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Abstract

That data from polar orbiting satellites have detected a widespread increase in photosynthetic activity over the last 20 years
in the grasslands of the Sahel is justifies investigating its role in the tropical carbon cycle. But this task is undermined because
ground data that are generally used to support the use of primary production models elsewhere are lacking. In this paper, we
profile a Light Use Efficiency (LUE) model of primary production parameterised with satellite information, and test it for the
West African Sahel; solar radiation is absorbed by plants to provide energy for photosynthesis, while moisture shortfalls control
the efficiency of light usage. In particular, we show how an economical use of existing, yet meagre data sets can be used to
circumvent nominal, yet untenable approaches for achieving this for the region. Specifically, we use a cloudiness layer provided
with the NOAA/NASA 8 km Pathfinder Land data archive (PAL) data set to derive solar radiation (and other energy balance
terms) required to implement the model (monthly time-step). Of particular note, we index growth efficiency via transpiration by
subsuming rangeland-yield formulations into our model. This is important for partially vegetated landscapes where the fate of
rainfall is controlled by relative vegetation cover. We accomplish this by using PAL-derived Normalised Difference Vegetation
Index (NDVI) to partition the landscape into fractional vegetation cover. A bare soil evaporation model that feeds into bucket
model is then applied, thereafter deriving actual transpiration (quasi-daily time-step). We forgo a formal validation of the model
due to problems of spatial scale and data limitations. Instead, we generate maps showing model robustness via Monte Carlo
simulation. The precision of our Gross Primary Production (GPP) estimates is acceptable, but falls off rapidly for the northern
fringes of the Sahel. We also map the locations where errors in the driving variables are mostly responsible for the bulk of
uncertainty in predicted GPP, in this case the water stress factor and the NDVI. Comparisons with an independent model of
primary production, CENTURY, are relatively poor, yet favourable comparisons are made with previous primary production
estimates found for the region in the literature. A spatially exhaustive evaluation of our GPP map is carried out by regressing
randomly sampled observations against integrated NDVI, a method traditionally used to quantify absolute amounts of primary
production. Our model can be used to quantify stocks and flows of carbon in grasslands over the recent historical period.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Net Primary Production (NPP) is an important
component of the carbon cycle and a key indicator
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of ecosystem performance (Lobell et al., 2002). For
tracking the recent history of continental-scale veg-
etation dynamics, the Normalised Difference Vege-
tation Index (NDVI) derived from reflectance data
registered by the ‘National Oceanic and Atmospheric
Administration’ Advanced Very High Resolution Ra-
diometer (NOAA AVHRR) has traditionally been
used and regarded as a surrogate measure of primary
production (Box et al., 1989). However, recent work
shows that this index is only a measure of photosyn-
thetic potential (Runyon et al., 1994). Though the
NDVI is a quantitative measure, it only yields esti-
mates of relative vegetation amounts. The NDVI may
better be used for parameterising models that may
more accurately reflect actual changes in primary pro-
duction, as well as quantifying its absolute amount.
Many sophisticated models of this type are now ap-
plied routinely in North American and European con-
texts for tracing the history of ecosystem dynamics,
especially in the context of regional or global carbon
budgets (e.g.Ruimy et al., 1996; Veroustraete et al.,
1996; Kimball et al., 1997; Goetz et al., 1999; Coops
et al., 2001; Lobell et al., 2002; Reeves et al., 2001).
But the ground-based data networks that most of these
models require to generate reliable estimates of pri-
mary production at regional or continental scales are
lacking for large parts of the Earth’s surface, gener-
ally due to a dearth of infrastructure, economic woes,
and a sparse population. One such region is the Sahel
belt of North Africa.Eklundh and Olsson (2003)flag
the Sahel as a hotspot for land cover change. For the
period 1982–1999, they identify large areas of strong
positive trends in NDVI derived from data from the
NOAA AVHRR. These findings suggest that the Sa-
hel may play a significant role in the tropical carbon
cycle, and constitute at least part of the missing trop-
ical carbon sink discussed bySchimel et al. (2001).
From a humanitarian perspective, this region suffers
from frequent drought and famine (Hulme, 1989;
Olsson, 1993; Nicholson et al., 1998), both of which
are intimately tied to primary production.

2. Objectives

This paper describes and tests a satellite data-driven
Light Use Efficiency (LUE) model for mapping pri-
mary production and tracing its dynamics over the re-

cent historical period (20 years) for the case of the
West African Sahel. Another objective is to assess
model performance using Monte Carlo simulations,
comparisons with other models, and previous results
for the region reported in the literature.

3. The LUE concept with emphasis on previous
applications in the Sahel

3.1. LUE concept

NPP represents the net flow of carbon to plants
from the atmosphere and defines a balance between
gross photosynthesis (GPP—Gross Primary Produc-
tion) and autotrophic respiration. GPP defines photo-
synthesis before autotrophic respiration losses, while
Net Ecosystem Production is NPP less heterotrophic
respiration (Maisongrande et al., 1995; Field et al.,
1995; Gower et al., 1999).

The remote sensing-based LUE model is defined as
follows, and has evolved fromMonteith (1972, 1977):

GPP=
n∑
i=1

εpε(aNDVI + b)PAR (1)

where GPP is the Gross Primary Production summed
over the growing season (g m−2), εp is the maximum
biological efficiency of PAR conversion to dry mat-
ter (g MJ−1 m−2), ε is the environmental stress scalar,
NDVI is the (NIR − RED)/(NIR + RED) (unitless),
PAR is the incoming photosynthetically active radia-
tion (MJ m−2), anda andb are the regression coeffi-
cients.

The NIR and RED refer to unitless reflectances in
the near infrared and red portions of the electromag-
netic spectrum as measured by the AVHRR sensor
mounted on the series of NOAA satellites. The NDVI
has often been used as a surrogate measure of primary
production (Box et al., 1989), yet recent findings sug-
gest that the NDVI is unsatisfactory for this purpose
due to the uncoupling of PAR absorption and plant
growth (Runyon et al., 1994). In contrast to the earlier
empirical models that related growing season sums
of NDVI to geo-referenced samples of above-ground
NPP (e.g.Tucker et al., 1985; Prince, 1991a), this ap-
proach boasts axiomatic rigour (Prince, 1991b) and
has the potential to estimate biomass in absolute terms
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across different climatic regimes, site characteristics,
and scales, thus eliminating the demand for frequent
calibration (Reeves et al., 2001).

PAR encompasses the domain of incoming solar
radiation between 0.4 and 0.7�m, and allows green
vegetation to undergo photosynthesis (Hall and Rao,
1994). It varies as a function of solar zenith an-
gle, cloudiness and the concentration of atmospheric
constituents (water vapour and aerosols), but over
time-scales of 1 day or longer, its contribution to
incoming global radiation fluctuates within a nar-
row range between 45 and 50% (Frouin and Pinker,
1995). Fraction of Photosynthetically Active Radi-
ation (FPAR) denotes the fraction of incident PAR
absorbed by plants that is used for photosynthesis
and is represented here in terms of NDVI. Sensitivity
studies with radiation transfer models indicate the
relationship remains robust in the presence of pixel
heterogeneity, vegetation clumping, and variations
in leaf orientation and optical properties (Goward
and Huemmrich, 1992; Begue, 1993; Myneni and
Williams, 1994). Good area averages may also be
provided given the scale invariance of the relation-
ship. This is the pivotal link that facilitates broad scale
primary production mapping using the NDVI from the
NOAA AVHRR sensor, since it provides a measure
of photosynthetic potential (Goetz and Prince, 1999).

The biological efficiency term has been the fo-
cus of much debate. Ambiguity and confusion have
arisen because this parameter has been determined
using inconsistent methods; it sometimes corresponds
to total NPP, and often to above-ground NPP, but
rarely to GPP (Gower et al., 1999). It also differs
between C3 and C4 plants. Sometimes it has been
deduced from measurements of global radiation or
at other times, the PAR intercepted by a vegetation
canopy, instead of APAR (e.g.Gower et al., 1999).
Some remotely-sensed based models resort to using
a theoretical maximum value,εp, predicated on the
quantum yield and CO2-dry-matter-conversion factor,
multiplied by stress scalars,ε, that yield GPP after
which respiration terms are assessed (e.g.Prince and
Goward, 1995; Goetz et al., 1999). Still others deter-
mine a bulk efficiency term (εpε from Eq. (1)) from
the slope of daily integrated CO2 versus PAR re-
gressions (e.g.Maisongrande et al., 1995), thereafter
accounting for respiration terms. Finally, ecophysi-
ological simulation models with non-trivial assump-

tions regarding plant growth and environment may be
used to derive this bulk efficiency term after which re-
motely sensed data are pulled in to compute primary
production (White and Running, 1994; Mougin et al.,
1995; Handcock, 2001). Stress factors (lumped asε
in Eq. (1)) that down-regulate the potential growth
efficiency,εp, may include drought, temperature ex-
tremes, pollution, herbivory, insufficient nutrients, dis-
ease, etc. (Prince, 1991b) and can vary on timescales
from seconds to months. Theoretically derived po-
tential efficiencies range between 1.1 and 8.4 g MJ−1,
while plot studies of bulk efficiencies give ranges be-
tween 0.42 and 3.8 g MJ−1 (Goetz and Prince, 1999).

3.2. Previous applications of the LUE approach
in the Sahel

Early applications of the satellite-based LUE
model in the Sahel prescribed bulk biological ef-
ficiency values from the literature (either a single
value, or vegetation-specific values) to estimate areal
above-ground NPP or crop yield using remotely
sensed data with seemingly acceptable results (e.g.
Bartholome, 1990; Cherchali et al., 1995). However,
given the considerable heterogeneity of the Sahelian
landscape in terms of resource availability, doubt had
been cast on an invariant bulk biological efficiency
term, even for a given species (Begue et al., 1991;
Prince, 1991b; Guerif et al., 1993; Hanan et al.,
1995). Rasmussen (1998)tested and rejected the hy-
pothesis of stable bulk biological growth efficiency
for the Senegalese Sahel and elucidated some of the
fundamental relations between above-ground NPP,
NOAA AVHRR NDVI imagery, and the environment,
by showing that residual unexplained variance in em-
pirical NDVI–NPP relations could be reduced by in-
cluding surface temperature and percent tree cover in
multivariate regression models. Though it is now ev-
ident that the bulk biological growth efficiency is not
constant, it may converge on a narrow range of values
for particular plant functional types in terms of GPP,
but not NPP, due to differences in respiration costs.
The underlying tenet of the functional convergence
hypothesis maintains that plants have been tuned
through natural selection to maximise photosynthetic
gain per unit APAR (GPP) by optimising resource
allocation in environments with limited resources and
high acquisition costs (Goetz and Prince, 1999). This
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is the major appeal of the LUE approach for computing
GPP using remote sensing (Goetz and Prince, 1999).

4. Test area—West African Sahel

The area covers most of Niger and parts of Mali,
Burkina Faso, Benin, Nigeria, the Congo, and Chad
(between 11◦N and 20◦N and 1◦W and 18◦E) all of
which are located in the ‘Continental Sahel’, a term de-
fined by its recognition as a homogeneous rainfall re-
gion (Agnew and Chappell, 1999) (Fig. 1). The climate
ranges from arid to semi-arid with a sharp north-south
precipitation gradient (Maselli et al., 1992). Mean an-
nual rainfall totals range from less than 100 mm year−1

in the north to almost 1000 mm in the south. An-
nual evapotranspiration far exceeds annual rainfall and
ranges from 1800 to 2300 mm (Le Houerou, 1980;
Rockström, 1997). The rains begin with the north-
ward migration of the inter-tropical convergence zone
in May and subside with its southward retreat around
the beginning of October. The north is sparsely vege-
tated with bush-land dominating, giving way to grass-
land, savannah, and woody savannah in the far south.
The vegetation is adapted to a warm, dry climate, with
most grasses using the C4 photosynthetic pathway,
while woody species and some herbs exhibit the C3

Fig. 1. Map of study area showing International Geosphere Biosphere land cover classes.

(Le Houerou et al., 1993). Marked annual fluctuations
occur in the proportion of the different grass species
growing at any one site. Nomadic pastoralism is the
dominant land use in the north, giving way to shifting
or fallow cultivation rotation in the south. Major crops
grown include millet, maize sorghum, and cowpea, all
of which are C4 species (Le Houerou, 1980). The soils
are sandy with low organic and nutrient content, while
topographical variations are generally less than 500 m
within the vegetated zones (Le Houerou, 1980).

5. Data sources and preparation

5.1. NOAA/NASA Pathfinder Land data set

We used daily data from the NOAA/NASA
Pathfinder Land data archive (PAL) data set to derive
many of the parameters needed forEq. (1). The PAL
has spatial resolution of 8 km and includes layers
for solar zenith angle, satellite look and azimuth an-
gles, cloud and quality flags, as well as the original
five channels of the NOAA AVHRR sensor (red and
near-infrared reflectance, and three thermal) (Table 1).
These data come corrected for Rayleigh scattering
and ozone absorption, and include post-flight sensor
calibration (James and Kalluri, 1994; Smith et al.,
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Table 1
Data layers provided with the PAL data set

Parameter Units Field width Offset Gain

NDVI – 8 128 0.008
CLAVR – 8 1 1
Quality control flag – 8 1 1
Scan angle Radians 16 10481.98 0.0001
Solar zenith angle Radians 16 10 0.0001
Relative azimuth angle Radians 16 10 0.0001
Channel 1 reflectance % 16 10 0.002
Channel 2 reflectance % 16 10 0.002
Channel 3 brightness temperature Kelvin 16 −31990 0.005
Channel 4 brightness temperature Kelvin 16 −31990 0.005
Channel 5 brightness temperature Kelvin 16 −31990 0.005
Julian day DDD·HH 16 10 0.01

1997a,b), and is the longest, most consistently pro-
cessed global satellite imagery archive to date. Known
problems include (1) under-estimation of the correc-
tions for Rayleigh and ozone absorption; (2) red and
near-infrared channels were not normalised for solar
zenith angle, and (3) incorrect computation of the solar
zenith angle.Smith et al. (1997a,b)reported these er-
rors affect the NDVI by at most 0.02 NDVI units. The
reason for choosing 1992 is the existence of a data set
generated by theHAPEX-Sahel(Hydrologic Atmo-
spheric Pilot Experiment in the Sahel—carried out in
southwest Niger in 1992) to aid in the construction of
our model. The main goal of this international project
was to elucidate the mechanisms of land-atmosphere
feedback at the scale of a grid cell for a general
circulation model (1◦ × 1◦) (Prince et al., 1995).

Maximum value compositing is commonly em-
ployed to mitigate unwanted atmospheric and view
angle effects in daily NDVI images by ‘collapsing’
them into mosaics composed of the highest NDVI
for each location over a pre-specified time period by
sequentially comparing pixels (Holben, 1986). Due
to the shortcomings of this method (e.g. Cihlar et al.,
1994), we used an alternative approach that selects
only those pixels with favourable viewing geometry
and minimises bias (Seaquist, 2001). We then filtered
then NDVI time profiles using a modified best index
slope extraction method (Viovy et al., 1992; Lind and
Fensholt, 1999) to rid the images of residual cloud
contamination. Finally, we corrected them for the in-
fluence of background soil reflectance afterLind and
Fensholt (1999).

5.2. Climate data

The climate data were used to derive both energy
balance and soil moisture estimates used to compute
ε in Eq. (1). We incorporated climate data from four
different sources. Mean monthly temperature and
monthly rainfall totals were merged from version 1.2
of the Global Historical Climatology Network (Vose
et al., 1992) data-base and the Climate Research Unit
data-base over the West African Sahel from between
10◦N and 20◦N to 18◦W and 23◦E. Both these data
sets have undergone extensive screening. The number
of rainfall stations for the period May–October was
boosted considerably by amalgamating them with
1992 data fromAfrica Data Dissemination Service.
Finally, a minimum and maximum of 79 rainfall sta-
tions in November and 257 in June, respectively, were
retained (for temperature, 32 in January and 58 in
October, respectively). Daily rainfall, and maximum
and minimum temperature records for 16 synoptic
climate stations across Niger for a 7-year period were
provided by the National Meteorological Service in
Niamey, Niger.

We generated total monthly rainfall surfaces for
June through September of 1992 with universal
‘block’ kriging (see Matheron, 1971; Goovaerts,
1997; Chappell et al., 2001for more detailed dis-
cussions of this technique) in order to scale up or
estimates to match the spatial resolution of the satel-
lite data. Accuracies derived from cross-validation of
these variogram models varied between 15 and 20%
from June to September. We used thin plate splines
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to interpolate rainfall for other months given that (1)
there were fewer stations recording rainfall, (2) uni-
versal kriging techniques were deemed inappropriate
after checking the rainfall distributions (which were
highly skewed), and (3) most photosynthesis occurs
during the rainy season.

Monthly mean temperatures exhibited smooth and
restricted variation. Since there were too few stations
to interpolate reliably with kriging, we interpolated
using thin plate splines (yielding an root mean square
error of 0.7◦C, obtained by leaving HAPEX-Sahel
temperature data out of the interpolation procedure).

5.3. Land cover

The Africa Land Cover Characteristics Data-Base
version 1.2 with the International Geosphere Bio-
sphere Programme legend provided us with informa-
tion on land cover (USGS, 2000). This data layer was
not used explicitly in our model, but rather to guide
our analyses and the interpretation of our results. The
data-base was generated at a 1-km spatial resolution,
and was derived from AVHRR data acquired between
April 1992 and March 1993. The spatial resolution
was degraded to 8 km to ensure compatibility with the
PAL data set (Fig. 1). The land cover classification
has an overall accuracy of 83%, though accuracy was
somewhat reduced for the Sahel, with 67% for both
shrub-land and savannah (Loveland et al., 1999).

5.4. FAO digital soil map of the world

Since we required information on water holding ca-
pacity for the computation of our water stress factor,
ε (Eq. (1)), we took the maximum soil moisture stor-
age, computed from topsoil texture and soil depth,
from version 3.5 of the Food and Agriculture Organi-
zation (FAO) Digital Soil Map of the World (1995) at
scale of 1:5,000,000. We recoded the map to obtain
estimates of soil moisture storage capacity to an im-
permeable layer, or to a depth of 100 cm, by taking
the centres of the ranges provided in their data-base.
For contiguous regions showing a combination of two
categories, we applied weighted averaging. The FAO
states that the estimation of maximum soil moisture
storage was determined in isolation of the prevailing
climate and largely ignores the rooting behaviour of
vegetation and that the reliability of the soil type clas-

sification is questionable for some regions of Africa.
This data layer is the only source of information avail-
able at this scale.

6. Methods

Fig. 2 illustrates the processing stream. The param-
eters inside the ellipsoids represent the raw data (in-
cluding constants derived from the literature) used in
the model, whereas the parameters inside the boxes are
derived during the execution of the model. Note that
Eq. (1) is a highly generalised form of this flowchart,
and is depicted in the shaded boxes inFig. 2. The
methods described below are to be reviewed with di-
rect reference toEq. (1)andFig. 2.

6.1. PAR

We estimated PAR on cell-by-cell basis to an ac-
ceptable level of accuracy (root mean square error
of 35.4 MJ m−2 month−1) for use with a terrestrial
LUE model using the daily CLAVR (CLouds from
AVHRR) layer from the PAL data set in combination
with Ångström’sequation (Fig. 3a). ThoughSeaquist
and Olsson (1999)demonstrate the methodology in
detail, we outline the rudiments of this calculation in
Appendix A.

6.2. FPAR and APAR

We linearly scaled FPAR between the lower and
upper limits of bare soil and maximum NDVI,
respectively (NDVI = 0.04, for 0% absorption,
and NDVI = 0.61, 95% absorption) (Goward and
Huemmrich, 1992; Potter et al., 1993; Guerif et al.,
1993; Ruimy et al., 1996; Prince et al., 1995; Hanan
et al., 1995; Goetz et al., 1999; Lind and Fensholt,
1999; Handcock, 2001):

FPAR= 1.67(NDVI )− 0.07 (2)

Note thatEq. (2)is the term inside the parentheses in
Eq. (1). An NDVI value of 0.04 was determined for
bare soil by taking its mean during the dry season,
while 0.61 corresponds to a growing season NDVI
along the shore of Lake Chad where vegetation is very
dense. Finally, we merged the images into monthly
means to further reduce noise (Eklundh, 1996;
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Fig. 2. Flowchart of LUE model.

Kaisischke and French, 1997) thereafter computing
APAR as the product of PAR and FPAR for each
month (Fig. 3b).

6.3. Potential biological growth efficiency—εp

We assigned a value of 5 g MJ−1 for εp (the poten-
tial biological efficiency), which indicates a mixture
of C3 and C4 plants with the assumption that for the
greater part of a growing season, C4 grasses dominate
the NOAA AVHRR reflectance signal. Typical Sahe-
lian rangeland consists of a mixture of both C3 and C4
plants, with C3 forbs dominating early in the growing
season, giving way to C4 grasses later in the growing
season (Hanan et al., 1995, 1997), at least for typical
sites in the HAPEX-Sahel and in the Gourma region
of Mali. Mougin et al. (1995)found the C3/C4 ratio to
be 43/57 for Mali’s Ferlo district. The Global Produc-
tion Efficiency Model ofPrince and Goward (1995)
and Goetz et al. (1999)uses a value of 6.1 g MJ−1

for C4 plants (invariant with temperature), while they
model C3 values based on leaf biochemical processes.
The potential efficiency of C3 plants is generally
lower, especially for the higher temperatures of Sa-
helian environments. Without regardingPrince and
Goward’s (1995)C3 potential efficiency sub-routine,
all other models, irrespective of complexity, resort
to prescribing these values, or conduct error minimi-
sation exercises with actual biomass measurements
or use regressions of PAR against CO2 fluxes (e.g.
Potter et al., 1993; Mougin et al., 1995; Ruimy et al.,
1996).

6.4. Water stress scalar—ε

Water is generally assumed is the primary factor
limiting photosynthesis in the region at these scales
(Le Houerou, 1980; Verstraete and Pinty, 1991). We
therefore reformulated the equations inWight and
Hanks (1981)andMillington et al. (1994), replacing
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Fig. 3. (a) Total photosynthetically active radiation for the growing season (May–October). (b) Total photosynthetically active radiation
absorbed by plant canopy for the growing season. (c) Total potential evapotranspiration for the growing season. (d) Total actual evapotran-
spiration for the growing season.

their crop yield terms with GPP

GPPa

GPPp
= Ta

Tp
(3)

where GPPa is the Gross Primary Production (g m−2),
GPPp is the potential Gross Primary Production
(g m−2), Ta is the actual transpiration (mm), andTp
is the potential transpiration.

The ratio of actual transpiration to potential tran-
spiration is the water stress scalar. Note that in terms
of Eq. (1), GPPp is directly analogous to the product
of the growing season sum of APAR and the potential
biological efficiency,εp. The purpose ofEq. (3) is to
provide a logical argument and point of departure for
our derivation of water stress,ε. The calculation of
potential transpiration is discussed first, followed by
actual transpiration.

A realistic assessment of actual transpiration (as
well as actual evapotranspiration) from partially
vegetated surfaces requires, as a minimum, the sep-
arate treatment of bare soil and plant components
(Hanks, 1974; Wight and Hanks, 1981; Wallace et al.,
1993; Millington et al., 1994; Mougin et al., 1995;
Srivastava et al., 1997). We therefore partitioned our

estimate of potential evapotranspiration (see deriva-
tion below) into bare soil and vegetation components
by transforming the NDVI into fraction of vegetation
cover ranging from 0 (no vegetation cover) and 1 (full
vegetation cover). We followedChoudhury (1994),
Capehart (1996), andCarlson and Ripley (1997):

Ep = KcETp

[
1 −

(
NDVI − NDVIo

NDVIs − NDVIo

)2
]

(4)

Tp = KcETp

(
NDVI − NDVIo

NDVIs − NDVIo

)2

(5)

whereEp is the bare soil potential evaporation (mm),
Tp is the potential transpiration (mm),Kc is the crop
coefficient, ETp is the potential evapotranspiration
(mm), NDVI is the cell-specific NDVI, NDVIs is the
NDVI corresponding to full vegetation cover (0.50),
and NDVIo is the bare soil NDVI (0.04).

The logic behindEqs. (4) and (5)are outlined in
Appendix B. We assigned a constant value of 0.85
in accordance with typical mean growing season
values for rangeland vegetation (Wight and Hanks,
1981; Millington et al., 1994). We used thePriestley
and Taylor (1972)method for computing potential
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evapotranspiration (Fig. 3c) for Eqs. (4) and (5)be-
cause of its direct physical link with radiation, its
success in operational agro-meteorological monitor-
ing, data availability, as well as its suitability for large
areas (Bastiaanssen, 1995; Jiang and Islam, 1999):

ETp = αa
∆

∆+ γ
(Rn −G) (6)

whereαa is the advection parameter,∆ is the gradient
of saturated vapour pressure (kPa◦C−1), γ is the psy-
chrometric constant (kPa◦C−1), Rn is the net radiation
(MJ m−2), andG is the ground heat flux (MJ m−2).

The ground heat flux is considered negligible and
is ignored. Most measurements in humid, temperate
environments have shown that the advection parame-
ter takes on a conservative value of about 1.3, though
in arid environments, values in excess of 1.75 are
reported (Jensen et al., 1990), likely due to the en-
trainment of heat from both above and below, leading
to a significant increase in the depth of the plane-
tary boundary layer (Monteith and Unsworth, 1990;
L’homme, 1996). We selected a value of 1.46 (based
on monthly sums) as this number optimised the
agreement between estimated and measured potential
evapotranspiration giving an root mean square error of
16.3 mm against ground data from the HAPEX-Sahel
experimental site at a monthly time step.Appendix C
outlines the computation of net radiation inEq. (6).

We then calculated the actual transpiration (see
Eq. (3)) with a simple bucket model where the root
zone is given as a single layer with a constant water
holding capacity where:

Ta(t) = SM(t) + R(t) − Ea(t) − SM(t+1) −D(t) (7)

wheret is the day, SM is the soil moisture (mm),R
is the rainfall (mm),Ea is the actual evaporation from
bare soil (mm),T is the transpiration (mm),D is the
drainage and runoff (mm).

The derivation of bare soil actual evaporation from
Eq. (7)is given inAppendix D. Deep drainage, runoff,
and run-on, are usually infrequent in semi-arid envi-
ronments (Le Houerou, 1980; Lo Seen Chong et al.,
1993; Mougin et al., 1995; Wythers et al., 1999) these
were ignored. Water discharge in the Niger River con-
firms the miniscule contribution of drainage and runoff
(Nicholson et al., 1996). The primary function of the
bucket model is to parameterise the effect of low soil
moisture on the stomatal conductance of vegetation,

giving a measure of the impact of drought stress on
plant growth:

Ta = Tp, if
SM

SMmax
≥ C (8)

Ta = Tp

C

SM

SMmax
, if

SM

SMmax
< C (9)

Ta is the actual transpiration (mm),Tp is the potential
transpiration (mm), SM is same as defined previously,
SMmax is the maximum soil water holding capacity
(mm), andC is the critical fraction of available water
below which soil water deficit affects transpiration.

In reality, theC parameter varies with vegetation
and crop type, and can range between 0.28 and 0.7
(Wight and Hanks, 1981; Choudhury and DiGirolamo,
1998). However, bothWight and Hanks (1981)and
Millington et al. (1994)used a value of unity (lin-
ear relationship) justified on (1) model insensitivity
to values below 0.4, (2) the satisfactory performance
for rangeland vegetation in both North America and
Tunisia, and (3) the lack of information about these
data. We assigned a value of 1. We spun up the bucket
model by duplicating all pseudo-daily data for 1992
four times (for a time-series of 4 years) to ensure that
our estimates achieved independence from arbitrarily
assigned initial soil moisture content.

Fig. 3d shows total growing season actual evap-
otranspiration over the region. Our experiments that
tested the sensitivity of actual evapotranspiration
to ±20% variations in selected model soil texture
parameters (seeAppendix D) as well as potential
evapotranspiration (corresponding to an area located
in the East Central Supersite of the HAPEX-Sahel)
revealed that it was most sensitive to rainfall. Ob-
served actual evapotranspiration over a millet field
(13◦33′N and 2◦39′E) in August, and over a herb site
(13◦33′N and 2◦41′E) in both August and September
in the South Central Supersite of the HAPEX-Sahel
nevertheless confirmed the realistic performance of
the model (with the tendency to slightly overestimate
actual evapotranspiration).

7. Results

Fig. 4ashows the final map of total growing season
GPP (May–October). GPP is very low in the northern
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Fig. 4. (a) Growing season GPP for 1992. (b) Standard deviation expressed as a percentage of 1992 growing season GPP as calculated
from a Monte Carlo simulation; number of runs= 1000.

regions where it is too dry to support extensive plant
communities. Local vegetation pockets are apparent
in the mountains north of Agadez where elevations in
are in excess of 2000 m. Other patches of GPP are as-
sumed to occur around wadis. In these regions, GPP is
generally less than 100 g m−2, though locally, this may
exceed 400 g m−2. The region of contiguous GPP be-
gins just north of Lake Chad in the east and roughly ex-
tends in a line north-westward to the middle part of the
area, before retreating south-westward. The northerly
portion of this belt is the pastoral zone supporting fod-

der for herds of domesticated sheep, goats and cattle
during the rainy season. GPP values here are generally
between 100 and 500 g m−2. This roughly corresponds
to ‘Grassland’ inFig. 1. Immediately to the south of
this belt is found the mixed Cropland-vegetation Mo-
saic where fields of millet and sorghum (with other
crops) are interspersed with fallow, containing indige-
nous grassland and savannah species. GPP here ranges
from between 500 and 1500 g m−2. Further south, GPP
in excess of 1500 g m−2 shows the lush vegetation
communities of the savannah and woody savannah
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Table 2
Amount and proportion of primary production per land cover class

Land cover % Area GPP (Tg) % GPPtotal GPPmean

(g m−2)
GPPstd NPPmean

(g m−2)
Above-ground
NPPmean (g m−2)

Barren/sparse 43.9 15.9 1.7 19.5 123.5 9.4 3.7
Shrubland 13.1 9.0 1.0 37.1 69.2 17.8 7.1
Grassland 18.3 120.1 13.1 352.8 298.2 169.3 67.7
Savannah 17.8 578.4 62.9 1752.7 733.2 841.3 336.5
Cropland-vegetation 6.3 185.8 20.1 1596.5 382.5 766.3 306.5
Cropland 0.3 4.5 0.5 920.9 817.6 442.0 176.8
Woody savannah 0.1 6.2 0.7 2831.8 490.5 1359.3 543.7
Water 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Summary 100.0 919.9 100.0 497.2 796.7 238.7 90.6

zones. Highest GPP is found around the northeast
shores of Lake Chad (in excess of 3500 g m−2) where
the high water table supports rich thickets of riparian
vegetation.

We disaggregated our GPP estimates on the basis
of land cover class (Table 2). Class totals of GPP are
given, as well as their means per category, as well
as their standard deviations. Despite the spatial extent
of the Barren/Sparsely vegetated category (compris-
ing 42.9% of the total area), it supports less than 2%
of the region’s GPP. Conversely, the savannah class
covers only 17.6% of the area, yet supports 63% of
the region’s photosynthetic gain.

8. Evaluation

We used four techniques to assess model perfor-
mance: (1) Monte Carlo simulations, (2) comparison
with the results of a CENTURY model run, (3) qual-
itative comparisons with other studies conducted in
the West African Sahel, and (4) evaluation against the
classical integrated NDVI approach for mapping pri-
mary production. Direct comparison with ground es-
timates of NPP were impossible partly due to lack of
data, as well as the difficulties in reconciling the differ-
ences in spatial resolution between our results (8 km)
and ground samples (typically representative of a few
metres at most).

8.1. Monte Carlo simulations

Monte Carlo simulation is a powerful and flexible
error propagation technique. The driving parameters

of a model are varied randomlyN times according
to their probability distributions. Each realisation is
stored and then used to compute a mean and variance
for each cell (e.g.Burrough and McDonnell, 1998;
Heuvelink, 1998; Crosetto et al., 2001). In the context
of Eq. (1), we define the following:

GPPu = 1

N

N∑
i=1

GPPi (10)

GPPs2u = 1

N − 1

N∑
i=1

(GPPi − GPPu)
2 (11)

whereGPPu is the mean GPP computed fromu model
parameters,N is the number of simulations, GPPi is the
simulation-specific (i) GPP, GPPs2u is the GPP variance
computed fromu model parameters.

We perturbed the parameters ofEq. (1)as inTable 3
for N = 1000 runs per variable. All errors except
the NDVI are assumed to be stationary, and originate
from normal distributions. We deliberately restricted
our Monte Carlo simulations to four lumped input pa-
rameters due to the technique’s heavy computational
demands.

Table 3
Errors used for the Monte Carlo simulations

Input
parameter

Root mean square
error

Determination
of error

Rank

NDVImin 0.01 (unitless) Literature 3
NDVImax 0.05 (unitless) Literature 3
PAR 35.0 (MJ m−2 month−1) Ground

measurements
4

ε 0.2 (unitless) ‘Expert opinion’ 1
εp g MJ m−2 month−1 Literature 2
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We established NDVI uncertainty fromKaufman
and Tanre (1996)who randomly select actual aerosol
and water vapour optical thickness observations from
the Senegalese Sahel (Soufflet et al., 1991) to simu-
late top-of-the-atmosphere NDVI over a time-invariant
ground cover of fescue grass, assuming randomly dis-
tributed cloud covers of 50%. Compositing for 9- and
27-day periods yielded NDVI values of 0.61± 0.046
and 0.65±0.027, respectively. The variations about the
mean result from residual atmospheric contamination,
cloud, and scan angle effects. Since the compositing
period used in this study is about 14 days, we chose
a value of±0.05 to represent the uncertainty around
the maximum NDVI (0.61). We set bare soil NDVI
uncertainty at±0.01 (0.04). The absolute value of the
NDVI is not of primary interest here; rather, we were
interested in the stability of the anchor points defin-
ing the FPAR–NDVI relation. Quantisation artefacts
may potentially contribute precision uncertainties of
similar magnitude (depending on target brightness and
solar zenith angle), so our uncertainty estimates rep-
resent a ‘best-case’ scenario. The primary impact of
varying the NDVI is to alter thea andb parameters
in the FPAR–NDVI relation (Eq. (2)), which is effec-
tively equal to incorrectly identifying the NDVI values
that correspond to 95 and 0% PAR absorption. We de-
termined the root mean square error for PAR directly
from Seaquist and Olsson (1999), briefly reviewed in
Appendix A. We found it impossible to quantitatively
determine a root mean square error for the water stress
term (ε) due to lack of data. We expect error contri-
butions from the simplified assumptions used for the
rainfall and hydrology as well as the inaccuracies in
maximum soil water holding capacity, SMmax, and
therefore set it to±0.2 (unitless). Finally, we assumed
error for the potential biological efficiency,εp, to be
±1.0 g MJ−1. We determined this from the literature
while keeping in mind that the vegetation consists of
a blend of C3 and C4 species in geographically vary-
ing proportions. The influence of mineral nutrition re-
mained unknown.

The results are presented inFig. 4b. As a general
rule, the higher the GPP the more robust the predic-
tion; standard deviations are less than 20% of total
GPP up to GPP values of about 1000 g m−2. Standard
deviations inflate to between 25 and 99% of GPP for
the southern and northern portions of the grassland
land cover class, respectively. We decomposed the to-

tal error variance into the proportion of error variance
contributed per model parameter (Fig. 5a–d). The PAR
term lends the least error, generally less than 15%
and decreases moving northward. The NDVI is rela-
tively unimportant for determining the GPP of savan-
nah and Cropland-vegetation Mosaic, but contributes
over 90% of the total error variance in the northern
portions of the grassland class. The potential biolog-
ical growth efficiency,εp, rarely exceeds 30% of the
total error variance, while the model is most sensitive
to the water stress scalar,ε.

8.2. The CENTURY model

The Monte Carlo simulation technique cannot
report bias. Independent estimates of primary pro-
duction may be obtained from other models, such
as CENTURY. CENTURY is a ‘lumped parameter’,
ecosystem model that can simulate biogeochemical
fluxes of carbon, nitrogen, phosphorous, and sulphur,
as well as primary production and water balance at
a monthly time step (Parton et al., 1987, 1988; Cole
et al., 1989; Metherell et al., 1993). The driving vari-
ables are monthly precipitation and monthly average
minimum and maximum temperature. Soil texture,
litter nitrogen, lignin content, and tillage disturbance
are also important soil process rate controls. The
model has been widely used and validated (Burke
et al., 1989; Parton et al., 1993, 1994, 1996; Bromberg
et al., 1996; Smith et al., 1997a,b; Mikhailova et al.,
2000). The effects of fire, fertilisation, irrigation,
grazing, various cultivation and harvest methods, etc.
are possible to incorporate in the simulations.

We prescribed land cover type fromFig. 1 which
we also used to determine land management charac-
teristics (including fire frequencies, grazing character-
istics, and fallow periods) for 16 sites across Niger
(Fig. 6a) where data were available to run the model.
Table 4shows the scenarios for the different land cover
classes. We derived soil texture from the Soil Map
of the World (FAO/UNESCO, 1995). Initial amounts
of soil carbon and nitrogen were established by run-
ning the model to equilibrium using long-term cli-
mate averages. Only 7 years of climate data were
available for each station, so 3 years were randomly
chosen and duplicated to bring the total up to 10
years, the minimum amount of time necessary to gen-
erate long-term climate estimates. No nitrogen fixation
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Fig. 5. Percent of total error variance contributed by (a) NDVI, (b) PAR, (c) soil water stress scalar (ε), (d) potential growth efficiency (εp).

for Acacia senegalwas assumed. CENTURY resolves
NPP only, and in terms of carbon content. To facil-
itate comparison with the with our LUE model, we
assumed a value of 0.45 for the carbon:dry plant mat-
ter ratio, while maintenance and growth respiration
were assumed to be 0.64 and 0.75 of GPP, respectively
(Hunt, 1994; Prince and Goward, 1995; Handcock,
2001).

Table 4
Scenarios defined for CENTURY runs

Land cover Grazing Fire frequency Agriculture Pathway Pre-1992

Sparse Low intensity (July–October) No No C4 ditto
Shrubland Low intensity (July–October) February every 9th year No C4 ditto
Grassland Intense (July–September) February every 5th year No C4 Lower grazing intensity

up to 1950
Cropland Intense after autumn harvest

(November–December)
May every year
during cropping
periods

Rotational millet/
sorghum, no
fallow, planting
in June

C4 Fire in February every
9th year up to 1891;
decreasing fallow up to
1974; no trees in fallow
after 1950

Savannah Intense (July–October) February every 5th year No C4 Low intensity grazing
up to 1970

Fig. 6b and cshow the relationship between CEN-
TURY and PAL GPP. The error bars correspond to
the uncertainties computed in PAL GPP from the
Monte Carlo simulation. CENTURY generally un-
derestimated the north-south gradient in GPP with an
r = 0.71. The relationship between equilibrium GPP
from CENTURY and PAL GPP (1992) is slightly
worse withr = 0.67.
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Fig. 6. (a) Sixteen sites across Niger used to parameterise CENTURY. (b) Relationship between 1992 LUE GPP and 1992 CENTURY
GPP. (c) Relationship between 1992 LUE GPP and 1850 CENTURY GPP.

There may be multiple reasons for the relatively
poor comparison ranging from scale mismatch (point
versus pixel) to inaccuracies in the driving variables,
to fundamental differences in model assumptions, to
the treatment of the respiration terms. CENTURY is a
prognostic model whereas the satellite-based method
is essentially diagnostic. A major uncertainty in the
CENTURY run was the land use management and
land use history parameters that, to some extent, de-
termine 1992 GPP. No detailed data were available
for these sites, so the scenarios were authorised based
on generic knowledge of these patterns in the Sahel
(e.g.Ardö and Olsson, 2002). Furthermore, the CEN-
TURY model is more detailed especially in its biogeo-
chemical treatment of primary production, and may
be partly identifying biomass reductions due to fer-

tility stress. Finally, most evaluations of CENUTRY
have been used to compare the temporal evolution of
biomass at one site (with exceptions being the steppes
of Russia) (e.g.Parton et al., 1993), whereas the spa-
tial distribution of biomass at one time from several
sites were of interest here.

8.3. Qualitative comparison with previous studies

Table 5gives a summary of the comparisons, which
we based on a literature survey. The methods used to
predict above-ground NPP in previous studies range
from simple above-ground NPP–NDVI correlations,
to complex ecophysiological simulation models, and
cover a number of scales from point to regional. Quali-
tative agreement with our LUE model is fair to good.
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Table 5
Previous estimates of primary production from the literature compared with estimates from the current LUE model

Location and land use Year (number of ground
samples, correlation coefficient)

Method Above-ground
NPP maps

Above-ground
NPPliterature
(g m−2)

Above-ground
NPPLUE
(g m−2)

Comments Source

W.A. (cropland) 1984 (n = n/a, r = n/a) AVHRR LUE No 129.5 (mean) 290.1 Crop yields converted with
grain:straw ratio of 0.43, used
national yield statistics

Bartholome (1990)
Assignedεt = 1.5 <5.8 to

>550.0
0–560.0
(mostly
Nigeria)

WCSS and ECSS HAPEX,
S.W. Niger (various)

1992 (n = n/a, r = n/a) AVHRR LUE No 128.0–144.7 130.2–201.5 Spectral decomposition of pixels,
assignedε based on species

Cherchali et al. (1995)
Assignedεt = 0.5–2.7

Maradi, Niger (cropland) 1982–1990 (n = n/a, r = 0.68) Integrated AVHRR NDVI,
empirical

No 93.6–300.0 248.9 Produced time series from ground
NPP observations from W.A.
(1984–1988)

Prince et al. (1998)

W.A. (grassland) 1984–1988 (n = 172, r = 0.89) Integrated AVHRR NDVI,
empirical

No 0.0–300.0 0.0–435.6 Used NPP ground data sets from
Senegal, Mali, Niger

Prince (1991b)

Niger (grassland) 1986–1988 (n = 21–30, r
= 0.82–0.95)

Integrated AVHRR NDVI,
empirical

No 3.0–280.0 0.0–435.6 Used detailed ground sampling
scheme

Wylie et al. (1991)

Senegal (all) 1987–1988 (n = 17–27, r
= 0.81–0.90)

Integrated AVHRR NDVI,
empirical

Yes <50.0 to
>500.0

0.0 to >600.0 Tree NPP estimates included in
regressions

Diallo et al. (1991)

Ferlo, Senegal and Gourma,
Mali (grassland)

1976–1987 (n = 127, r = 0.95) Complex model Yes <50.0 to
>120.0

0.0–435.6 Used ‘mechanistic’ ecophysiological
simulation model

Mougin et al. (1995)

WCSS HAPEX, Niger
(various)

1992 (n = 7–28, r = 0.5–0.91) LUE+ CO2 supply model No 60.0—shrubs,
300.0—herb,
120.0—millet

130.2–201.5 Used ground measurements, and
favourably compared two plot-based
models—results for LUE only given
here

Hanan et al. (1995)

Niger + Nigeria (various) 1993 (n = 78, r = 0.84) Integrated AVHRR NDVI,
empirical

Yes <50.0 to
>500.0

0.0 to >600 AVHRR data do not coincide with
ground measurements, produced
potential NPP for all of Africa

Lo Seen Chong et al.
(1993)

Maradi, Niger (cropland) 1983 (n = 6 climate stations,r
= 0.75)

Maximum NDVI combined
with simple biomass model

No 134.1 248.9 Assumed moisture access only limits
plant growth

Justice and Hiernaux
(1986)

Senegal (all) 1990–1991 (n = 52, r = 0.91) Integrated AVHRR NDVI,
empirical

Yes <50.0 to
>500.0

0.0 to >600.0 Used NDVI, surface brightness
temperature and % tree cover in a
multiple regression model with NPP

Rasmussen (1998)

B.F. (grassland) 1987 (n = n/a, r = n/a) METEOSAT Yes <25.0 to
>200.0

0.0–435.6 Used METEOSAT derived
evapotranspiration in combination
with ‘mechanistic’ formulations to
compute biomass, no ground samples
used

Rosema (1993)

Ferlo, Senegal (grassland) 1981 (n = 18, r = n/a) Integrated AVHRR NDVI,
empirical

No <50.0–250.0 0.0–435.6 One of the first studies Tucker et al. (1983)

All W.A. Sahel (all) 1981–1983 (n = 204, r = 0.83) Integrated AVHRR NDVI,
empirical

Yes <35.0 to
>175.0

0.0 to >600.0 Extrapolated NPP-NDVI model from
1980–1983 relationships developed
for Ferlo, Senegal to all of W.A.

Tucker et al. (1985)

Niger (all) 1999 (n = n/a, r = n/a) Integrated VEGETATION
NDVI, empirical

Yes <25.0 to
>250.0

0.0 to >400 Used new VEGETATION sensor Mougenot et al. (2000)
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Of particular interest are those studies that have ex-
tended their estimates into the savannah zone where
PAL GPP overestimated CENTURY GPP. For exam-
ple, Diallo et al. (1991)mapped 1987–1988 above-
ground NPP for Senegal (using an empirical model),
whose southern portion extends into the savannah
zone, and obtained values in excess of 500 g m−2,
in comparison to the current study, where values for
this class exceeded 500 g m−2, but rarely 600 g m−2.
Rasmussen’s (1998)maps quantifying 1990–1991
above-ground NPP for Senegal show a similar range,
as doLo Seen Chong et al. (1993)for the upper por-
tions of Nigeria. This boosts confidence in the values
obtained for the savannah class with our LUE model.

8.4. LUE GPP versus integrated NDVI

The only conceivable, spatially exhaustive eval-
uation of our LUE model is to compare our GPP

Fig. 7. (a) LUE-estimated GPP vs. integrated NDVI for three land cover classes based on random sampling. (b) Residuals of LUE-estimated
GPP vs. integrated NDVI based on a random sample of 1000 pixels for entire region.

estimates against growing-season integrated NDVI.
The integrated NDVI approach for estimating pri-
mary production was widely tested and applied in the
1980s and early 1990s (seeSections 3.1 and 3.2) for
mapping NPP, but for lack of other information, we
compare it with GPP. We summed NDVI values over
the course of the growing season thereafter randomly
sampling 1000 points from this image, as well as cor-
responding pixels from the GPP image (Fig. 4a). We
then regressed integrated NDVI against GPP for three
land cover classes, containing a sub-set of the sample
points (n = 283 for grassland,n = 255 for savannah,
and n = 94 for Cropland-vegetation Mosaic). Ran-
dom sampling was implemented in order to avoid spa-
tial autocorrelation effects (Burrough and McDonnell,
1998), while the purpose of the land cover strati-
fication was to minimise heteroscedasticity in our
regressions (Clark and Hosking, 1986) as well as to al-
low comparison of results between different vegetation
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units.Fig. 7ashows that while the regressions between
GPP and integrated NDVI for the three land cover
classes are similar, a moderate amount of scatter is
observed withr2 values ranging from 0.74 (grassland)
to 0.84 for the others. We then used the 1000 sampled
points to regress growing season integrated NDVI
against GPP for the entire region (r2 = 0.93), there-
after using this equation to map the residuals from this
regression in terms of GPP, shown inFig. 7b. Despite
the overall high correlation between the two images,
relatively large differences are notable, especially in
areas of greater biomass. In his 1998 paper, Rasmussen
concluded that the spatial and temporal variation of
the NPP-integrated NDVI relation stems from either
variations in the biological growth efficiency, incon-
sistent response of the NDVI to environmental and cli-
matic influences, or a combination of both. It follows
that the unexplained variance in our GPP-integrated
NDVI relation originates from the combined effects
of ε (water stress scalar) and PAR, and in particular,
the soil characteristics regulating transpiration. We do
not exploreRasmussen’s (1998)NDVI hypothesis in
this paper.

9. Discussion and conclusions

There are a number of LUE-type models of varying
complexity described in the literature, some of which
use satellite data as a driver (e.g.Goetz et al., 1999),
and others that are general enough to be applied to a
number of different biomes including grasslands (e.g.
Running and Hunt, 1993). Some of these models are
designed for simulating the primary production in of
forest stands (e.g.Landsberg and Waring, 1997) while
most that use remotely-sensed data operate in the spa-
tial domain. Yet others have been developed especially
for semi-arid grasslands (Mougin et al., 1995). We
have developed a model that yields estimates of grass-
land primary production as a map. Our model is similar
to some of the others to the extent that it is embedded
in a LUE framework. On a more detailed level, our ap-
proach is unique because it considers solely the water
used by plants (actual transpiration) to index biologi-
cal growth efficiency. This is particularly important for
applications in partially vegetated landscapes where
the fate of precipitation is highly controlled by relative
amounts of vegetation. Our parameterisation of water

stress is both pragmatic (given the data limitations)
and biophysically realistic. This has been accom-
plished by subsuming classical and highly workable
rangeland-yield formulations into our model (Eq. (3)).
The combined use of the NDVI (Eqs. (4) and (5)),
Ritchie’s (1972) model of bare soil evaporation
(Appendix D), as well as a bucket model (Eqs. (7)–(9))
facilitates this. After testing several other approaches
for deriving spatially explicit fields of actual evapo-
transpiration (e.g. conventional bucket model where
transpiration and bare soil evaporation are lumped
together), this logic yields the most realistic and con-
sistent results (seeFig. 3e). Since primary production
in semi-arid rangelands is largely controlled by mois-
ture limitations, this is an important part of our work.

Our model has merit because it has been devel-
oped for applications in data-impoverished parts of the
world. These regions are often economically disad-
vantaged and undergoing a diminution of the natural
resource base and are therefore in need of monitoring.
Furthermore, recent evidence highlights the African
Sahel as potentially important regulator of the tropi-
cal carbon budget. The sophisticated techniques that
have become routine for accurately probing ecosys-
tem processes in North America or Europe often can-
not be supported over vast regions like the African
Sahel. That we chose to develop our model for this
area is motivated by such issues. We have therefore at-
tempted to bridge gaps between data availability, rep-
resentation of process, and model reliability, and spent
some effort developing, and profiling how we actu-
ally derived the data layers in order to successfully
apply our LUE model. Our methods exemplify a cre-
ative and efficient used sparse data set. Of particular
significance is the use of the CLAVR layer from the
PAL data set in order to derive, on a cell-by-cell ba-
sis, several important parameters pertaining to energy
balance, including global and photosynthetically ac-
tive radiation, net radiation, and potential evapotran-
spiration, among others. We have circumvented the
need for using output from general circulation mod-
els, dense and extensive ground-based networks, or
other data-intensive methods that rely on expensive or
hard-to-get satellite data, and upon which other LUE
models rely. Though ground data are lacking to pro-
vide a formal validation for these variables in the West
African Sahel, indications are, based on mean monthly
relative sunshine duration computed across the region
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for available stations, little bias is incurred. However,
we stress that the model could easily be applied in any
grassland region where more conventional and accu-
rate data sources exist. Recently, our model has been
successfully applied, with slight modifications, to the
rangelands of Inner Mongolia (Runnström et al., 2001;
Brogaard et al., forthcoming). This is a testament to
the general applicability and resiliency of our LUE
model for other parts of the world.

Where possible, we have compared our derived vari-
ables with ground data, or performed sensitivity tests
on various sub-models and components to ensure that
our model performed in a robust manner. This was of
major concern because formal validation is virtually
impossible given the nature of the region for which
we developed our model. Though all our evaluation
exercises were informative, we believe that the re-
sults of the Monte Carlo simulations were particularly
novel, striking, and useful. For example, it allowed us
to identify where (geographically) our model is most
likely to be unreliable—along the fringe of the north-
ern fringe of the Sahel belt. To the best of our knowl-
edge, no research as regards the spatial modelling of
primary production has displayed results in such a
manner. Additionally, not only were we able to iden-
tify those variables that contribute most to uncertainty
in our maps, but we also showed that the contribution
of error from any one particular variable varied across
space, thus tipping the balance of error contribution
from one variable to another from one sub-region to
another.

This work is part of a larger, ongoing effort to quan-
tify and explain carbon budget dynamics in the Sahel,
a region where considerable knowledge gaps exist. Im-
minently, we are seeking to apply our LUE model to
the full extent of the NOAA AVHRR archive in order
quantify the inter-annual flow of carbon into the veg-
etation, and elucidate its uncertainties. Ultimately, we
aim to elucidate the role that the Sahel plays in the
tropical carbon budget.
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Appendix A

The algorithm necessary for obtaining solar irradi-
ance at the top of the atmosphere (So) may be obtained
from a number of different sources (e.g.Monteith and
Unsworth, 1990; Shuttleworth, 1993; Haxeltine and
Prentice, 1996). Each one varies in form depending
how the parameters are lumped.

So = 24(60)

π
Qodr(ωs sinφ sinδ+ cosφ cosδ sinωs)

(A.1)

where So is the extraterrestrial irradiance (MJ m−2

day−1), Qo is the solar constant (0.0820 MJ m−2

min−1), dr is the relative Earth–Sun distance (unitless),
ωs is the sunset hour angle,φ is the latitude—positive
in the northern hemisphere, negative in the southern
(radians), andδ is the solar declination (radians).

The relative Earth–Sun distance,dr, is:

dr = 1 + 0.033 cos

(
2π

365
J

)
(A.2)

whereJ is the Julian day number.
The sunset hour angle is given by:

ωs = arccos(−tanφ tanδ) (A.3)
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The solar declination is,δ, is:

δ = 0.4093 sin

(
2π

365
J − 1.405

)
(A.4)

Ångström’s formula for computing the amount of
broad-band (global) radiation reaching the Earth’s sur-
face is:

St = So

[
as + bs

(ni
N

)]
(A.5)

where St is the solar radiation reaching the Earth’s
surface (MJ m−2 day−1), So is the extraterrestrial ir-
radiance (MJ m−2 day−1), as is the fraction of global
radiationSo on overcast days,as + bs is the fraction
global radiation reaching the Earth’s surface on clear
days,ni is the sunshine duration (s), andN is the length
of day (s).

The as andbs terms were tailored to West African
conditions afterDavies (1966). ni/N is given a value of
0 for CLAVR cells flagged as cloudy, while clear cells
receive a value of 1. The mean value for the mixed
cloud category, a priori unknown, was determined to
be 0.4 based on calibration against ground observa-
tions of St from the HAPEX-Sahel experimental site
(13◦32′N and 2◦39′E). Normalised root mean square
errors of 15.69, 10.96, and 1.96% for 10-day, monthly,
and yearly summation periods, respectively, were ob-
tained (seeSeaquist and Olsson, 1999for details).
Data on relative sunshine duration from nine stations
scattered throughout Niger show that little spatial bias
in incurred in estimatedni/N (when compared to ob-
served values ) and henceSt and PAR throughout the
region. PAR is taken to be 48% ofSt .

Appendix B

The bracketed terms containing NDVI and raised to
the exponent 2 inEqs. (4) and (5)are fractional veg-
etation cover. NDVI is ‘re-normalised’ which offers
the following benefits: (1) numerical aesthetics; (2)
insensitivity to viewing angle, sensor drift, and atmo-
spheric contamination (Carlson et al., 1995). The term
is then squared to obtain fractional vegetation cover
(e.g. Choudhury et al., 1994; Carlson et al., 1995;
Capehart, 1996; Carlson and Ripley, 1997). Ritchie
(1972)expresses the energy available for phase 1 soil
evaporation in terms of net radiation (Rn) and leaf area
index (LAI). ReplacingRn with ETp:

Ep = ETp exp(−c × LAI ) (B.1)

whereEp is same as inEq. (8)(bare soil evaporation)
(mm), ETp is same as inEq. (6)(potential evapotran-
spiration) (mm), LAI is the Leaf Area Index, andc is
the empirical parameter (unitless).

Following Choudhury et al. (1994)andChoudhury
and DiGirolamo (1998), the fractional vegetation
cover may be expressed as:

Fr = 1 − exp(G× LAI ) (B.2)

where Fr is the fractional vegetation cover (unitless),
G is the value determined by leaf angle distribution.

Combining (D.1) and (D.2) yields:

Ep = ETp(1 − Fr)c/G (B3)

such thatc/G ≈ 1. This yieldsEq. (8), and its in-
verse,Eq. (9). The derivation followsChoudhury and
DiGirolamo (1998).

Appendix C

Net radiation is the sum net long-wave and net
short-wave radiation (Shuttleworth, 1993):

Rn = St(1 − αs)− fε′nσ(T + 273.2)4 (C.1)

whereRn is the net radiation (MJ m−2 day−1), St is
same as inAppendix A, αs is the surface albedo (unit-
less),f is the adjustment for cloud cover (unitless),ε′
is the net emissivity between the atmosphere and the
ground (unitless),σ is the Stefan-Boltzmann constant
(4.903× 10−9 MJ m−2 K−4 day−1), n is the number
of days in the month, andT is the monthly mean air
temperature (◦C).

An adjustment for cloud cover,f, was determined
as a by-product of the PAR (St) computation in
Appendix A(Shuttleworth, 1993):

f =
(
ac

bs

as + bs

)
ni

N
+

(
bc + as

as + bs
ac

)
(C.2)

where as is the constant as inEq. (A.5), bs is the
constant as inEq. (A.5), ni is the sunshine duration
as in Eq. (A.5), N is the day-length as inEq. (A.5),
ac = 1.35, andbc = −0.35.

The ac andbc coefficients are calibration parame-
ters determined from measurements of long-wave ra-
diation. For arid environments, the above values are
recommended.
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The net emissivity between the atmosphere and the
ground was computed according to the following, as
data for vapour pressure, dew point, and humidity were
unavailable (Shuttleworth, 1993):

ε′ = −0.02+ 0.261 exp(−7.77× 10−4 T−2) (C.3)

whereε′ is the net emissivity between the atmosphere
and the land surface (unitless), andT is the monthly
mean temperature in◦C.

According to Song and Gao (1999)broad-band
albedo may be recovered from the spectral-specific
albedos by a linear combination of the RED and NIR
channels of the NOAA AVHRR sensor:

αp = β1RED+ β2NIR + χ (C.4)

whereαp is the planetary albedo (unitless), RED is
the AVHRR channel 1 reflectance (unitless), NIR is
the AVHRR channel 2 reflectance (unitless),β1 is the
empirically derived coefficient,β2 is the empirically
derived coefficient, andχ = 0.

Both β1 andβ2 are affected by vegetation amount,
and are ‘calibrated’ by the NDVI:

β1 = 0.494NDVI2 − 0.329NDVI + 0.372 (C.5)

β2 = −1.439NDVI2 + 1.209NDVI + 0.587 (C.6)

Chen and Ohring (1984)empirically derived a so-
lar zenith angle-dependent relation between planetary
albedo derived from the NOAA AVHRR and surface
albedo:

αp = a+ bαs (C.7)

whereαp is the planetary broad-band albedo,a is the
constant depending on solar zenith angle,b is the con-
stant depending on solar zenith angle, andαs is the
surface broad-band albedo.

The equation was re-arranged forαs, and a look-up
table given inChen and Ohring (1984)was used to
define a and b for solar zenith angle ranges.Chen
and Ohring (1984)report root mean square errors of
between 0.017 and 0.021 for solar zenith angles of 0
and 85◦, respectively.

Appendix D

Before running the bucket model, we required an
estimate ofEa (Eq. (7)), which we derived by applying

the two-stage evaporation model ofRitchie (1972).
Ritchie’s model has been widely tested, especially at
the plot scale (e.g.Wight and Hanks, 1981; Brutsaert
and Chen, 1995; Wallace and Holwill, 1997; Wallace
et al., 1999) but its application on regional or global
scales is limited toChoudhury and DiGirolamo
(1998).

In Ritchie’s two-stage model, the first stage of bare
soil evaporation occurs in the wake of a rainfall event,
where soil evaporation is limited by the potential evap-
oration at the soil surface. This stage proceeds until
the cumulative evaporation reaches a threshold (t1) af-
ter which the de-sorption phase (stage 2) dominates.
At this stage, the rate of evaporation depends on the
square root of time and the hydraulic properties of the
soil:

∑
Es1 =

t1∑
i=0

Epr = U, t < t1 (D.1)

∑
Es2 = k × √

t − t1, t > t1 (D.2)

Ea =
∑

Es1 +
∑

Es2 (D.3)

where
∑

Es1 is stage 1 cumulative soil evaporation
(mm),

∑
Es2 is stage 2 cumulative soil evaporation

(mm),
∑

Eso is the potential evaporation for soil
(mm), U is the total amount of water evaporated set-
ting the upper limit for stage 1 evaporation (mm),k
is the desorptivity mm day−1/2, and Ea is the actual
evaporation (mm).

In plot-based studies, the constantsU andk are usu-
ally determined empirically (e.g.Ritchie, 1972) and
depend on soil properties. They have been shown to
rangek = 3.34 (U = 6) for sandy soils tok = 5.08
(U = 12) for clay loams. According toLe Houerou
(1980)the overwhelming majority of the soils in Niger
are sandy, though black clayey soils (vertisols) may
occur in local depressions. We therefore assigned val-
ues ofk = 3.5 andU = 6, keeping in mind that soils
throughout the region are composed mostly of sand
with local occurrences of black clay. Thek andU con-
stants for sandy soils and black clays are very similar,
based on the work ofRitchie (1972)andBlack et al.
(1969). Unlike Ritchie’s original model, we ignored
the impact of shading (acting to suppress vapour pres-
sure deficit and wind speed) as this had an insignifi-
cant impact on our final results.
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Appendix E

An important prerequisite for the use ofRitchie’s
(1972) model for bare soil evaporation is that daily
rainfall records are available. The statistical down-
scaling of rainfall from monthly to daily values is
not trivial, especially for spatially distributed rainfall
fields. Weather generators can achieve this (e.g.Jones
and Thornton, 1997; Friend, 1998). We adopted a
simpler approach. We inspected cumulative monthly
frequency histograms of daily rainfall data for 15 sta-
tions across Niger. For most stations during the rainy
season (defined here as May–October), over 50% of
the rainfall that fell in each month occurred in short,
intense bursts, between one and three times (rounded
off to the nearest whole number). The low magni-
tude events comprised the lower 5% of the rainfall
totals and occurred between two and five times. The
remaining 45% of the rainfall occurred between two
and six times. Accordingly, the interpolated monthly
total rainfall surfaces were divided into three cate-
gories, comprising 5, 45 and 50% of the monthly to-
tals. Rainfall events were treated as a time-dependent
random process (using a random number generator
in FORTRAN), and no restrictions were made as
regards the number of rainfall events of a given mag-
nitude occurring within a cell on a given pseudo-day.
Re-aggregation of the daily rainfall for the entire area
to monthly totals faithfully reproduced the monthly
rainfall surfaces and verified the consistency of our
method.

Appendix F

We tested the impact on computedEa aggregated
over a 37-day period by artificially partitioning daily
rainfall as inAppendix Dwith the rainfall andEa data
set provided byRitchie (1972). Use of the actual rain-
fall series produced a totalEa of 60.6 mm, whereas
the simulated rainfall series gave 57.4 mm, an under-
estimation of 5.3%.
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