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Abstract

Fences are increasingly fragmenting landscapes and curtailing the movement of terrestrial wildlife.
In arid and semi-arid ecosystems, where herbivores rely on movement to access patchily distrib-
uted resources, fences may cause behavioural changes with consequences for energy balance and
fitness. Here, we investigate the fine-scale behavioural responses of the highly mobile springbok
antelope (Antidorcas marsupialis) to encounters with a veterinary cordon fence in northern
Namibia. Using supervised machine learning on tri-axial accelerometer data from collared
individuals, we trained a classifier capable of identifying 12 behavioural categories with up to
91% accuracy. Applying this model to over 29,000 accelerometer records from eight free-ranging
springbok, we examined behaviour in relation to fence encounters. We found significant changes
in behaviour in response to fences, which depended on whether the fence was successfully crossed
or not. Fence crossings were associated with shifts from grazing to browsing during crossings, as
well as increased walking during and after crossings, suggesting altered foraging and increased
movement. Behavioural changes were less pronounced in the case of non-crossing encounters.
Our results show how accelerometry can reveal behavioural responses to anthropogenic barriers
and emphasise the importance of maintaining ecological connectivity for migratory ungulates.

Impact statement

This study demonstrates the potential of using automated behaviour classification based on
accelerometer data and machine learning to address pressing questions related to the conser-
vation and behavioural ecology of large African herbivores. We show that only a small number of
individuals and a minimal set of feature variables are necessary for training a classifier that can
accurately distinguish between 12 different behaviours. Our findings provide insights into how
migratory springbok antelope respond to fences, revealing behavioural changes that would be
difficult or impossible to detect using traditional observational methods. The ability to remotely
monitor fine-scale behavioural responses to movement barriers enables a better understanding
of the ecology and habitat use of antelope and other large herbivores. This can contribute to the
development of conservation policies that balance human land use with wildlife movement
requirements.

Introduction

Fences have become some of the most widespread anthropogenic barriers affecting terrestrial
wildlife movement worldwide (Jakes et al., 2018). They serve a variety of purposes, such as
managing livestock, limiting disease transmission and reducing human-wildlife conflict
(Clevenger et al., 2001; Mysterud and Rolandsen, 2019; Hyde et al., 2022), but often also have
unintended consequences. By restricting wildlife movement, fences alter movement patterns,
limit access to resources and fragment habitats, ultimately leading to population declines
(Mbaiwa and Mbaiwa, 2006; Mclnturff et al., 2020; Jones et al., 2022). These effects are
particularly pronounced in dryland ecosystems, where food and water scarcity requires animals
to travel long distances (Fryxell et al., 2005; Abrahms et al., 2021). In such regions, the erection of
wildlife-proof and livestock fencing has substantially disrupted the movements of medium-sized
and large ungulates, leading to detrimental effects at the population and ecosystem levels (Whyte
and Joubert, 1988; Gadd, 2012).

Fence ecology research has so far focused mainly on aspects such as crossing rates, mortality
risk and changes in population distribution (Pokorny et al., 2017; Jones et al., 2022; Zoromski
etal, 2022). Relatively few studies, on the other hand, have investigated the behavioural responses
of animals to fences. Nonetheless, the available evidence suggests that the impact of fences on
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animal behaviour may be ecologically significant. For example,
pronghorn (Antilocapra americana) and mule deer (Odocoileus
hemionus) have been observed to deviate from normal movement
patterns in response to fences (Xu et al., 2023). In southern Africa,
research on springbok (Antidorcas marsupialis) has shown
increased energy expenditure near fences, possibly reflecting ele-
vated stress levels or attempts at crossing (Hering et al., 2022a).
Furthermore, the movement speeds of antelope differ markedly
depending on whether or not they are successful in crossing a fence
(Hering et al., 2022b).

The paucity of behavioural studies in this field can be attributed to
the logistical challenges of directly observing animals, especially in
cases where vegetation limits visibility, terrain is difficult to access, or
observer presence disturbs animals. However, recent advances in bio-
logging, particularly accelerometry, now allow for the remote moni-
toring of animal behaviour at high resolution over extended time
periods (Brown et al.,, 2013). Accelerometers can measure body
motion along three axes — surge (front-back), heave (up-down)
and sway (side-to-side) — enabling the inference of animal behaviour
without the need for direct observation (Shepard et al., 2008). Vari-
ous studies have applied machine learning algorithms to classify
animal behaviour based on accelerometer data (Hammond et al.,
2016; Yu et al., 2021). This approach has been used on a variety of
taxa including birds (Chimienti et al., 2016; Schreven et al., 2021), fish
(Brewster et al., 2018) and mammals, both captive (Barwick et al.,
2020; Brandes et al,, 2021) and free-ranging (Fehlmann et al., 2017;
Chakravarty et al., 2020). Once a classifier has been trained on
ground-truthed data, it can be deployed to infer behaviour in wild
populations (Rast et al., 2020; Giese et al., 2021).

In this study, we apply supervised machine learning to high-
resolution accelerometer data to examine how fences affect the
behaviour of springbok. We first develop and validate a classifier
capable of identifying multiple behavioural categories and subse-
quently apply it to analyse behavioural responses to fence encoun-
ters. Specifically, we ask the following research questions: (1) Do the
relative frequencies of behaviours change during and after fence
encounters compared to before? (2) Are any such behavioural
changes further affected by whether animals cross a fence when
they encounter it compared to when they do not? By investigating
these behavioural responses, our study provides insight into the
consequences of anthropogenic barriers for a migratory ungulate
species, thereby contributing to the emerging field of fence ecology
(McInturff et al., 2020).

Methods
Study area and species

We conducted our study on springbok behaviour in the Etosha
region of northern Namibia (Figure 1), which is characterised by a
semi-arid climate. Rainfall is highly variable and occurs from
October to April (green season; mean temperature: 26 °C), while
the cooler dry season spans from May to September (mean tem-
perature: 18 °C). Mean annual precipitation in the region ranges
from 250 mm to 350 mm, based on CHIRPS data (Funk et al., 2015),
with precipitation increasing from south-west to north-east. The
vegetation in the study area consists of a mix of grasses, shrubs and
trees. Dominant plant species include Colophospermum mopane,
Terminalia and Combretum species, Catophractes alexandrii,
Vachellia nebrownii and Senegalia mellifera.

Behavioural observations for supervised classification were con-
ducted at the Sophienhof private game reserve (20°07'S, 16°03’E),
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Figure 1. Study area with locations of the two study sites in northern Namibia. For
ground-truthing, we observed behaviour of three collared springbok at the Sophienhof
private game reserve. For predicting fence behaviour, acceleration data of eight
collared springbok were recorded at the Etosha Heights private reserve.

located approximately 10 km west of the town of Outjo (Figure 1).
The reserve, which covers an area of 23 km?, has several artificial
waterholes and is surrounded by a game-proof fence. It is home to
various indigenous large herbivore species, including springbok,
gemsbok (Oryx gazella), greater kudu (Tragelaphus strepsiceros),
common eland (Taurotragus oryx), blue wildebeest (Connochaetes
taurinus) and giraffe (Giraffa camelopardalis). Large predators, such
as leopard (Panthera pardus) and hyena (Crocuta crocuta), may
occasionally also be present. The landscape consists of savanna,
grasslands, rocky terrain and shrublands. Wildlife is habituated to
the presence of game drive vehicles.

Springbok behaviour associated with fence encounters was ana-
lysed along a 70 km section of Namibia’s veterinary cordon fence,
which separates Etosha National Park (22,941 km?) from the
Etosha Heights private reserve (460 km? 19°15'S, 15°13'E;
Figure 1). The fence consists of two parallel lines, spaced 10 metres
apart. The northern line is a 2.8-metre-high wildlife-proof fence, of
which the lower 1.5 metres are covered with wire mesh. The
southern fence line is a 1.5-metre-high stock-proof fence (Hering
et al., 2022b).

Springbok are medium-sized antelope endemic to southern
Africa. They are found mostly in dry regions, such as the Namib,
Kalahari and Karoo deserts, as well as in savannas (Kingdon, 2015).
Adult females weigh 37 kg on average (Skinner and Chimimba,
2005). They are mixed feeders and can adapt their diet according
to food availability, typically grazing in summer and browsing in
winter and during droughts (Kingdon, 2015). They are highly
mobile, both seasonally, in response to rainfall and vegetation green-
ness (Kingdon, 2015) and within seasons (Hering et al., 2022a).

Behaviour classification

We deployed collars equipped with tri-axial accelerometers (collar
model 1d, weighing 320 g, e-obs GmbH, Griinwald, Germany) on
three springbok for direct observation on Sophienhof. The collars
were fitted by darting the animals with the assistance of a registered
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veterinarian. We colour-coded the collars of the three individuals
for easy identification during behavioural observations. Body acceler-
ation was sampled along three axes at 33 Hz over 3.3 seconds per burst.
Two consecutive bursts were recorded every 30 seconds. In one
instance, the accelerometer was positioned ventrally along the neck,
which caused a change in the orientation of the accelerometer axes
compared to the dorsally positioned accelerometers. We adjusted the
axis values to account for this shift. Temporary collar rotations were
occasionally observed but were left unadjusted to enhance the robust-
ness of the classifier.

We recorded on video the behaviour of the three collared
springbok at the time of acceleration measurements between
October and November 2021 during daylight hours. The animals
were tracked in the field using a UHF receiver (AOR AR8200,
Tokyo, Japan) and a hand-held directional Yagi antenna. Most
observations were made from a vehicle, though some were con-
ducted from hides, allowing us to observe the animals at distances
of 40-70 metres. To synchronise acceleration data with behavioural
observations, we filmed the network-synchronised (NTP) local
time displayed on a mobile phone as part of each video recording
and matched this to the GPS time recorded by the collar.

Behavioural data were analysed using BORIS (Behavioural
Observation Research Interactive Software; Friard and Gamba,
2016). The recorded behavioural categories were defined by neck
tilt, locomotion and body posture. In an iterative process outlined
by Yu and Klaassen (2021), we reduced the initial pre-selection of
behavioural categories to 12, based on both ecological consider-
ations and similarities in acceleration data. In most cases, a single
behaviour spanned the entire length of 3.3 seconds. Bursts with
behavioural transitions were excluded. In total, 3,952 acceleration
bursts were labelled for supervised learning.

All other analyses were conducted in R (R Core Team, 2024).
The behaviour classifier was based on a gradient-boosted decision
tree algorithm, implemented in the rabc package (version 0.1.0; Yu
and Klaassen, 2021). The package workflow includes visualising
raw accelerometer data, extracting features from the accelerometer
data that can help distinguish between different behaviours and
selecting the most informative features for behaviour classification,
as well as model training, testing and application.

We calculated 28 feature variables from each accelerometer burst
using the rabc package. These included time-domain features (the
mean, variance, standard deviation, maximum, minimum and range
of accelerometer values for each axis, as well as overall dynamic body
acceleration, ODBA) and frequency-domain features (main fre-
quency, main amplitude and frequency entropy for each axis, calcu-
lated via Fast Fourier Transform). The rabc package uses stepwise
forward selection to identify the most relevant features for classifica-
tion. We applied this process separately to the dataset of each observed
individual as well as to the pooled dataset of all three individuals. The
classification achieved an overall accuracy of 0.85-0.91 with five
selected features, which provided a good balance between accuracy
and model simplicity. Feature sets were largely consistent across the
datasets. For the final feature set, we selected the main amplitude of
the x-axis, mean of the x-axis values, variance of the y-axis values,
frequency entropy of the z-axis and main frequency of the x-axis.

We validated the classification performance using two
approaches. First, the leave-one individual-out (LOIO) approach
was used to assess the model’s ability to classify acceleration data
from new individuals. In this approach, two individuals’ data were
used for model training, while the remaining individual was used
for validation. Thus, three classification models were fitted, and
each of the three individuals was used for validation once. The

behavioural categories sleeping and salt-licking were only observed
in one individual and were therefore excluded from the models in
the LOIO approach. Second, in the pooled approach, a five-fold
cross-validation was used to evaluate classification performance
across the entire dataset of three individuals. Here, the data were
randomly split into five parts, where four parts were used to train
the model and the remaining part was used for validation. This was
done five times so that each of the five parts was used for validation
once. The default settings of the rabc package for hyper-parameter
tuning (the process of optimising the settings of a machine learning
model to improve its performance) were used as they yielded the
highest accuracies (Yu and Klaassen, 2021).

Classification performance was evaluated using precision, recall
(sensitivity), specificity and balanced accuracy (the average of the
sensitivity and specificity), calculated using the caret package
(version 6.0-92; Kuhn, 2008). Balanced accuracy was preferred to
overall accuracy given that the dataset was imbalanced (Garcia
et al, 2009). A confusion matrix plot visualised the prediction
accuracy for each behavioural category (Figure 3).

Behavioural responses to fence encounters

Eight springbok were collared on Etosha Heights for studying
behavioural responses to fences. As in the case of the three study
animals on Sophienhof, all individuals were adult females in good
physical condition. Accelerometer data were collected over a
2-year period (mid-2019 to late 2021). Acceleration bursts were
recorded at 33 Hz for 3.3 seconds at 5-minute intervals. Bursts
were categorised into three temporal groups relative to fence
encounters: 45 minutes before, during (minimum 15 minutes)
and 45 minutes after the encounter. We used the classifier trained
on the pooled labelled dataset (mentioned above) to infer spring-
bok behaviour associated with encounters with the veterinary
cordon fence.

To examine the behavioural responses of springbok to fence
encounters, we fitted generalised linear mixed models (GLMM:s)
with binomial response distributions using the R package lme4
(v1.1-37; Bates et al., 2015). For each of the five most frequent
behaviours, we modelled the probability of occurrence as a function
of the time period relative to the encounter (“before”, “during”,
“after”), encounter type (“cross” vs. “non-cross”) and their inter-
action. Random intercepts were included for both animal ID and
encounter ID to account for repeated measures. In a post hoc
analysis, estimated marginal means (EMMs) were computed for
each behaviour to quantify differences across time periods within
each encounter type. Pairwise comparisons between time levels
(before vs. during vs. after) were adjusted using Tukey’s method.

Results
Behaviour classification

Over 50 hours of video material (>15 hours per individual) were
analysed, resulting in a total of 3,952 ground-truthed accelerometer
bursts used for model training and testing. The number of obser-
vations were balanced across individuals but imbalanced across
behavioural categories. The most prevalent categories were rumin-
ating with 240—444 bursts per individual, followed by walking with
265-400 bursts per individual. Among the rarely observed categor-
ies was drinking with 7-24 bursts per individual. Representative
acceleration patterns for each of the 12 behavioural categories are
shown in Figure 2.
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Figure 2. Representative acceleration patterns for each of the 12 behavioural categories in springbok. The y-axis shows the raw output of the tri-axial accelerometers and the x-axis
shows the time, i.e., length of one burst. In the tri-axial accelerometers used, the x-axis represents surge, the y-axis sway and the z-axis heave.

In the LOIO approach, the classification performance differed
between behavioural categories as well as between validation datasets
(Table 1). Balanced accuracy for browsing, grazing, ruminating,
walking, trotting and low-activity were all above 80%. Categories
with a lower accuracy for at least one validation dataset were drink-
ing, grooming and running, probably due to the small number of
behavioural observations. However, only grooming showed a low
balanced accuracy in all three LOIO models.

In the pooled cross-validation approach, we achieved a mean
balanced accuracy of 89%. The majority of behavioural categories
could be predicted with high accuracies above 90%. All but two
categories ranged between 83% and 99% accuracy (grooming with
67% and salt-licking with 78%; Table 1). Categories characterised by
similar body posture or movement characteristics — such as between
browsing, grazing, foraging and walking or between low-activity and
ruminating — were more likely to be confused (Figures 2 and 3).

Behavioural responses to fence encounters

In total, behaviour was classified for 29,370 accelerometer bursts
recorded on eight springbok before, during and after 949 encoun-
ters with the veterinary cordon fence, amounting to 30.9 + 13.9

bursts per encounter. The bursts were unevenly distributed among
individuals (1,287-8,613 bursts per individual; x-squared = 9277.5,
df = 7, p < 0.001). The most frequently predicted behaviour was
grazing (26.5%), followed by walking (23.4%), browsing (17.7%),
low-activity (12.0%), ruminating (7.6%), foraging (6.6%), drinking
(2.3%) and sleeping (1.9%). Grooming, trotting, running and salt-
licking were rarely detected (< 1% each) in the acceleration data.
Low-activity and sleeping were lumped together as resting behaviour.

For the five most frequent behaviours — browsing, grazing,
walking, ruminating and resting — we found significant interaction
effects between the time period relative to the fence encounter
(before, during and after) and the type of encounter (non-crossing
or crossing, Table 2). Additionally, random intercept variances
were observed for both animal ID and encounter ID across most
behaviours (Table 3), indicating considerable variation between
individuals as well as between fence encounters.

Figure 4 addresses our research questions on (1) behavioural
changes associated with fence encounters and (2) differences between
crossing and non-crossing events by illustrating how behaviour
varied before, during and after each type of encounter. For browsing,
there was little evidence of change across time periods in the case of
non-crossing encounters. However, during fence crossings, browsing
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Table 1. Proportion of mean balanced accuracy per behavioural category for
the leave one-individual-out (LOIO) approach and the pooled cross-validation
approach trained on all three individuals. Sleeping and salt-licking were not
observed in every springbok and were excluded from the LOIO approach (“-”).

Behavioural category LOIO approach Pooled approach

Browsing 0.86-0.91 0.92
Grazing 0.90-0.95 0.92
Foraging 0.79-0.82 0.83
Walking 0.83-0.98 0.95
Trotting 1.00 0.99
Running 0.65-1.00 0.90
Ruminating 0.93-0.95 0.96
Low activity 0.83-0.89 0.86
Sleeping - 0.95
Drinking 0.50-0.93 0.90
Salt licking - 0.78
Grooming 0.55-0.73 0.67
Mean balanced accuracy 0.85-0.87 0.89

significantly after the crossing compared to both before and during,
Ruminating increased during non-crossing events and returned to
pre-encounter levels afterward. Ruminating also increased during
crossings but afterwards decreased to a level lower than before the
crossing. Resting increased during non-crossing encounters and
increased further after the encounter. In contrast, resting slightly
increased during fence crossing but then decreased after the crossing
to a level below that observed before the crossing. The supporting
statistics for these behavioural changes in relation to fence encoun-
ters are given in Table 4.

Furthermore, individual movement tracks combined with the
behaviour classification reveal a variety of behavioural responses when
encountering a fence (Figure 5). When individuals crossed the fence,
they often moved to the other side for foraging (Figure 5A) or drinking
(Figure 5B). In contrast, behaviour was highly variable when staying at
the fence or travelling along the fence (Figure 5C and 5D).

Discussion

This study demonstrates the potential of automated behaviour
classification using animal-borne tri-axial accelerometers to
address important questions in conservation and behavioural ecol-

ogy. We trained a robust accelerometer-based behaviour classifier
for springbok and applied this to unlabelled accelerometer data
collected from individuals during fence encounters. This approach
provided valuable insights into the behavioural responses of migra-
tory springbok to anthropogenic barriers in an African savanna.

significantly increased compared to the period before and then
returned to pre-encounter levels afterward. Similar to browsing,
grazing showed no significant changes in the case of non-crossing
encounters. In contrast, grazing decreased significantly during fence
crossings but returned to pre-encounter levels after the crossing.
Walking slightly decreased both during and after non-crossing
encounters relative to before. In crossing events, walking increased

Behaviour classification

Our classifier was able to predict 12 distinct springbok behaviours.
In contrast, previous studies on ungulates typically classified 3-7

Recall rate (%)
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Figure 3. Confusion matrix of the 12 behavioural categories of springbok based on the five-fold cross-validation results using the pooled dataset. Blue dots represent correct
predictions, red dots represent incorrect predictions. Numbers indicate the number of bursts for each combination of prediction and observation. The recall rate (correctly
predicted/total observations) per behavioural category is indicated at the top of the figure, while precision (correctly predicted/total predictions) is indicated on the right.
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Table 2. Fixed effects from generalised linear mixed models (GLMMs)
predicting the probability of exhibiting each behaviour (browsing, grazing,
walking, ruminating and resting) as a function of time relative to the fence
encounter (before, during, after), the type of encounter (crossing or non-
crossing) and their interaction. All models were fitted with a binomial response
distribution using a logit link function. Estimates are shown on the log-odds

Paul Berry et al.

Table 3. Random intercept variance estimates from GLMMs for each behaviour,
showing between-individual (animal ID) and between-encounter (encounter ID)
variation. These random effects account for repeated behavioural observations
within animals and encounters, allowing for generalisation beyond sampled
individuals and events.

scale. Behaviour Animal ID (variance) Encounter ID (variance)
Behaviour  Predictor Estimate Std. Error z value p-value Browsing 0.449 0.448
Browsing  (Intercept) ~ —1669  0.243 6882  <0.001 Grazing 0.083 0.761
During 0019  0.052 —0.357 0.721 Walking 0132 0.490
After ~0.109 0.6 ~193  0.053 Rl 2.283 0.696
Cross 0059  0.083 0713 0476 Rl L 5
Duringicross 0317 0.081 3929  <0.001
After:cross 0.165  0.085 1.946 0.052 showed that classification accuracy remains high even when redu-
Grazing (Intercept) ~ —0.976  0.115 _8.490 <0.001 cing the number of .features from 80 to 5 due to correlations
- between features. Using fewer features offers the advantages of
During 0001 0045 0.030 0-976 improved interpretability, greater computational efficiency and
After —0.089 0.048 —1.878 0.060 reduced risk of over-fitting (Yu and Klaassen, 2021).
. s O/ 0,
Cross 055 OG0 _Aem  <OE The slightly lower accuracy ob'served w1thv LOIO (85% '87A))
- compared to pooled cross validation (89%) likely reflects inter-
During:cross 0352 0.074 —4721 <0001 individual variation in accelerometer measurements. Factors such
After:cross 0.099  0.074 1345 0.179 as sensor attachment, orientation, collar tightness and natural
Walking (ntercept) ~ —1.734  0.139 12494 <0.001 individual variation in behav1ou“r can all influence these measure-
: ments (Moreau et al., 2009; Kroschel et al., 2017; Barwick et al.,
During —0.184 0.053 —3.455 <0.001 2018; Hertel et al., 2020; Decandia et al., 2021). This variability,
After —0.178  0.057 —3.119 0.002 especially when classifiers are trained on one individual and valid-
Cross QEn e Wi saE ated on a.nother, can r.educe. accuracy, a problem observed in the
. classification of behaviours in other mammals, such as elephants
During:cross  0.226 0.074 3.055 0.002 (Soltis et al., 2012), giraffes (Brandes et al., 2021) and cheetahs
After:cross 0.378 0.076 4.967 <0.001 (Giese etal., 2021). However, the high accuracy of the LOIO models
Ruminating (Intercept)  —3.557 0534 Y — suggegs that the variability be'tween }nd1V1duals in be.haV10ur—
specific accelerometer patterns is relatively low, which increases
DU 025  OOE ab <opml our confidence in the applicability of this approach to unobserved
After 0.039 0081 0.480 0.631 individuals.
G 0G| G o A thavmurs su.ch as grazing, ruminating and trotting were che.ir.—
acterised by relatively stable head and neck positions, which facili-
During;crossT0.0628 B F10-113 oy a2 tated accurate classification. In contrast, behaviours like grooming,
After:icross ~ —0.404  0.128 ~3.160 0.002 which involved more complex head and neck movements, had
lower racy. This variability in r rlappin,
Resting (ntercept) ~ —2.737  0.384 —7.120  <0.001 ower accuracy. This variability bo‘,iyp ostu e.caused overlapping
acceleration patterns between behaviours, making them harder to
During 0205  0.060 33%  <0.001 distinguish. For example, the pattern of a foraging springbok with
After 0.498 0.063 7.855 <0.001 its neck tilted downwards was similar to that of a springbok grazing
on the ground. Similar challenges have been noted in other mam-
Cross -0525 0133 -3932  <0.001 o .
mals, such as cows (Martiskainen et al., 2009), elephants (Soltis
Duringicross ~ 0.004  0.100 0.038 0.970 et al, 2012) and baboons (Fehlmann et al., 2017). In our study,
After:cross ~ —0.823  0.109 7565 <0.001 confusion between categories with similar neck tilt was more

behavioural categories (Kroschel et al., 2017; Chimienti et al., 2021;
Yu and Klaassen, 2021). Mean balanced accuracies across both
validation approaches — leave-one-individual-out cross-validation
(LOIO) and pooled cross-validation — ranged from 85% to 89%
(Table 1). These results are comparable to those reported in other
ungulate studies, such as roe deer (71%, Kroschel et al.,, 2017
and > 90%, Yu et al,, 2021), giraffes (83%—97%, Brandes et al.,
2021) and dairy cows (> 90%, Yu et al., 2021).

Although the classifier was trained using only five feature vari-
ables, 10 out of 12 behaviours were predicted with an overall
accuracy exceeding 80% in the pooled approach (Table 1). This
corresponds with the findings of Yu and Klaassen (2021), who

common than between categories with similar locomotion likely
due to the placement of the sensor on the neck, making it more
sensitive to head movements than leg movements. However, the
12 behaviours differentiated in this study may not all be relevant to
fence encounters. Depending on the research question, a reduction
of the number of behaviours by combining similar behavioural
categories into one may be reasonable and could further improve
classification accuracy (Ladds et al., 2017).

The accuracy of minority categories was influenced by small
sample sizes, a well-known problem in supervised behaviour clas-
sification (Amrine et al., 2014; Fogarty et al., 2020). To address this,
future studies could use over-sampling of minority categories (Bom
etal, 2014) or under-sampling of majority categories (Fogarty et al.,
2020) to balance the dataset and improve model performance
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Figure 4. Predicted probabilities (+95% confidence intervals) for each behaviour (browsing, grazing, walking, ruminating, resting) across the three time periods (before, during and
after) relative to fence encounters, shown separately for each encounter type (crossing and non-crossing). Predictions are derived from generalised linear mixed models with

binomial response distributions.

(Chakravarty et al., 2020). Another factor influencing classification
accuracy was the segmentation of accelerometer bursts. We used a
fixed burst length of 3.3 seconds to optimise collar battery life and
data storage. However, this approach could lead to misclassification
if bursts contained mixed behaviours. Flexible segmentation
methods, such as moving windows or Hidden Markov Models,
could help overcome this problem by detecting behaviour change
points (Bom et al,, 2014; Hammond et al., 2016; Kroschel et al.,
2017) and may be especially useful for classifying brief behaviours
such as jumping. Since the model can only predict behaviours
included in the training dataset, rare or unobserved behaviours
are likely to be misclassified as the most similar behaviour. More-
over, training classifiers on a small number of individuals can limit

their robustness (Bao and Intille, 2004). Nonetheless, previous
studies have shown that reliable behaviour predictions can still be
made with limited samples (Giese et al., 2021; Yu et al., 2021).

Behavioural responses to fence encounters

Significant interaction effects between time period (before, during,
after) and encounter type (crossing vs. non-crossing) across all five
main behaviours indicate that springbok respond to fences in
fundamentally different ways depending on whether they cross
them or not. During non-crossing encounters, behavioural changes
were minor but suggest hesitation: walking decreased slightly while
ruminating and resting increased, consistent with animals pausing
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Table 4. Estimated pairwise comparisons (odds ratios) of behavioural probabilities before, during and after fence encounters for crossing and non-crossing events,
based on GLMMs with binomial response distributions. Results are shown for five behaviours: browsing, grazing, walking, ruminating and resting. Tukey-adjusted
p-values account for multiple comparisons within each behaviour. Tests were performed on the log odds ratio scale.

Non-cross Cross
Behaviour Contrast OR SE z p OR SE z p
Browsing Before/during 1.019 0.053 0.357 0.932 0.742 0.046 —4.830 <0.001
Before/after 1.115 0.063 1.936 0.129 0.945 0.060 —0.885 0.650
During/after 1.094 0.058 1.708 0.202 1.274 0.078 3.956 <0.001
Grazing Before/during 0.999 0.045 —0.030 0.999 1.420 0.084 5.906 <0.001
Before/after 1.093 0.052 1.878 0.145 0.990 0.056 —0.173 0.984
During/after 1.095 0.050 2.001 0.112 0.698 0.041 —6.075 <0.001
Walking Before/during 1.202 0.064 3.455 0.002 0.959 0.049 —0.820 0.690
Before/after 1.195 0.068 3.119 0.005 0.818 0.041 —3.969 <0.001
During/after 0.994 0.055 —0.107 0.994 0.854 0.043 —3.108 0.005
Ruminating Before/during 0.774 0.057 —3.485 0.001 0.728 0.063 —3.690 <0.001
Before/after 0.962 0.078 —0.480 0.881 1.440 0.143 3.686 <0.001
During/after 1.242 0.090 2.979 0.008 1.979 0.186 7.267 <0.001
Resting Before/during 0.815 0.049 —3.390 0.002 0.812 0.065 —2.618 0.024
Before/after 0.608 0.039 —7.855 <0.001 1.384 0.122 3.672 <0.001
During/after 0.746 0.042 —5.162 <0.001 1.705 0.145 6.289 <0.001

>

northing [km]

2
easting [km]

predictions

© Grazing O Running @ Ruminating @ Saltlicking GPS

© Browsing @ Trotting @ Low-activity © Drinking <> FALSE (O TRUE
@ Foraging @ Walking © Sleeping O Grooming

Figure 5. Example GPS tracks of springbok with inferred behaviours before, during and after fence encounters. (A) and (B) show quick fence crossings, where individuals walk
towards the presumably known fence gap position and cross the fence to feed (A) or to drink (B). (C) and (D) show different non-cross encounter types where the fence acts as a
barrier. In (C), the springbok stays and rests when encountering the fence, while in (D) the individual travels along the fence. Background Sentinel 2 (Bands 3, 4, 5) image, March 2020
(contains modified Copernicus Sentinel data [2020]).
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at an impassable barrier and temporarily reducing activity and
energy expenditure. Feeding behaviour (browsing and grazing)
remained largely stable, implying that non-crossings primarily
interrupted movement rather than foraging. During crossings, on
the other hand, springbok exhibited pronounced shifts in behav-
iour. Browsing increased while grazing decreased, indicating a
switch from head-down to head-up feeding, possibly reflecting
vigilance (Boving and Post, 1997) or avoidance of open grazing
areas near the fence where predation risk may be elevated (Dupuis-
Desormeaux et al., 2016). Walking increased after crossings, con-
sistent with the directed post-crossing movement observed by
Hering et al. (2022b). At the same time, ruminating and resting
decreased, indicating increased locomotor effort and reduced
recovery immediately after the fence was negotiated. Together,
the results show that fences cause disruptions in behaviour which
may affect foraging efficiency and overall energy balance. This
emphasises the importance of maintaining permeable fence designs
to allow animals to move freely between resource patches and
minimise the cumulative costs of repeated fence encounters.

By combining predicted behaviours with individual movement
tracks, we furthermore observed considerable variability in responses
to fence encounters, which may reflect the environmental context of
the encounter, such as season, time of day, or social interactions,
none of which were analysed in this study. Tracks also suggest
purposeful movement, with individuals who appeared to know the
location of a fence gap walking directly towards it, often to forage or
drink (Figures 5A and 5B). In contrast, individuals who failed to find
a gap exhibited more variable behaviours, either staying near the
fence (Figure 5C) or travelling along it (Figure 5D).

The random effects analysis revealed substantial variance with
regard to both individual animals and specific encounters. Some of
the high inter-individual variation for ruminating and resting
behaviours may be explained by the misclassification of these two
behaviours, given their similar acceleration patterns (Figures 2 and
3). Nonetheless, behavioural responses to fences may also be influ-
enced by intrinsic traits, such as age or temperament (Hertel et al.,
2020), previous experiences with barriers or factors such as group
composition and habitat conditions during encounters.

Conclusion

Our study demonstrates the utility of accelerometer data for remotely
monitoring springbok behaviour, overcoming constraints related to
accessibility, visibility and observer bias and enabling quantification
of fine-scale responses to anthropogenic barriers. We show that
fences alter behaviour of springbok antelope, with clear contrasts
between crossings and non-crossings. Behavioural changes, such as
the increase in walking and decline in ruminating and resting after
crossings, indicate energetic and physiological costs that may accu-
mulate over time. Frequent fence encounters could reshape energy
budgets, reduce foraging efficiency and modify space-use patterns.
Given the expansion of fencing across African rangelands, our results
emphasise the importance of fence permeability and managed fence
gaps to minimise behavioural disruption and facilitate ecological
connectivity for mobile and migratory species.
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