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Abstract

1. Bio- logging technologies allow scientists to remotely monitor animal behaviour 
and the environment. In this study, we used the combination of natural abilities 
of African white- backed vultures Gyps africanus and state- of- the- art bio- logging 
technology for detecting and locating carcasses in a vast landscape.

2. We used data from two captive and 27 wild vultures to create a reference data set 
for the training of a support vector machine to distinguish between six behaviour 
classes based on acceleration data. Next, we combined the classified behaviour of 
the initial 27 and 7 additional vultures with GPS data and used the ‘Density- Based 
Spatial Clustering of Applications with Noise’ algorithm to cluster all GPS data to 
get a position of potential feeding locations. Finally, we used the clustered data 
set to train a Random Forest algorithm to distinguish between clusters with and 
without a carcass.

3. The behaviour classifier was trained on 14,682 samples for all behaviour classes, 
which were classified with a high performance (overall precision: 0.95, recall: 
0.89). This enabled a ground team to examine 1900 clusters between May 2022 
and March 2023 in the field, 580 linked to a carcass and 1320 without a carcass. 
The cluster classifier trained on this data set was able to correctly distinguish be-

tween carcass and no carcass clusters with high performance (overall precision: 
0.92, recall: 0.89).

4. Synthesis and applications. We showed that a carcass detection system using vul-
tures, loggers and artificial intelligence (AI) can be used to monitor the mortality 
of numerous species in a vast landscape. This method has broad applications, 
such as studying the feeding ecology of vultures, detecting and monitoring of 
disease outbreaks, environmental poisoning or illegal killing of wildlife. Similar to 
vultures and carcasses, our methodological framework can be applied to other 
species to locate their respective food resources. It could also be applied to other 
types of resources like temporary water sources, roosting sites and to other be-

haviours such as marking to locate marking sites.
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1  |  INTRODUC TION

The use of wild animals as sentinels has valuable implications for com-

bating global problems, including natural disasters, disease outbreaks, 
human–wildlife conflicts and illegal activities. Leveraging animals as 
mobile sensors can establish an effective system for detecting wild-

fires, crucial for early intervention and for preventing the natural di-
saster from spreading further (Sahin, 2007). Animal sentinels can be 
used to predict disease outbreaks or spread. For example, the death of 
primate sentinels can indicate outbreaks of Ebola, providing an early 
warning for health organizations to implement preventive measures 
to protect human health (Halliday et al., 2007; Rouquet et al., 2005). 
Poisoning wildlife can occur as a result of human–wildlife conflict 
(Mateo- Tomás et al., 2012). For example, eagles that are accidentally 
poisoned can serve as sentinels to detect intentional poisoning target-
ing coyotes (Wobeser et al., 2004). In the marine realm, albatrosses 
show major potential in detecting illegal fishing activities by shadowing 
fishing ships (Weimerskirch et al., 2020).

Bio- logging technologies enable us to monitor these animal senti-
nels remotely, which, contrary to traditional field observations, allows 
for continuous and large- scale monitoring, collecting data in inacces-

sible environments and reducing observer bias on animal behaviour 
(Nathan, 2008; Schneirla, 1950). GPS tracking in combination with 
powerful tools such as utilization distribution and step- selection func-

tion were designed to study animal space use and habitat preferences 
(Kranstauber et al., 2012; Thurfjell et al., 2014). In addition, by using 
GPS trajectories together with methods such as first passage time, 
Bayesian partitioning, change point analysis and multistate random 
walk, we can distinguish between behaviours such as resting, search-

ing and moving that an animal exhibits in a certain habitat (Gurarie 
et al., 2016). However, with GPS data alone we cannot distinguish be-

tween behaviours with similar spatio- temporal pattern such as rest-
ing and feeding. Accelerometry (ACC) data became a valuable tool to 
infer behaviours with characteristic body motion patterns. A popular 
method to extract behaviour information is the use of supervised ma-

chine learning (Nathan et al., 2012). Such an approach first requires a 
reference data set with which a machine learning algorithm is trained. 
The data set can be collected on the same individuals that are studied 
(Grünewälder et al., 2012) or on captive individuals (Nathan et al., 2012; 

Rast et al., 2020). Using the same species is important since applying 
the trained algorithm on a different species might result in higher rates 
of incorrect classifications (Campbell et al., 2013). Where and when an 
animal exhibits certain behaviours can be studied by combining GPS 
data and behaviour information.

Although several studies used bio- logging data to investigate 
a wide range of ecological aspects (review in Cooke et al., 2004) 
with some focusing on feeding behaviour (Giese et al., 2021; Horie 

et al., 2017; Lok et al., 2023), few specifically looked at scavengers 
detecting carcasses. Two of scavenger studies focused on GPS data 

alone (Mateo- Tomás et al., 2023; Peters et al., 2023). Another scaven-

ger study included behaviour classification from ACC data (Arkumarev 
et al., 2020). Mateo- Tomás et al. (2023) identified potential carcasses 
by evaluating GPS clusters with feeding behaviour (from ACC data) of 
single vultures, Arkumarev et al. (2020) considered only clusters with 
at least two vultures and Peters et al. (2023) considered only clusters 
visited by one or more vultures (GPS data only). Considering multiple 
vultures can be affected by the density of tagged vultures in the study 
area and give underestimated number of detected carcasses. To im-

prove the methodology and make it more time- efficient, we propose 
a methodological framework that automatically analyses the GPS and 
ACC data of individual animals for carcass detection.

The African white- backed vulture (Gyps africanus), hereafter re-

ferred to as the vulture, is widespread across Sub- Saharan Africa and 
can be found in a variety of biomes, including savanna, semi- desert, 
grassland, shrubland and forested areas. It is an obligate scavenger 
that relies on carcasses as its main food source (Mundy et al., 1992). 
By soaring across open landscapes, vultures scan large areas for car-
casses, which they can locate from kilometres away using their keen 
eyesight (Cortés- Avizanda et al., 2014). They are gregarious in their 
feeding habits and dozens of vultures can congregate at the same car-
cass (Cortés- Avizanda et al., 2014; Mundy et al., 1992). These features 
make the vulture a good model species for studying carcass detection.

In this study, we develop a method for detecting and locating 
carcasses by using a combination of natural abilities of vultures and 
bio- logging technology. Such a methodological framework does not 
only promote understanding of feeding ecology of the study ani-
mal but also enables us to use the study animal as a sentinel which 
helps us locate the food resource itself. Consequently, we can mon-

itor mortality of land- based mammals and investigate reasons of 
death, including natural and anthropogenic causes. This will help 
with combating global problems such as detecting hotspots of wild-

life diseases like anthrax (Ebedes, 1977), environmental toxins like 
the ones produced by cyanobacteria (Wang et al., 2021), poisoning 
of predators (Ogada et al., 2016), illegal carcass dumping (Mateo- 
Tomás et al., 2023) or wildlife poaching (Lavadinovi et al., 2021). This 
method has applicability beyond our study system and the broad 
potential to be used in other environments with different resources 
and wildlife species.

2  |  MATERIAL S AND METHODS

2.1  |  Ethical statement

This research and animal treatment was permitted by the local au-

thorities (National Commission on Research Science & Technology, 
certificate no.: RCIV 00032018, authorization no.: AN202101120 
[for 2022] and authorization no.: AN20170811 [for 2023]).

K E Y W O R D S

accelerometry, behaviour classification, carcass detection, feeding sites, gyps africanus, 
machine learning, random forest, support vector machine
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2.2  |  Data collection in captive vultures

2.2.1  |  ACC data recording in captive vultures

Two captive vultures were situated in an enclosure (see Section S3 

in the Supporting Information) in a zoo in Berlin, Germany (Tierpark 
Berlin- Friedrichsfelde GmbH). The enclosure housed 10 additional 
vultures of different species. We observed little to no interactions 
between study vultures and the others.

Both vultures were equipped with GPS/ACC bio- loggers (e- obs 
GmbH, Grünwald, Germany, hereafter referred to as loggers). These 
loggers were fitted and attached as backpacks with teflon using a 
neck loop (Figure 1, see also ‘body harness’ in Thaxter et al., 2014). 
The logger and attachment weight was 60 g which amounts to ap-

prox. 1.15% of a vulture's body mass (5.2 kg, SD = 1.07 kg, n = 27, five 
of the vultures were not weighed).

ACC data for three axes (x: left–right, y: front- back, z: up- down) 
was recorded continuously at 20 Hz within a range between −2G and 
2G. The loggers recorded a UTC timestamp for each ACC measure-

ment that we later used to sync ACC data and video observations. 
The internal clock of the logger is synced to the GPS time whenever 
GPS data are recorded. However, we did not collect GPS data in the 
zoo to save energy. The logger sampled a GPS position once a day to 
resync the internal clock regularly.

2.2.2  |  Behaviour observation in captivity

We recorded six distinct behaviour classes: feeding, preening, lying, 
standing, walking and wing spreading (see Table S1 for the Ethogram). 
To annotate the videos with behaviour classes, we used BORIS 
(Version: 8.6.2) (Friard & Gamba, 2016). To sync the video record-

ings with the ACC data, we used a smartphone app (MasterCo 2012) 
for the camcorder. At the beginning of each recording session, we 
filmed the app to get the exact timestamp of the video's beginning. 
To sync the fixed camera with the ACC data, an NTP time server was 

connected to the recording PC. See more details on the behaviour 
observations and equipment used in Section S5 in the Supporting 
Information.

2.3  |  Data collection in Etosha

2.3.1  |  GPS and ACC data recording in free- ranging 
vultures

The study area for the free- ranging vultures was Etosha National 
Park, Namibia (hereafter referred to as Etosha), a large protected area 
with a size of 22,270 km2 (18°51′0″ S, 15°54′0″ E) (see Section S4 for 
more information).

We equipped 34 (27 in May 2022 and seven more in October 
2022 only for the cluster classification) free- ranging vultures with 
GPS/ACC bio- loggers (same model as in the zoo). The loggers had 
two different sampling modes. In the high sampling mode, GPS/
ACC data were recorded in parallel every minute for 7 s; GPS data 
at 1 Hz and ACC data at 20 Hz. In the low sampling mode, GPS data 
were recorded once every 30 min and no ACC data were recorded. 
We used the ACC- informed protocol of the loggers to switch be-

tween the two sampling modes. We set the threshold to switch 
between the modes so that feeding behaviour would always be re-

corded in the high sampling mode. Standing and lying would most 
likely trigger the low sampling mode, while preening might trig-

ger both modes depending on the intensity of the behaviour (see 
Section S6 for setting details). We restricted any data recording 
to UTC time between 04:00 and 18:00 as we expected no vulture 
activity during the night (Spiegel et al., 2013). Data were automat-
ically downloaded via the GSM network twice a day and send to 
Movebank (Kays et al., 2022).

2.3.2  |  Behaviour observation and deduction from 
free- ranging vultures

We deduced two distinct behaviour classes from 27 free- ranging 
vultures (tagged in May 2022): active flight (flapping wings) and pas-

sive flight (soaring) (Table S1). We visually analysed the ACC data 
in the software Firetail® (Berger et al., 2022) and annotated sam-

ples for both behaviours. We considered Sections with GPS speed 
higher than 5 m/s as flight behaviour. The minimum gliding speed 
was found to be 8.85 m/s for straight flight (Pennycuick, 1971). We 
set a lower threshold to also include the early flight phases after tak-

ing off. Secondly, we used the difference in GPS altitude between 
high speed Sections and Section with GPS speeds near 0 m/s where 
we assumed the vulture was stationary in a tree or on the ground to 
confirm that the vulture was airborne. We labelled all data in these 
Sections as passive flight. For all Sections, we excluded 1 min at be-

ginning and the end from being labelled. To differentiate between 
active and passive flight, we used the video recordings of the release 
as references (see Section S2). The difference between active and 

F I G U R E  1  Logger position on the vulture—see Section S1 for 
detailed attachment description.
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passive flight was quite distinct (Figure S2). We labelled active flight 
within passive flight Sections accordingly.

2.4  |  ACC data processing

We pooled all labelled data from captive and free- ranging vultures. 
We combined consecutive ACC measurements to reach a total se-

quence length of 2 s (40 samples, hereafter referred to as burst). To 
obtain a data set that is as unambiguous as possible, we removed 
bursts with more than one label from the data set. This happened 
when the vulture changed behaviour within 2 s. We collected a total 
of 45,631 labelled ACC bursts. The zoo vultures contributed a total 
of 16,111 bursts of feeding, preening, lying, standing, walking and 
wing spreading. The free- ranging a total of 29,520 bursts of active 
and passive flight (see Table S4). The number of bursts we were able 
to label varied among behaviour classes. We were able to label 180 
and 127 bursts of walking and wing spreading respectively while the 
third lowest sample size for an identified class was 2447 for lying. 
Therefore, we removed walking and wing spreading from the data 
set and chose 2447 bursts from each behaviour class at random 
to achieve a balanced data set in which all behaviour classes were 
equally represented.

We rescaled all ACC values to reflect G- values by using the for-
mula g = (acc − 2048)/1024 as provided by the manufacturer of the 
loggers. To compile the training data set for the behaviour classifier, 
we calculated a total of 44 summary statistics (hereafter referred 
to as features, Table S2) and used a min–max scaler from the scikit- 
learn library to rescale all values to range between −1 and 1. All data 
processing was done in Python 3.8 (Van Rossum & Drake, 2009).

2.5  |  Behaviour classifier

We compared a support vector machine (SVM) (Cortes & 
Vapnik, 1995) (Python implementation in scikit- learn as ‘SVC’), a 
Random Forest (RF) (Breiman et al., 1984) (Python implementation 
in scikit- learn as ‘RandomForestClassifier’) and Extreme Gradient 
Boosting (XGB) (Chen & Guestrin, 2016) (Python implementation 
in xgboost) in their ability to classify vulture behaviour. For train-

ing and validation, we used the python library ‘sklearn’ (Pedregosa 
et al., 2011). We used the same algorithm for hyper- parameter op-

timization, feature selection and training data set for each classifi-
cation algorithm. For the hyper- parameter optimization, we used 
‘GridSearchCV’ from the scikit- learn library.

All steps of hyper- parameter optimization and feature selection 
involved a fivefold cross- validation. The dataset is split into five 
equal parts. The model is trained on four parts and validated on the 
fifth. This is repeated until each part was used for validation once. 
As validation metric, we chose the macro F1- score (mean of all F1- 
scores; Formulas 1–3, which are all calculated per behaviour); we 
also calculate overall accuracy for better comparability with other 
publications, i (Formula 4) denotes the behaviour class and N is the 
total amount of samples (see Powers, 2020). We first used a grid 
search approach with the training data set including all features to 
find the best hyper- parameters (see supplementary code for details; 
Rast et al., 2024).

We used the best hyper- parameters found in the first step for 
a feature selection that works as follows: Training and validation 
of the classifier with only one of the features. This was repeated 
for all features. The best- performing feature was kept for the next 
round where training and validation were repeated for the remaining 
features in addition to the first retained feature. This was done for 
10 rounds so the resulting feature set would include 10 features, 
adjusted from Yu and Klaassen (2021). We further reduced the fea-

ture set by removing any feature whose F1- score increased by less 
than 0.01 in two consecutive rounds. We then repeated the hyper- 
parameter optimization with the selected features only.

Finally, we ran a fivefold cross- validation to evaluate the perfor-
mance of the behaviour classifiers. In this step, we also considered 
the classification probability that is reported by the classifier to set 
a minimum threshold below which we did not accept the classifica-

tion and considered all classifications this applied to as ‘unsure’. We 
tested thresholds between 20% and 90% in steps of 10. As precision 
increased, the recall decreased. We decided on a threshold (0.7) by 
balancing both value changes. The goal was to maximize precision 
while minimising the reduction in the recall.

2.6  |  Cluster identification and data processing

We preprocessed the collected ACC data of free- ranging vultures 
the same way as we did with the reference data (see Section 2.4) to 
apply the behaviour classifier. The classifier calculates a class label 
with a corresponding probability for each burst. We considered 
all classifications below the threshold (0.7) as ‘unsure’. Finally, we 
matched the behaviour information with the GPS data based on 
the timestamps as GPS and ACC data were recorded at the same 
time.

We used the clustering algorithm Density- Based Spatial Clustering 
of Applications with Noise (DBSCAN, implemented in ‘scikit- learn’; 
Ester et al., 1996) on the longitude and latitude to identify clusters of 
GPS positions. In the algorithm, the ε parameter sets the maximum 
distance two samples can be from each other to still be considered 
neighbours. We set the ε value to 5

6,371,008.8
 with the metric set to ‘hav-

ersine’. This way, the ε neighbourhood corresponded to a radius of 5 m. 

(1)F1 =
2 × (precision × recall)

precision + recall
,

(2)recall =
true positives

true positives + false negatives
,

(3)
precision =

true positives

true positives + false positives
,

(4)accuracy =

∑

true positivesi

N
.
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This ensured that GPS locations at a carcass and those at a close by 
tree, that was used for perching, were recognized as separate clusters. 
Clusters are only considered valid when they consisted of at least three 
points. As the tags' sampling frequency was dependent on the vulture 
activity (ACC- informed GPS), we considered clusters with a duration 
of more than 10 min. We filtered the data by date and separated for 
each vulture. Thus, every cluster corresponded to a single vulture on a 
specific date. When several vultures visited the same site, each vulture 
formed its own cluster, regardless of the vultures present there at the 
same time or on different dates. We also did not combine clusters if 
a vulture remained at the site on the following day or returned to the 
same site on a different date.

We calculated summary statistics containing 12 features from 
each GPS/ACC cluster (see Section S7 and Table S3) and used a min- 
max scaler from the ‘scikit- learn’ library to rescale all values to range 
between −1 and 1. We estimated the location of each cluster by cal-
culating the mean of the longitude and latitude of all GPS locations 
of each cluster.

2.7  |  Cluster classification

We investigated estimated cluster locations in person to determine 
whether a carcass is or was present at the location. The difference 
in time between the investigation and the first vulture at the clus-

ter was 20 ± 14 (mean ± SD) days. We considered a cluster of type 
‘carcass’ when we found a carcass, its remains (e.g. blood, a gut pile, 
bones or hair) or other evidence of feeding (e.g. disturbed ground 
with many vulture feathers, carnivore footprints and vegetation 
showing that a carcass was dragged). We treated a cluster as type 
‘no carcass’ when we found a tree with evidence for roosting or 
perching (e.g. vulture droppings or regurgitated hair pellets found 
under the tree or on its leaves). We considered active nests as ‘no 
carcass’. We cross- checked the GPS data of the specific vulture to 
identify regular returns and thus confirming an actively used nest.

We randomly sub- sampled data from both cluster types to 
get an equal sample size for both classes. To find the best hyper- 
parameters and features we used the same approach as for the 
behaviour classifier. Again, we compared the performance of the 
SVM, RF and XBG, evaluated the performance of each algorithm 

and tested thresholds (best for the cluster classifier was 0.6) as 
before (see Section 2.5).

3  |  RESULTS

3.1  |  Behaviour classification

We focused on the results of the SVM with a radial basis kernel 
as this algorithm performed slightly better than the RF and XGB 
(Tables 1 and 2; Tables S6–S9, S11, S12, S14–S17) (see complete RF 
and XGB results in Section S8).

We used the same grid for both rounds (before and after feature 
selection) of the hyper- parameter optimization (Table S10). After the 
first round of hyper- parameter optimization, we set C to 1000 and 
gamma to 0.01.

With the feature selection, we found five features out of 44 that 
reached an F1- score of 0.93 (Figure 2). These features were inverse 

coefficient of variation of the z- axis, the minimum value of the y- axis, 

the mean of the y- axis, Pearson correlation coefficient between the y 

and z- axis and the maximum value of the z- axis.

Overall, the SVM showed very good results for most behaviour 
classes (Table 2). We found the lowest F1- scores for preening and 
standing, showing some misclassification between these behaviours 
as well as between lying and standing. Preening was sometimes mis-

classified as feeding but feeding was a lot less often misclassified as 
preening (see Table 1). We tested different probability thresholds to 
accept the classifications and found that 0.7 is a good compromise 
between the increase in precision (reaching 0.95 at this threshold) 
and the decrease in recall (Figure S5).

3.2  |  Cluster classification

We found a total of 38,879 clusters in the data from 11 May 2022 
to 30 March 2023. We investigated the type of 1927 clusters (95% 
on foot, 5% with a light aircraft). We confirmed 580 clusters to be of 
type ‘carcass’ and 1320 as ‘no carcass’ (301 ‘tree’ and 1019 ‘nest’). 
We found nothing at 27 clusters, which were removed from further 
analysis.

TA B L E  1  Confusion matrix of the support vector machine—the diagonal shows all correctly classified bursts.

Active flight Feeding Preening Lying Passive flight Standing Unsure Total n

Active flight 2417 6 0 0 0 0 24 2447

Feeding 16 2291 29 0 1 2 108 2447

Preening 0 120 1827 2 2 167 329 2447

Lying 0 0 2 2269 0 117 59 2447

Passive flight 0 7 0 0 2427 0 13 2447

Standing 0 3 131 22 0 1905 386 2447

Note: The maximum value for each row is indicated in the last column. Numbers in the unsure column show the number of bursts that were labelled 
as unsure because the classification probability did not exceed the set threshold. Rows indicate observed behaviour; columns indicate classified 
behaviour.
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All three algorithms show very similar performances when classi-
fying the cluster type. We focused on the RF as mean precision and 
recall were higher than for the other two algorithms (see Section S9; 

Table 4; Tables S19, S21, S23, S25, S27).
We used the same grid for both rounds (before and after feature 

selection) of the hyper- parameter optimization (Table S5). After the 
first round of hyper- parameter optimization, we set n_estimators to 
200, min_samples_split to 3, min_samples_leaf to 1, max_depth to 7 
and criterion to ‘entropy’.

With the feature selection, we found two features out of six that 
reached an F1- score of 0.91 (Figure 3). These features were propor-

tion of feeding points and the proportion of unsure points. After the 
second round of hyper- parameter optimization, we set n_estimators 

to 300, min_samples_split to 3, min_samples_leaf to 1, max_depth to 
7 and criterion to ‘gini’ for the final classifier.

Overall, the RF showed very good results (Tables 3 and 4; 

Tables S18 and S19). We tested different probability thresholds 
to accept the classifications and found that 0.6 is a good compro-

mise between the increase in precision and the decrease in recall 
(Figure S8).

4  |  DISCUSSION

In this study, we evaluated a method to identify potential carcass loca-

tions that were found by vultures. This method relies on three consecu-

tive steps: behaviour classification from acceleration data, clustering of 
GPS data and cluster- type classification based on the behaviour clas-

sification and time of the day. Our feature selection showed that using 
the proportion of feeding behaviour, which was derived from ACC 
data, was more relevant than any of the parameters that we derived 
from GPS data. This highlights the benefit of combining GPS data with 
behaviour classification of ACC data. This method could be applied to 
African white- backed vultures throughout their range as it is not sensi-
tive to the population size or density of vultures in an area as carcasses 
can be detected with data from a single individual. With changes only 
to the last of the three steps, this methodological framework could also 
be used to locate nests during the breeding season. We showed that 
the behaviour classifier is able to classify lying behaviour which should 
match with the body posture of a vulture incubating an egg.

In general, a behaviour classifier is specific to the species it was 
trained on (Campbell et al., 2013). Given that a behaviour classifier 
for the target species is available, this methodological framework 
can be expanded to locating resources or sites of interest for any 
species.

F I G U R E  2  F1- score in relation to the used features for the support vector machine (SVM)—the x- axis displays the features that were 
sequentially added to the classifier (see Table S2 for abbreviations). The y- axis shows the F1- score of the classifier. The first bar displays the 
F1- score of the classifier only using the first feature. All further bars show the increase in the F1- score when adding the according feature. 
The above line displays the total F1 score of the classifier.
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TA B L E  2  Classification metrics for the support vector machine 
with a threshold—see Formulas (1)–(3) for the calculations of 
Precision, Recall and F1 score.

Behaviour Precision Recall F1 Total N

Active flight 0.99 0.99 0.99 2447.0

Feeding 0.94 0.94 0.94 2447.0

Preening 0.92 0.75 0.82 2447.0

Lying 0.99 0.93 0.96 2447.0

Passive flight 1.0 0.99 1.0 2447.0

Standing 0.87 0.78 0.82 2447.0

Unsure 919.0

Mean 0.95 0.89 0.92

Overall accuracy 0.89

Note: Total N denotes the total number of samples for the given 
behaviour and the total number of classifications that are considered 
‘unsure’. The mean is calculated for each metric across all behaviour 
classes.
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4.1  |  Behaviour classification

Our classifiers work very well in distinguishing six different 
behaviour classes. A comparison between a SVM, RF and XGB 
showed that all three perform very similar to each other (Table 1; 

Tables S6, S8, S12, S14, S16). Our SVM slightly outperforms other 

models that classified behaviour of other vulture species (Gyps 

fulvus; Nathan et al., 2012; Resheff et al., 2014). We could also 
show that a long list of features is not necessary to get good 
results. Five features out of 44 were needed to train our SVM 
(Figure 2).

The metrics of our SVM look very good, but they reflect the per-
formance of the classifier on the reference data set (Figure 2). To 
account for behaviours that occur in free- ranging vultures but were 
not observed in captivity or samples of mixed behaviours that were 
removed in the reference dataset but can occur during data record-

ing, we applied a minimum probability threshold to all classifications. 
Our assumption is that behaviours that were not trained on will re-

ceive a low probability and thus, likely are behaviours that in our 
classification scheme, were labelled ‘unsure’.

We collected four out of six behaviour classes for the refer-
ence data in captivity. This greatly increased our accessibility to 
the vultures during observation. While several authors also sug-

gest this approach (see Giese et al., 2021; Graf et al., 2015; Nathan 
et al., 2012), we were not able to observe some behaviours (e.g. 
soaring [passive flight] and active flight) in this setting with a high 
enough sample size. However, we could use the movement data 
from the tagged free- ranging vultures to sample data for these 
behaviours.

Some other behaviours are completely missing from our refer-
ence data. We never observed fighting, hopping, jumping or running 
which are all closely connected to feeding, in the zoo. If the thresh-

old works as intended, these four behaviours should be considered 
‘unsure’ by the classifier. The unsure class is relevant for distinguish-

ing carcass from non- carcass clusters (3), which indicates that some 
behaviours are grouped in the unsure class that are only displayed 
at one of the two cluster types. Since we lack the observations, we 
cannot confirm if this is true for the aforementioned behaviours. 

F I G U R E  3  F1- score in relation to the used features for the Random Forest (RF)—the x- axis displays the features that were sequentially 
added to the classifier (see Table S3 for abbreviations). The y- axis shows the F1- score of the classifier. The first bar displays the F1- score of 
the classifier only using the first feature. All further bars show the increase in the F1- score when adding the according feature. The above 
line displays the total F1 score of the classifier.
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TA B L E  3  Confusion matrix of the Random Forest—the diagonal 
shows all correctly classified clusters.

Carcass No carcass Unsure Total n

Carcass 507 53 20 580

No carcass 37 521 22 580

Note: The maximum value for each row is indicated in the last column. 
Numbers in the unsure column show the number of clusters that 
were labelled as unsure because the classification probability did not 
exceed the set threshold. Rows indicate observed cluster type; columns 
indicate classified cluster type.

TA B L E  4  Classification metrics for the Random Forest with 
threshold—see Formulas (1)–(3) for the calculations of Precision, 
Recall and F1 score.

Cluster type Precision Recall F1 Total N

Carcass 0.93 0.87 0.90 580.0

No carcass 0.91 0.90 0.90 580.0

Unsure 42.0

Mean 0.92 0.89 0.90

Overall accuracy 0.89

Note: Total N denotes the total number of samples for the given cluster 
type and the total number of classifications considered ‘unsure’. The 
mean is calculated for each metric across all cluster- type classes.
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To improve the applicability of this behaviour classifier, these be-

haviours should be targeted by observation in free- ranging vultures.

4.2  |  Cluster classification

We trained our cluster classifier specifically to correctly classify a 
carcass with a single vulture present. Previous studies on carcass 
detection through vultures made it a prerequisite that at least two 
tagged vultures were present to consider the presence of a carcass 
(Arkumarev et al., 2020; Peters et al., 2023). Even though African 
white- backed vultures are known to assemble in big groups at car-
casses (Houston, 1974; Spiegel et al., 2013), the number of tagged 
vultures present at the scene is unpredictable. Our classifier is in-

sensitive to the number of vultures attending a carcass therefore 
reducing tagging effort and financial costs and could therefore be 
applied in many different circumstances.

Overall, we classified clusters as carcasses with high precision 
(0.93 with RF) (Table 4). Similar to the behaviour classifier, the 
comparison between the RF, SVM and XGB for cluster classifica-

tion showed only very small differences between the three models 
(Table 4; Tables S21 and S25).

One limitation could be bathing behaviour at waterholes. We 
assume that bathing involves rapid movements of the whole body 
which is also true for feeding behaviour but we lack the data to 
verify this. However, this could lead to a confusion of bathing with 
feeding as the SVM was only trained on feeding. Ultimately, this 
could result in clusters at waterholes showing an increased propor-
tion of feeding and therefore being falsely classified as carcasses. 
But since carcasses can also occur at waterholes, we could not treat 
all ‘carcass’ clusters at waterholes as misclassifications. Conversely, 
carcasses could be misclassified as no carcasses when the rate of 
false negatives for feeding is high; especially in cases where the total 
amount of feeding was low.

4.3  |  Future applications

Our proposed methodological framework can be used to locate car-
casses in a vast landscape. It can serve as a tool to get more insight 
into the feeding ecology of vultures. Scavengers including vultures 
could also function as sentinels to investigate the circumstances 
around a dead animal. Direct investigation would make it possible 
to test carcasses for potential diseases like anthrax and set up a 
monitoring system of seasonal trends or to detect local outbreaks 
(Ebedes, 1977; Lindeque & Turnbull, 1994). Similarly, an early warn-

ing system could be developed for environmental poisoning detec-

tion. In 2020, over 300 African elephants died in Botswana, most 
likely due to cyanobacteria toxins (Wang et al., 2021). Lastly, this 
methodological framework can be used to detect illegal activities 
involving animal carcasses such as leaving livestock in unauthor-
ized areas (Mateo- Tomás et al., 2023), poaching, predator poisoning 
(Csermak Jr et al., 2023) or poisoning of the sentinel itself regardless 

of whether the sentinel was targeted or not (Ogada et al., 2016; 

Stoynov et al., 2019).
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