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Objectives Our study objectives are to (1) empiri-
cally quantify connectivity across the Kunene—Eto-
sha landscape in Northwestern Namibia using GPS 
tracking data on wild African elephants, and (2) 
assess the landscape features (i.e., geologic, biotic, 
and human-made) influencing connectivity and cor-
ridor types (e.g., fast movement corridors versus slow 
multi-use movement corridors).
Methods We used GPS telemetry data from 66 ele-
phants collared in Northwestern Namibia to empiri-
cally quantify connectivity using a graph theoretic 
approach and assess landscape features influencing 
connectivity. Based on the ‘movescape’ approach, 
we identify different types of corridors and examined 
how landscape features differed across these corridors 
using multiple regression models on locations classi-
fied into different types of use categories by machine 
learning algorithms.
Results Our results revealed strong variation in con-
nectivity across the landscape, with paths of high con-
nectivity near water sources between the study areas. 
We found that factors related to water sources and 
human presence primarily influenced connectivity. 
Water holes serve as hubs across the ecosystem for 
both male and female elephants with lower use areas 
peripheral to areas with water. Connectivity between 
Kunene and Etosha National Park was relatively rare 
among the collared elephants, but we highlight the 
key areas used to move between the two regions.
Conclusion Water was the key feature structur-
ing space use, and human presence influenced 

Abstract 
Context Human modification of landscapes poses 
a significant threat to wildlife, particularly in Africa 
where population growth and land conversion are 
expected to increase. Habitat loss and fragmentation 
have led to declines in wildlife populations, highlight-
ing the need to identify and preserve critical habitats, 
including core use areas and connectivity between 
them. Most recently, the identification of habitat cor-
ridors has become a key objective.
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connectivity between water points, highlighting the 
importance of landscape planning in relation to lim-
ited water sources and human activities. Our results 
suggest that focusing management efforts on areas 
where water is limited for both elephants and humans 
will be important to reduce conflict and maintain eco-
system connectivity.

Keywords African elephant · Loxodonta africana · 
Landscape ecology · Movescape · Network theory · 
Landscape conservation

Introduction

Human modification of landscapes is a primary threat 
to wildlife (Kennedy et al. 2019). With global human 
population projected to reach 9.7 billion by 2050 
(United Nations 2022), increased landscape modifi-
cation is expected. Across Africa and Asia alone, for 
instance, global cropland is expected to increase by 
26% (Williams et al. 2021a). The associated land con-
version and habitat loss are likely to exacerbate ongo-
ing declines in wildlife populations and will be detri-
mental to the long-term persistence of species (Brook 
et al. 2008). Thus, identifying and preserving critical 
wildlife habitats is crucial for ensuring the persistence 
of species, particularly in the face of rapid landscape 
changes (Hanski 1999; Fahrig 2003).

Small populations are especially at risk of extinc-
tion due to increased vulnerability to inbreeding 
depression, demographic stochasticity, environmental 
catastrophes, and genetic drift (Caughley 1994). Con-
nectivity between populations has been identified as 
the critical mechanism to alleviate such demographic 
stressors and reduce the risk of extirpation (Caugh-
ley 1994; Hanski 1999). Ensuring connectivity is an 
important mechanism for the long-term persistence of 
populations as it enables demographic rescue, genetic 
exchange between different populations, and mobil-
ity across landscapes to avoid or minimize negative 
consequences in the face of climate dynamics. In rec-
ognition of the importance of connectivity, the iden-
tification of corridors has become a core objective in 
wildlife conservation and management globally (Osi-
pova et  al. 2019; Jennings et  al. 2020; Kaszta et  al. 
2020).

Numerous methods have been developed to iden-
tify and predict areas with high levels of connectivity. 

Among the most widely used approaches are resist-
ance surface modeling based on circuit theory or 
least-cost path analysis (McRae et al. 2008; Ethering-
ton 2016). In the case of the least-cost path, model 
misspecification or the animal not using the least-
cost path in the environment can result in inaccurate 
prediction (Kumar et  al. 2022). Some researchers 
advocate for alternative but related approaches, such 
as instituting correlated random walks on a resist-
ance surface with the inclusion of mortality layers 
(Fletcher et  al. 2019). However, obtaining mortality 
risk information may be challenging and misspecifi-
cation issues remain. More recently, empirical-based 
approaches have been developed to identify and quan-
tify connectivity from GPS tracking data without 
modeling (Bastille-Rousseau and Wittemyer 2021). 
Namely, the application of graph theoretic approaches 
allows straightforward calculation of the importance 
of a given GPS position or path to the broader land-
scape connectivity, i.e., derivation of betweenness 
values for every GPS position (Bastille-Rousseau 
et  al. 2018b). Since graph theoretic approaches rely 
on empirical data, they need large sample sizes to 
appropriately capture and characterize connectiv-
ity across the landscape. Nonetheless, due to their 
empirical basis, these approaches provide an accurate 
representation of the observed animal movement on 
the landscape (Bastille-Rousseau et  al. 2018b; Bas-
tille-Rousseau and Wittemyer 2021). More recently, 
approaches to integrate numerous metrics derived 
from tracking data have attempted to provide a more 
holistic definition of how the movement of a species 
of interest is structured across the landscape—defin-
ing the ‘movescape’ (Bastille-Rousseau and Witte-
myer 2021). Importantly, the movescape approach 
can be used to define different types of connectivity 
or corridors, such as high connectivity areas where 
animals walk in a fast, directed manner versus areas 
where animals meander and spend an increased 
amount of time (Bastille-Rousseau and Wittemyer 
2021). Such information can be crucial in directing 
management interventions for landscape planning 
initiatives.

The African elephant (Loxodonta africana) is 
the largest extant terrestrial mammalian species and 
is listed as endangered by the IUCN (Gobush et  al. 
2022). The remaining populations of African ele-
phants face several primary threats, including ille-
gal killing, human-elephant conflict, and changes in 
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land use that result in habitat loss and fragmentation 
(Wittemyer et  al. 2014; Tucker et  al. 2018; Gobush 
et  al. 2022). Due to its significant body size, ele-
phants require more space compared to other spe-
cies on the landscape (Peters 1986). As a result of 
increased human encroachment, the elephant range 
is increasingly restricted, with many historically via-
ble areas no longer able to support the species (Wall 
et  al. 2021). Land conversion for agriculture (Wil-
liams et al. 2021a) and accelerated human population 
growth around protected area edges (Wittemyer et al. 
2008) combine to threaten both core populations and 
their connectivity. To address these common chal-
lenges, continent-wide efforts have been undertaken 
to track African elephants across their range to better 
understand the spatial needs of the species (Wall et al. 
2021).

The arid lands of northwestern Namibia harbor 
important elephant habitats that contain both nation-
ally protected areas and community lands that support 
elephant populations (Leggett 2006). A key objective 
for elephant management in this area is to maintain 
connectivity between Etosha National Park and the 
surrounding community conservation areas in the 
Kunene region located in the south and west of the 
national park. Maintaining landscape connectivity 
for elephants plays a crucial role in promoting resil-
ience of elephant populations in the event of disease 
outbreak, such as anthrax (Huang et al. 2022, 2023). 
To fulfill this goal, it is important to identify key con-
nectivity areas and the factors predictive of connec-
tivity. We used GPS telemetry data from elephants 
across the Kunene region and Etosha National Park 
to address the following objectives: (1) empirically 
quantify connectivity across the Kunene—Etosha 
landscape in northwestern Namibia using GPS track-
ing data on wild African elephants, and (2) assess the 
landscape features (i.e., geologic, biotic, and human-
made) influencing connectivity and corridor types 
(e.g., fast movement corridors versus slow multi-use 
movement corridors).

Methods

Study area

The study area is in northwestern Namibia, encom-
passing both the Kunene community-owned lands 

and Etosha National Park (ETS; Fig.  1). This semi-
arid region exhibits a strong rainfall gradient receiv-
ing up to 500  mm in the eastern section of Eto-
sha to less than 150  mm in the western portion of 
Kunene (Funk et al. 2015). Etosha National Park is a 
22,270  km2 largely fenced protected area, with porous 
sections in the northwest near Kunene. The estimated 
elephant population is approximately 2900 animals 
(Kilian 2015). The Kunene area consists of a patch-
work of community conservancies and hunting con-
cessions that support approximately 1100 elephants 
(Craig and Gibson 2016), with low human population 
density. Elephants are known to disperse between the 
two areas (Kilian 2015). Land cover types in the area 
include semi-arid savannah and arid desert.

Data collection

We analyzed GPS relocation data collected from 66 
African elephants (37 females, 29 males) across our 
study area (37 from ETS; 29 from Kunene) collected 
between 2008 and 2015. All capture and collaring 
procedures were performed by veterinarians from the 
Namibian Ministry of Environment and Tourism, fol-
lowing South African National Standards for Animal 
Welfare and Care (SABS 2000). The GPS collection 
schedule varied between collars—41 individuals were 
fitted with collars collecting a 30 min fix interval, 15 
individuals with a 20 min interval, and 10 individuals 
with a 15 min interval. To remove spatial errors in the 
dataset, we applied a filter excluding any consecutive 
relocation points greater than or equal to 10 km/h. We 
used ‘adehabitatLT’ to create the type II trajectory 
objects from relocation data and used the cleaned tra-
jectory when calculating movement metrics (Calenge 
2015).

Movement metrics and types

To empirically quantify connectivity across the land-
scape derived from the tracking data (Objective 1), 
we employed graph theoretic approaches to calculate 
attributes of connectivity defined by elephant move-
ments across the ecosystem (Bastille-Rousseau and 
Wittemyer 2021). Graph metrics were calculated on a 
150 m × 150 m grid overlaying the study area, where 
the 150  m spatial resolution was chosen because it 
was the average 30 min inter-step distance traveled by 
the study elephants. In our application of the graph 
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theoretic approach, nodes were pixels in the grid that 
contained relocation (GPS) points from the study 
elephants’ trajectory. Edges were the pixels that lie 
on the straight line connecting consecutive reloca-
tion points of the same individual located in different 
pixels (Bastille-Rousseau et  al. 2018a). We calcu-
lated three metrics from this graph (i.e., betweenness, 
degree, and weight). Betweenness is the measure of 
the number of shortest paths connecting all nodes on 
a graph that pass through a given node. Degree is the 
measure of the number of connections each node has 
in the network. Weight is the number of GPS points 
falling in a given pixel (i.e., the intensity of use by the 
elephant). Connectivity was defined using between-
ness (Objective 1). We used the ‘movescape’ frame-
work to delineate spatial structuring in areas with 
high connectivity that can serve to define the type of 
corridors (Objective 2) (Bastille-Rousseau and Wit-
temyer 2021). To do this, we analyzed the relation-
ships between the three metrics from the network 

characterization of the elephant movements, and two 
metrics from the animal trajectory (i.e., speed and 
the dot product of the turning angle). Specifically, we 
performed an unsupervised classification technique 
(i.e., two-step Gaussian mixture modeling) on the five 
metrics by setting the maximum number of clusters to 
be 8 following the methodology outlined by Bastille-
Rousseau and Wittemyer 2021. We then evaluated the 
optimal number of clusters (from 1 through 8) using 
the Bayesian Information Criterion (BIC) to achieve 
a more conservative evaluation given the large data-
set (number of relocations = 2,437,675; (Aho et  al. 
2014). The defined clusters represented the most sub-
stantive types of movements observed and were used 
in further analyses.

Environmental variables and modeling approach

To address our second objective to characterize land-
scape features associated with connectivity, we built 

Fig. 1  The study areas include Etosha National Park (ENP) and Kunene Region. Conservancies and private game reserves adjacent 
to ENP are also depicted in the figure. The background is a satellite imagery provided by Google Satellites
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candidate models to evaluate factors influencing 
the global centrality measure (betweenness) of any 
given pixel in our study area. We log-transformed 
the response variable (betweenness) and applied indi-
vidual as a random-effect in our linear regression 
to quantify factors influencing the connectivity of 
a given pixel on the landscape. Our model included 
an auto-covariate term based on an inverse weight-
ing scheme, a symmetric neighborhood metric, and 
a search radius that was defined dynamically for 
each elephant to select the lowest value at which all 
points have neighbors to account for spatial autocor-
relation (Bardos et  al. 2015). Environmental covari-
ates explored were elevation, slope, terrain roughness 
index, global human modification index, distance 
from waterholes, distance from perennial rivers, 
distance from seasonal rivers, distance from roads, 
distance from towns and settlements, distance from 
wetlands, and normalized difference vegetation index 
(NDVI) (Table  1). We considered elevation, slope, 
terrain roughness index, distance from roads, towns 
and settlements, and global human modification index 
given these features have been found to influence 
elephant space use and movement (Bastille-Rousseau 
and Wittemyer 2019; Wall et al. 2024). Distance from 
waterholes layer was calculated from recorded man-
made waterholes points within the system. Given 
the importance of water to elephants in arid ecosys-
tems, we included perennial and seasonal rivers and 
wetlands (Polansky et al. 2015). Lastly, we included 
various measures of NDVI to account for differences 
in vegetation productivity across space and time (i.e., 
seasonality).

Elevation and global human modification index 
were directly downloaded from Google Earth Engine 
(Jarvis et  al. 2008; Gorelick et  al. 2017; Kennedy 
et  al. 2019). The roughness index was calculated in 
QGIS (Wilson et al. 2007; QGIS Development Team 
2019). We computed the yearly maximum and coef-
ficient of variation (i.e., standard deviation/mean) of 
the normalized difference vegetation index (NDVI) 
for every pixel in our study area across our study 
period (2008–2015) using Landsat 7 and 8 imagery 
in Google Earth Engine. All covariates were down 
sampled to 150 × 150 m to align with the scale of the 
movement network grid. We developed five candidate 
models, to assess the influence of geologic, environ-
mental, anthropogenic, and combined landscape fea-
tures on betweenness values. Our candidate model 
set includes the geologic model (slope, distance from 
waterholes, distance from perennial rivers, distance 
from wetlands), anthropogenic model (global human 
modification index, distance from roads, distance 
from settlements), environmental model (maxNDVI, 
cvNDVI, distance from waterholes, distance from 
perennial rivers, and distance from wetlands), water 
model (distance from waterholes, distance from per-
ennial rivers, distance from wetlands), and global 
model (combination of all the variables in the models 
above) (Supplementary Material Table S1).

To address our second objective of determin-
ing landscape conditions related to different types of 
corridors, we used a similar spatial regression struc-
ture, including the incorporation of an auto-covariate 
term and contrasting different covariate sets in each 
model. We used generalized linear models with a 

Table 1  Covariate layers used in the modeling framework and associated data sources

Layer names Source

Elevation and slope SRTM image collection in Google Earth Engine (Jarvis et al. 2008)

Roughness index Calculated using roughness algorithm in QGIS using elevation layer as an input

Global human modification index gHM layer in Google Earth Engine (Kennedy et al. 2019)

Percent settlement Derived from (Sirko et al. 2021)

Distance from water holes Etosha ecological institute

Distance from perennial rivers Etosha ecological institute

Distance from roads Etosha ecological institute

Distance from towns and settlements Etosha ecological institute

Distance from wetlands Etosha ecological institute

Normalized difference vegetation index Derived from Landsat 7 and 8 image collection from Google Earth Engine

Cattle abundance Etosha ecological institute
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logit-link function to assess landscape features asso-
ciated with the different movement clusters related 
to high connectivity areas. Additional covariates 
explored included percent settlement within an aver-
age step (150  m) moving window and cattle abun-
dance in addition to all the environmental covariates 
described above. Both variables were included in the 
human model and global model while the rest of the 
models remain the same in the candidate model set. 
We applied this spatial logistic regression to quan-
tify landscape differences between high connectivity 
areas with fast and slow speeds (fast and slow corri-
dors) according to mean speed values of a particular 
cluster (Table 2) and differences between the corridor 
and non-corridor pixels, and separately for males and 
females. We only included pixels with greater than 
or equal to 95% confidence assigned to a particular 
movement cluster for this analysis.

Before including variables in the models, we 
checked for multicollinearity by examining the vari-
ance inflation factor (VIF). VIF values for all the 
variables were < 2, well below the recommended 
criteria to be included in the same model (Dormann 
et  al. 2013). We evaluated the models in the candi-
date model sets using BIC and made inferences from 
the best-performing model (i.e., the model with the 
lowest BIC score). To visualize the connectivity of 
our study area, we applied linear interpolation of 
the maximum betweenness values onto the steps in 
between (Bastille-Rousseau and Wittemyer 2021) 
(Fig.  5). All covariates were centered to their mean 
and scaled by dividing by their standard deviation 
(Gelman and Hill 2006). All analyses were conducted 

in R version 4.1.2 (R Core Team 2020). We used 
the ‘car’, ‘dplyr’, ‘ggplot2’, and ‘lubridate’ packages 
to clean, format, and visualize our data (Grolemund 
and Wickham 2011; Wickham 2016; Wickham et al. 
2020). We used ‘moveNT’ to calculate relevant net-
work theory-based metrics (Bastille-Rousseau 2023). 
Lastly, we used the ‘spdep’ package to calculate a 
spatial autoregressive term (Roger Bivand 2022), 
and ‘lme4’ and ‘ROCR’ for regression analyses 
(Sing et al. 2005; Zwitser et al. 2011). Model selec-
tion tables for regression analysis can be found in the 
accompanied Supplementary Material. Additionally, 
we included a comparison between different intensi-
ties of use in the Supplementary Material.

Results

We found connectivity (measured as betweenness 
values) varied strongly across the landscape, with 
well-defined paths of high connectivity near natural 
water sources, such as rivers and wetlands, in the area 
between Kunene region and Etosha National Park 
(Objective 1; Fig. 2). We also found that all the covar-
iates assessed contributed to the explanatory power of 
the most parsimonious model of betweenness values 
(i.e., connectivity) (Objective 1). Maximum and coef-
ficient of variation of NDVI (productivity) values of 
a given year, distance from waterholes, and distance 
from roads and settlements were positively correlated 
with betweenness (i.e., higher values, higher connec-
tivity). Covariates of natural water sources, such as 
distance from rivers and distance from wetlands, and 

Table 2  Summary of the unsupervised classification applied to 5 movement metrics of 66 African elephants inhabiting Etosha 
National Park and the Kunene multi-use conservancies area in Northwestern Namibia

Metrics Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Weight 1.9658 1.1028 − 0.2394 − 0.2762 − 0.374 0.0761 19.3168

Degree 2.0242 0.9491 − 0.2309 − 0.2301 − 0.5927 0.3681 2.4292

Betweenness 1.304 − 0.1948 1.9268 − 0.1969 − 0.0745 1.2165 5.7943

Speed − 0.3027 − 0.4018 2.3684 − 0.0986 0.6917 0.0987 1.9898

DotP − 0.2971 − 0.3189 0.0424 − 0.0274 0.5599 0.1499 0.0069

Proportion of pixels 0.1529 0.1804 0.1345 0.1886 0.0705 0.256 0.0172

Proportion of individuals 0.8636 0.9697 0.7576 0.9848 0.5455 1 0.1364

Intensity of use High-use High-use Low-use Low-use Low-use Medium-use Highest-use

Corridor type Slow NC Fast NC NC Slow Fast

NC Non-corridor pixels with average negative betweenness values
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slope were negatively correlated with betweenness 
(i.e., closer to water and less slope had higher con-
nectivity; Fig. 2).

We identified 7 unique population-level movement 
types (clusters) with different levels of use intensity, 
directionality, betweenness, and movement speed fol-
lowing the ‘movescape’ analytical approach (Objec-
tive 2; Table  2). No individual was found to have 
more than 7 clusters indicating that the chosen maxi-
mum number of clusters (8) was sufficient for this 
dataset. Four of these clusters were related to areas of 
high connectivity (i.e., clusters 1, 3, 6, and 7). How-
ever, clusters 1 and 6 were associated with low and 
medium speed (extended use), whereas clusters 3 and 
7 were associated with faster speed (Table 2).

We found that the global model was the most 
parsimonious model for both males and females 
with AUC values of 0.781 and 0.683, respectively 
(Objective 2). Cattle abundance, distance from wet-
lands, distance from perennial rivers, and slope were 

negatively correlated with corridor pixels, indicating 
corridors were near water, in flatter areas, and away 
from livestock. These results were consistent for 
males and females. Distance from towns and global 
human modification index were positively correlated 
with corridor pixels, indicating corridors were further 
from towns but in areas of higher human modifica-
tion. Interestingly, corridor pixels are positively cor-
related with distance from waterholes for males while 
they are negatively correlated for females. Our meas-
ure of productivity had a positive effect on corridors 
for females only (Fig. 3).

The top model of differences between highly 
directional, fast-corridor (cluster 3), and slow-cor-
ridor (cluster 6) was the global (AUC = 0.8954) and 
water (AUC = 0.8667) models for males and females, 
respectively. However, it was clear that water prox-
imity was key for structuring the location of these 
two types of corridors for both sexes (Table  2). 
For females, fast corridors tended to be away from 

Fig. 2  Coefficient estimates 
from the most parsimonious 
model explain the variation 
in betweenness (connectiv-
ity) on the landscape. The 
covariates with the highest 
coefficient values tended to 
be related to water on the 
landscape
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water resources, while males displayed the opposite 
(Table  2). Both males and females were using loca-
tions on the landscape near waterholes with much 
slower speeds and higher weight (Table 2; Fig. 4).

Discussion

As human population and landscape modification 
accelerate, proactive conservation of key areas for 
landscape connectivity is critical to the long-term 
protection of wildlife populations. This study pro-
vides insight into important corridors and associ-
ated environmental features within and between two 
regions of conservation importance for African ele-
phant conservation in Namibia using 8 years of GPS 
tracking data. We found areas of high connectivity 
were relatively ubiquitous, highlighting that the land-
scape remains open to elephant movements within 
each region (Fig.  5). Connectivity within our study 

site was primarily influenced by proximity to natural 
water sources and anthropogenic features, similar to 
many other African elephant populations and large 
ungulates across the continent (Bastille-Rousseau 
et al. 2018b; Osipova et al. 2019; Crego et al. 2021).

We identified 4 different corridor types in the 
ecosystem, whereby each was identified by differ-
ing levels of use intensity, speed, and directionality. 
Although the majority of individuals (at least 75%) 
contributed to the classification of 3 corridor types 
(high-use slow, low-use fast, and medium-use slow 
corridors as defined in Table 2), only 13.6% of indi-
viduals in our sample exhibited high-use fast corridor 
movements (Table 2). This illustrates that individuals 
differed in their movement behaviors and responses to 
landscape features as documented in other elephant 
movement studies (Bastille-Rousseau and Wittemyer 
2019; Chan et al. 2022). Such diversity in movement 
and space use strategies is important to take into con-
sideration when making management decisions.

Fig. 3  The subset of 
coefficient estimates and 
associated confidence 
intervals included in the 
most parsimonious model 
for males (red) and females 
(females) evaluating 
differences between the 
corridor and non-corridor. 
Landscape features related 
to water distribution and 
human modification were 
the strongest predictors of 
differentiation between the 
corridor and non-corridor 
areas for both sexes
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Water structured the landscape connectivity in our 
study system (Fig. 2), similar to what has been found 
in Samburu, Kenya (Bastille-Rousseau and Witte-
myer 2021), another water-limited system. In this 
semi-arid environment, where water access is critical, 
perhaps it was not surprising elephant connectivity 
was strongly structured with respect to this resource. 
When we mapped the resulting 7 different movement 
clusters spatially (Supplementary Material: Fig. S4), 
we found that elephants in Etosha National Park use 
high-speed, directed walks when approaching water-
holes. This aligned with the results of Polansky et al. 
(2015), who identified such behavior using behavio-
ral change point analysis (Polansky et al. 2015). This 
high-speed directed movement corresponded to clus-
ter 7 in this analysis (Table  2). Furthermore, Polan-
sky et  al. documented a switch in movement types 
near waterholes (Polansky et al. 2015). Similarly, the 
movescape approach identified a shift to slower more 
stationary use at water holes, identified as clusters 

1 and 6 (slow, high/medium intensity of use) (Sup-
plementary Material: Fig. S4). With a reduction in 
precipitation projected in the region due to climate 
change (Bucchignani et al. 2018), the importance of 
access to water for meeting the survival and repro-
ductive needs of these elephants will only increase. 
These model outputs could be invaluable in identify-
ing and conserving critical areas and corridors to help 
meet those needs.

Notably, we found that elephants avoided using 
areas with high cattle abundance that were close to 
human settlements and towns, passing through such 
areas using higher-speed corridors as defined by 
the movescape technique. Other studies have also 
reported that covariates related to human presence 
affect the connectivity of African elephants (Epps 
et  al. 2011; Songhurst et  al. 2016; Osipova et  al. 
2019; Bastille-Rousseau and Wittemyer 2021). Fur-
thermore, the movements of other large herbivores, 
such as reticulated giraffes and plains zebra, were 

Fig. 4  Coefficient estimates 
and associated confidence 
intervals are included in the 
most parsimonious model 
for both males and females 
evaluating differences 
between fast and slow cor-
ridors



 Landsc Ecol (2024) 39:148148 Page 10 of 14

Vol:. (1234567890)

impeded by high cattle ranching intensity on the land-
scape (Crego et al. 2021). Previous work has identi-
fied the importance of elephant defined corridors for 
other species (Epps et  al. 2011; Riggio et  al. 2022), 
highlighting that the relationships identified here may 
be general to the wildlife community. Balancing the 
livelihood needs of local people with the connectivity 
required by large wild herbivores remains challenging 
(Rudnick et al. 2012; Donaldson et al. 2017).

Across several representations of connectivity, 
we found that human-related features were highly 
influential, as documented across numerous mam-
malian species (Morrison and Bolger 2014; Stabach 
et  al. 2016; Tucker et  al. 2018). Given the limited 
connectivity found between Kunene and Etosha 
National Park, it is important to protect the identi-
fied areas of connectivity in this area. The mobility 

of the remaining populations of African elephants is 
threatened by human presence (Bastille-Rousseau and 
Wittemyer 2021; Lohay et  al. 2022), and projected 
population growth and associated economic develop-
ment (Williams et  al. 2021a; United Nations 2022) 
are a threat to the integrity of African elephant popu-
lations and other highly mobile species across Africa. 
With the reported disproportionate growth around the 
protected areas where most elephant populations find 
refuge (Wittemyer et  al. 2008), carefully managing 
incoming infrastructure development will be one of 
the key components to ensure remaining corridors.

Differences in movement behaviors and factors 
structuring the locations of different corridors were 
found between males and females, which also has 
been documented in other populations (Roever et al. 
2013; Vogel et  al. 2020; Beirne et  al. 2021). When 

Fig. 5  Highlighting three connective routes used by Afri-
can elephants between Etosha National Park and an adjacent 
Kunene region. The layer used in this figure is a linear interpo-
lated betweenness index derived from GPS collars of 66 Afri-

can elephants in the region. The higher the betweenness index 
value, the more central (i.e., more connected) the pixel is to the 
rest of the network
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evaluating environmental features associated with 
different corridor types (i.e., fast v. slow) between 
the sexes, covariates related to water sources primar-
ily structured the different corridor usage types for 
females while both water and human-related covari-
ates determined different corridor types for males 
(Supplementary Material Tables S1 and S2; Fig.  4). 
Similarly, in Samburu, Kenya, water sources were 
one of the important variables in explaining corridor 
type, but human presence and productivity-related 
variables played an important role for both sexes 
(Bastille-Rousseau and Wittemyer 2021).

Connective movements between the Kunene com-
munity-managed area and Etosha National Park were 
relatively rare. About 4 individuals in our sample of 
66 used the corridors between the western part of 
Etosha National Park and an adjacent Kunene multi-
use community area (Fig. 5). The relatively low con-
nectivity may be due to our low sampling in areas 
with lower density (lack of individuals using both 
areas). Ensuring the connectivity between the two can 
benefit both elephant populations (Caughley 1994; 
Hanski 1999; Bulman et  al. 2007) and likely other 
species (Epps et  al. 2011). Our analysis suggested 
the key connectivity areas between Kunene and ENP 
are limited and should be prioritized in conservation 
efforts going forward. The bottleneck in this connec-
tive movement could have negative impacts similar 
to those documented for wildebeest (Morrison and 
Bolger 2014) and other large mammals with similar 
space requirements (Crego et  al. 2021; Lohay et  al. 
2022). Areas with higher wildlife protection efforts 
and lower anthropogenic impacts, such as Etosha 
National Park, could act as a source population on the 
landscape (Lee and Bolger 2017). Finally, identifying 
wildlife corridors and infrastructure crossings (Bas-
tille-Rousseau et  al. 2018b) can facilitate protection 
and land use planning efforts to promote connectivity 
and ensure long-term population persistence (Morri-
son and Bolger 2014; Lohay et al. 2022).

This study highlights how the structure of the 
landscape can influence connectivity adding valuable 
pieces of information to understanding the move-
ment behavior of this species (Wittemyer et al. 2019). 
Given the reproductive biology and relatively low 
population size, ensuring the connectivity between 
protected areas, such as Etosha National Park, and 
surrounding buffer areas (Kunene region) could be 
key in ensuring long-term population persistence for 

the elephant populations in the region and could be 
a case study for other areas across Africa amidst the 
threats facing the species over the next century (Buc-
chignani et  al. 2018; Williams et  al. 2021b; Gobush 
et al. 2022).
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