Nellermann, Vegetation changes during a 36-year period in northern Chobe National Park, Botswana. *Afr. J. Ecol.* **40**, 232–240 (2002).

97. E. L. Bunting, J. Southworth, H. Herrero, S. J. Ryan, P. Waylen, Understanding long-term savanna vegetation persistence across three drainage basins in Southern Africa. *Remote Sens.* **10**, 1013 (2018).

98. Y. De Beer, R. Van Aarde, Do landscape heterogeneity and water distribution explain aspects of elephant home range in southern Africa's arid savannas? *J. Arid Environ.* **72**, 2017–2025 (2008).

99. E. M. Arraut, A. J. Loveridge, H. Valls-Fox, D. W. Macdonald, S. Chamaillé-Jammes, The 2013–2014 vegetation structure map of Hwange National Park, Zimbabwe, produced using free satellite images and software. *Koedoe* **60**, 2071–0771 (2018).

100. A. M. Shrader, S. L. Pimm, R. J. van Aarde, Elephant survival, rainfall and the confounding effects of water provision and fences. *Biodivers. Conserv.* **19**, 2235–2245 (2010).

101. S. Schlossberg, M. J. Chase, R. Sutcliffe, Evidence of a growing elephant poaching problem in Botswana. *Curr. Biol.* **29**, 2222–2228.e4 (2019).

102. M. Stoldt, T. Göttert, C. Mann, U. Zeller, Transfrontier conservation areas and human-wildlife conflict: The case of the Namibian component of the Kavango-Zambezi (KAZA) TFCA. *Sci. Rep.* **10**, 7964 (2020).

103. N. Muboko, V. Muposhi, T. Tarakini, E. Gandiwa, S. Vengesayi, E. Makuwe, Cyanide poisoning and African elephant mortality in Hwange National Park, Zimbabwe: A preliminary assessment. *Pachyderm* **55**, 92–94 (2014).

104. G. Craig, D. S. C. Gibson, *Aerial Survey of Elephants and Other Wildlife in the Caprivi* (Ministry of Environment and Tourism (MET) and World Wildlife Fund (WWF), 2013).

105. P. Schuette, N. Namukonde, M. S. Becker, F. G. R. Watson, S. Creel, C. Chifunte, W. Matandiko, P. Millhauser, E. Rosenblatt, C. Sanguinetti, Boots on the ground: In defense of low-tech, inexpensive, and robust survey methods for Africa's under-funded protected areas. *Biodivers. Conserv.* **27**, 2173–2191 (2018).

106. P. A. White, A. J. Kim, A summary report and photographic catalogue of African wild dogs in the southern Kafue ecosystem, Zambia 2007–2012. *Canid Biol. Conserv.* **21**, 4–11 (2018).

107. S. K. Wasser, C. Mailand, R. Booth, B. Mutayoba, E. Kisamo, B. Clark, M. Stephens, Using DNA to track the origin of the largest ivory seizure since the 1989 trade ban. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 4228–4233 (2007).

108. V. R. Nyirenda, C. Chomba, Field foot patrol effectiveness in Kafue National Park, Zambia. *J. Ecol. Nat. Environ.* **4**, 163–172 (2012).

109. F. Matawa, A. Murwira, K. S. Schmidt, Explaining elephant (*Loxodonta africana*) and buffalo (*Syncerus caffer*) spatial distribution in the Zambezi Valley using maximum entropy modelling. *Ecol. Model.* **242**, 189–197 (2012).

110. M. Matsa, C. Shuche, T. Musasa, R. Defe, Surface water distribution challenges and elephant impacts on woody species in Mana Pools National Park, Zimbabwe. *Trop. Ecol.* **63**, 604–614 (2022).

111. K. M. Dunham, Demographic changes in the Zambezi Valley elephants (*Loxodonta africana*). *J. Zool.* **215**, 382–388 (1988).

112. R. du Toit, Reconnaissance vegetation survey of the Chewore-Angwa-Kanyemba area of the Zambezi valley, Zimbabwe. *Kirkia* **14**, 61–77 (1993).

113. A. Murwira, A. K. Skidmore, The response of elephants to the spatial heterogeneity of vegetation in a Southern African agricultural landscape. *Landscape Ecol.* **20**, 217–234 (2005).

114. K. M. Dunham, Detection of anthropogenic mortality in elephant *Loxodonta africana* populations: A long-term case study from the Sebungwe region of Zimbabwe. *Oryx* **42**, 36–48 (2008).

115. P. Ngorima, K. S. Mpakairi, B. Kavhu, T. W. Gara, H. Ndaimani, J. Chakuya, Trends in elephant poaching in the Mid-Zambezi Valley, Zimbabwe: Lessons learnt and future outlook. *Afr. J. Ecol.* **60**, 1324–1328 (2022).

116. M. Y. Said, R. N. Chunge, G. C. Craig, C. R. Thouless, R. F. W. Barnes, H. T. Dublin, African Elephant Database 1995 (1995).

117. J. J. Blanc, R. F. W. Barnes, G. C. Craig, H. T. Dublin, C. R. Thouless, I. Douglas-Hamilton, J. A. Hart, *African Elephant Status Report 2002* (2007).

118. F. G. Watson, M. S. Becker, J. Milanzi, M. Nyirenda, Human encroachment into protected area networks in Zambia: Implications for large carnivore conservation. *Reg. Environ. Change* **15**, 415–429 (2015).

119. H. M. Munang'andu, V. Siamudaala, M. Munyeme, K. S. Nalubamba, A review of ecological factors associated with the epidemiology of wildlife trypanosomiasis in the Luangwa and Zambezi valley ecosystems of Zambia. *Interdiscip. Perspect. Infect. Dis.* **2012**, 372523 (2012).

120. W. Astle, R. Webster, C. Lawrence, Land classification for management planning in the Luangwa Valley of Zambia. *J. Appl. Ecol.* **6**, 143–169 (1969).

121. R. Bhima, J. Howard, S. Nyanyale, The status of elephants in Kasungu National Park, Malawi, in 2003. *IUCN* **31**, (2003).

122. S. Schlossberg, M. J. Chase, K. S. Gobush, S. K. Wasser, K. Lindsay, State-space models reveal a continuing elephant poaching problem in most of Africa. *Sci. Rep.* **10**, 10166 (2020).

123. M. Kyando, D. Ikanda, E. Røskræft, Hotspot elephant-poaching areas in the Eastern Selous Game Reserve, Tanzania. *Afr. J. Ecol.* **55**, 365–371 (2017).

124. V. R. Booth, K. M. Dunham, Elephant poaching in Niassa Reserve, Mozambique: Population impact revealed by combined survey trends for live elephants and carcasses. *Oryx* **50**, 94–103 (2016).

125. R. P. Mramba, H. P. Andreassen, V. Mlingi, C. Skarpe, Activity patterns of African elephants in nutrient-rich and nutrient-poor savannas. *Mamm. Biol.* **94**, 18–24 (2019).

126. S. A. R. Mucova, W. L. Filho, U. M. Azeiteiro, M. J. Pereira, Assessment of land use and land cover changes from 1979 to 2017 and biodiversity & land management approach in Quirimbas National Park, Northern Mozambique, Africa. *Glob. Ecol. Conserv.* **16**, e00447 (2018).

127. S.-A. J. Selier, B. R. Page, A. T. Vanak, R. Slotow, Sustainability of elephant hunting across international borders in southern Africa: A case study of the greater Mapungubwe Transfrontier Conservation Area. *J. Wildl. Manag.* **78**, 122–132 (2014).

128. S.-A. J. Selier, R. Slotow, E. Di Minin, The influence of socioeconomic factors on the densities of high-value cross-border species, the African elephant. *PeerJ* **4**, e2581 (2016a).

129. S. J. Selier, R. Slotow, A. Blackmore, A. Trouwborst, The legal challenges of transboundary wildlife management at the population level: The case of a trilateral elephant population in southern Africa. *J. Int. Wildl. Law Policy* **19**, 101–135 (2016).

130. T. G. O'Connor, G. A. Kiker, Collapse of the Mapungubwe Society: Vulnerability of pastoralism to increasing aridity. *Clim. Change* **66**, 49–66 (2004).

131. T. G. O'Connor, B. R. Page, Simplification of the composition, diversity and structure of woody vegetation in a semi-arid African savanna reserve following the re-introduction of elephants. *Biol. Conserv.* **180**, 122–133 (2014).

132. C. Coetsee, B. J. Wigley, Browner impacts in Mapungubwe National Park, South Africa: Should we be worried? *Koedoe* **58**, 1–10 (2016).

133. J. Selier, R. Slotow, E. Di Minin, Large mammal distribution in a transfrontier landscape: Trade-offs between resource availability and human disturbance. *Biotropica* **47**, 389–397 (2015).

134. F. J. Venter, R. J. Naiman, H. C. Biggs, D. J. Pienaar, The evolution of conservation management philosophy: Science, environmental change and social adjustments in Kruger National Park. *Ecosystems* **11**, 173–192 (2008).

135. D. V. Roque, T. Götttert, V. A. Macandza, U. Zeller, Assessing distribution patterns and the relative abundance of reintroduced large herbivores in the Limpopo National Park, Mozambique. *Diversity* **13**, 456 (2021).

136. E. Gandiwa, I. M. A. Heitkönig, P. Gandiwa, W. Matsvayi, H. van der Westhuizen, M. M. Ngwenya, Large herbivore dynamics in northern Gonarezhou National Park, Zimbabwe. *Trop. Ecol.* **54**, 345–354 (2013).

137. A. C. Staver, J. Botha, L. Hedin, Soils and fire jointly determine vegetation structure in an African savanna. *New Phytol.* **216**, 1151–1160 (2017).

138. E. Gandiwa, S. Kativu, Influence of fire frequency on Colophospermum mopane and Combretum apiculatum woodland structure and composition in northern Gonarezhou National Park, Zimbabwe. *Koedoe* **51**, 36–48 (2009).

139. N. Stevens, A. M. Swemmer, L. Ezzy, B. F. Erasmus, Investigating potential determinants of the distribution limits of a savanna woody plant: *Colophospermum mopane*. *J. Veg. Sci.* **25**, 363–373 (2014).

140. K. M. Dunham, Trends in populations of elephant and other large herbivores in Gonarezhou National Park, Zimbabwe, as revealed by sample aerial surveys. *Afr. J. Ecol.* **50**, 476–488 (2012).

141. I. P. J. Smit, Systems approach towards surface water distribution in Kruger National Park, South Africa. *Pachyderm* **53**, 91–98 (2013).

142. N. Owen-Smith, Ecological guidelines for waterpoints in extensive protected areas. *S. Afr. J. Wildl. Res.* **26**, 107–112 (1996).

143. I. P. Smit, M. J. Peel, S. M. Ferreira, C. Greaver, D. J. Pienaar, Megaherbivore response to droughts under different management regimes: Lessons from a large African savanna. *Afr. J. Range Forage Sci.* **37**, 65–80 (2020).

144. M. F. Child, M. J. Peel, I. P. Smit, W. J. Sutherland, Quantifying the effects of diverse private protected area management systems on ecosystem properties in a savannah biome, South Africa. *Oryx* **47**, 29–40 (2013).

145. J. Milgroom, M. Spierenburg, Induced volition: Resettlement from the Limpopo National Park, Mozambique. *J. Contemp. Afr. Stud.* **26**, 435–448 (2008).

146. S. Mombeshora, S. Le Bel, Parks-people conflicts: The case of Gonarezhou National Park and the Chitsa community in south-east Zimbabwe. *Biodivers. Conserv.* **18**, 2601–2623 (2009).

147. A. E. Van Wyk, in *The Biodiversity of African Plants: Proceedings XIVth AETFAT Congress 22–27 August 1994, Wageningen, The Netherlands*, L. J. G. van der Maesen, X. M. van der Burgt, J. M. van Medenbach de Rooy, Eds. (Springer Netherlands, 1996), pp. 198–207.

148. E. Di Minin, L. T. B. Hunter, G. A. Balme, R. J. Smith, P. S. Goodman, R. Slotow, Creating larger and better connected protected areas enhances the persistence of big game species in the Maputaland-Pondoland-Albany biodiversity hotspot. *PLOS ONE* **8**, e71788 (2013).

149. Y. Steenkamp, B. van Wyk, J. Victor, D. Hoare, G. Smith, T. Dold, R. Cowling, Maputaland-pondoland-albany, in *Hotspots Revisited: Earth's Biologically Richest and Most Endangered Ecoregions* (CEMEX, 2004), pp. 219–228.

150. R. J. Smith, J. Easton, B. A. Nhancale, A. J. Armstrong, J. Culverwell, S. D. Dlamini, P. S. Goodman, L. Loffler, W. S. Matthews, A. Monadjem, C. M. Mulqueeny, P. Ngwenya, C. P. Ntumi, B. Soto, N. Leader-Williams, Designing a transfrontier conservation landscape for the Maputaland centre of endemism using biodiversity, economic and threat data. *Biol. Conserv.* **141**, 2127–2138 (2008).

151. W. F. de Boer, C. P. Ntumi, A. U. Correia, J. M. Mafuca, Diet and distribution of elephant in the Maputo Elephant Reserve, Mozambique. *Afr. J. Ecol.* **38**, 188–201 (2000).

152. A. C. Staver, W. J. Bond, W. D. Stock, S. J. Van Rensburg, M. S. Waldram, Browsing and fire interact to suppress tree density in an African savanna. *Ecol. Appl.* **19**, 1909–1919 (2009).

153. R. Wiseman, B. R. Page, T. G. O'Connor, Woody vegetation change in response to browsing in Ithala Game Reserve, South Africa. *S. Afr. J. Wildl. Res.* **34**, 25–37 (2004).

154. G. Shannon, B. Page, R. Slotow, K. Duffy, African elephant home range and habitat selection in Pongola Game Reserve, South Africa. *Afr. Zool.* **41**, 37–44 (2006).

155. T. Morgenthal, K. Kellner, L. Van Rensburg, T. Newby, J. Van der Merwe, Vegetation and habitat types of the Umkhanyakude Node. *S. Afr. J. Bot.* **72**, 1–10 (2006).

156. W. Matthews, A. Van Wyk, N. Van Rooyen, G. Botha, Vegetation of the Tembe Elephant Park, Maputaland. *S. Afr. J. Bot.* **67**, 573–594 (2001).

157. R. P. Boundja, J. J. Midgley, Patterns of elephant impact on woody plants in the Hluhluwe-Imfolozi park, KwaZulu-Natal, South Africa. *Afr. J. Ecol.* **48**, 206–214 (2010).

158. D. Cyrus, L. Vivier, R. Owen, H. Jerling, Ecological status and role of the Mfolozi-Msunduzi estuarine system within the iSimangaliso Wetland Park, a World Heritage Site on the south-east coast of South Africa. *Afr. J. Aquat. Sci.* **35**, 109–116 (2010).

159. R. Guldemand, R. van Aarde, The impact of elephants on plants and their community variables in South Africa's Maputaland. *Afr. J. Ecol.* **45**, 327–335 (2007).

160. H. A. Abbas, W. J. Bond, J. J. Midgley, The worst drought in 50 years in a South African savannah: Limited impact on vegetation. *Afr. J. Ecol.* **57**, 490–499 (2019).

161. D. Kirkwood, J. Midgley, The floristics of sand forest in northern KwaZulu-Natal, South Africa. *Bothalia* **29**, 293–304 (1999).

162. L. Mucina, C. R. Scott-Shaw, M. C. Rutherford, K. G. T. Camp, W. S. Matthews, L. W. Powrie, D. B. Hoare, Indian Ocean coastal belt. The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* **19**, 577–578 (2006).

163. O. Maurin, T. J. Davies, J. E. Burrows, B. H. Daru, K. Yessoufou, A. M. Muasya, M. van der Bank, W. J. Bond, Savanna fire and the origins of the 'underground forests' of Africa. *New Phytol.* **204**, 201–214 (2014).

164. D. D. G. Lagendijk, R. L. Mackey, B. R. Page, R. Slotow, The effects of herbivory by a mega- and mesoherbivore on tree recruitment in Sand Forest, South Africa. *PLOS ONE* **6**, e17983 (2011).

165. R. Slotow, M. E. Garai, B. Reilly, B. Page, R. D. Carr, Population dynamics of elephants re-introduced to small fenced reserves in South Africa. *S. Afr. J. Wildl. Res.* **35**, 23–32 (2005).

166. R. L. Mackey, B. R. Page, K. J. Duffy, R. Slotow, Modelling elephant population growth in small, fenced, South African reserves. *S. Afr. J. Wildl. Res.* **36**, 33–43 (2006).

167. T. R. Kuiper, D. J. Druce, H. C. Druce, Demography and social dynamics of an African elephant population 35 years after reintroduction as juveniles. *J. Appl. Ecol.* **55**, 2898–2907 (2018).

168. H. C. Druce, R. L. Mackey, R. Slotow, How immunocontraception can contribute to elephant management in small, enclosed reserves: Munyawana population as a case study. *PLOS ONE* **6**, e27952 (2011).

169. H. J. Bertschinger, A. Delsink, J. Van Altena, J. F. Kirkpatrick, Porcine zona pellucida vaccine immunocontraception of African elephant (*Loxodonta africana*) cows: A review of 22 years of research. *Bothalia-Afr. Biodiver. Conserv.* **48**, 1–8 (2018).

170. H. R. Zitter, V. L. Boult, Vasectomies of male African elephants as a population management tool: A case study. *Bothalia-Afr. Biodiver. Conserv.* **48**, 1–9 (2018).

171. I. P. Smit, M. Landman, R. M. Cowling, A. Gaylard, Expert-derived monitoring thresholds for impacts of megaherbivores on vegetation cover in a protected area. *J. Environ. Manage.* **177**, 298–305 (2016).

172. R. Slotow, G. van Dyk, Role of delinquent young "orphan" male elephants in high mortality of white rhinoceros in Pilanesberg National Park, South Africa. *Koedoe* **44**, 85–94 (2001).

173. I. D. Szott, Y. Pretorius, A. Ganswindt, N. F. Koyama, Physiological stress response of African elephants to wildlife tourism in Madikwe Game Reserve, South Africa. *Wildl. Res.* **47**, 34–43 (2020).

174. R. Slotow, G. van Dyk, Ranging of older male elephants introduced to an existing small population without older males: Pilanesberg National Park. *Koedoe* **47**, 91–104 (2004).

175. A. T. Hudak, D. H. Fairbanks, B. H. Brockett, Trends in fire patterns in a southern African savanna under alternative land use practices. *Agr. Ecosyst. Environ.* **101**, 307–325 (2004).

176. L.-A. Woolley, J. J. Millspaugh, R. J. Woods, S. Janse van Rensburg, R. L. Mackey, B. Page, R. Slotow, Population and individual elephant response to a catastrophic fire in Pilanesberg National Park. *PLOS ONE* **3**, e3233 (2008).

177. R. Bhima, C. Dudley, Observations on two introduced black rhinos in Liwonde National Park. *Malawi. Pachyderm* **21**, 46–54 (1996).

178. M. Landman, D. S. Schoeman, A. J. Hall-Martin, G. I. Kerley, Understanding long-term variations in an elephant piosphere effect to manage impacts. *PLOS ONE* **7**, e45334 (2012).

179. M. Landman, D. S. Schoeman, A. J. Hall-Martin, G. I. Kerley, Long-term monitoring reveals differing impacts of elephants on elements of a canopy shrub community. *Ecol. Appl.* **24**, 2002–2012 (2014).

180. R. Bhima, J. D. P. Bothma, Age structure of elephants in Liwonde National Park, Malawi. *Koedoe* **40**, 1–8 (1997).

181. A. T. Hudak, C. A. Wessman, Textural analysis of high resolution imagery to quantify bush encroachment in Madikwe Game Reserve, South Africa, 1955–1996. *Int. J. Remote Sens.* **22**, 2731–2740 (2001).

182. R. L. Mackey, B. R. Page, D. Grobler, R. Slotow, Modelling the effectiveness of contraception for controlling introduced populations of elephant in South Africa. *Afr. J. Ecol.* **47**, 747–755 (2009).

Acknowledgments

Funding: Our continuing research on elephants is funded by the International Fund for Animal Welfare (ifaw) and supported by the University of Pretoria. **Author contributions:** Conceptualization: R.J.v.A. Data curation: R.M.H., C.M., and R.A.R.G. Methodology: R.M.H., C.M., and S.L.P. Investigation: R.M.H. and R.A.R.G. Visualization: R.M.H. Funding acquisition: R.J.v.A. Project administration: R.J.v.A. Supervision: R.J.v.A. and S.L.P. Writing—original draft: R.M.H., C.M., and R.A.R.G. Writing—review and editing: R.M.H., C.M., R.A.R.G., S.L.P., and R.J.v.A.

Competing interests: The authors declare that they have no competing interests. **Data and materials availability:** All compiled population survey data are stored in Dryad (DOI: 10.5061/dryad.s1rn8pkf9). The sources of these data may be found in the Supplementary Materials. All data are available in the main text or the Supplementary Materials.

Submitted 13 August 2023

Accepted 1 December 2023

Published 5 January 2024

10.1126/sciadv.adk2896