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1. Introduction 

Savannas cover more than ten percent of the world’s land surface and more than fifty 
percent of Africa, providing browse to millions of mammalian herbivores (Scogings & 
Mopipi, 2008). Although herbivory is a major driver of ecosystem functioning in semi-arid 
African savannas plant-herbivore interactions are poorly understood (Skarpe, 1992; Scholes, 
1997; Scogings, 2003). African savannas and large herbivores coevolved, with woody plants 
developing defences against herbivory (Du Toit, 2003). The herbivores have in turn evolved 
counter measures against the plant defences. Large herbivores counteract the effects of plant 
defence by selective foraging, fragmentation of intact plant tissues, microbial fermentation 
and expanded guts for microbial breakdown, whereas plants protect themselves through 
morphological, structural and chemical adaptations (Borchard et al., 2011). African savanna 
ecosystems under heavy browsing have few hardy woody species that are resistant to or are 
defended against defoliation. Cornell and Hawkins (2003) suggested that plants acquire 
better defences with time which herbivores in turn learn to partly or fully overcome. Hartley 
& Jones (1997) found woody plants to be able to live in environments where herbivores were 
common because of their ability to resist or recover from intense herbivore pressure. The 
varying defences that plants exhibit is a reflection of the diversity of herbivores and abiotic 
conditions. Plant defences exert selective pressure on mammalian herbivores, with the result 
that many have developed mouthparts and digestive systems that facilitate the use of 
particular plant types. The chemical defences of terrestrial plants reflects in part the 
biochemical evolution of early land plants and the problems those plants encountered. 

A number of plant defence theories have been advanced to explain why some plants are 
better defended than others. For example, the optimal defence hypothesis focuses on how 
defensive needs of plants leads to the evolution of chemical defences, with the cost of that 
defence maximizing fitness. This chapter will discuss the effects of herbivory on woody 
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plants, show how the plants respond to herbivory and explore herbivore adaptations to 
plant defences. I will also discuss the woody plant-herbivore interactions in terms of browse 
instantaneous intake rates and explain how shoot morphology influences herbivory. 

2. Effects of herbivory on woody plants 
Herbivory can negatively through instantaneous death (Belsky, 1986) or positively through 
increased growth and competitive ability (McNaughton, 1979) influence plant fitness. The 
effect of herbivory on woody plants depend on the intensity and frequency of damage, plant 
phenological stage and resource relationships at the time of herbivory, plant tissues removed, 
competition with non-browsed species and the characteristics of the plant species (Maschinski 
& Whitham, 1989). Damage to individual woody plant branches negatively affects growth and 
reproduction of those branches but leads to compensatory growth in non damaged branches 
(Du Toit et al., 1990). Many woody species in the semi-arid savanna are able to resprout 
following herbivory. For example, Acacia karroo has the ability to coppice strongly following 
defoliation (Teague & Walker, 1988). Herbivory stimulates shoot production in mature Acacia 
trees (Dangerfield & Modukanele, 1996) and root growth in Faidherbia albida (Dube et al., 2009), 
while negatively affecting Acacia seedling growth (Walker, 1985). The resprouting of woody 
plants after damage by herbivores depends on their ability to use stored nutrient reserves and 
on the buds that escaped herbivory and can be activated for new growth. Woody plants differ 
in their ability to recover after herbivory with resprouting being influenced by the rate of 
regrowth of leaves and shoots. In a study to compare the compensatory abilities of three Acacia 
species, Acacia karroo fully compensated while Acacia nilotica overcompensated with Acacia 
rehmanniana under-compensating lost biomass (See Figure 1). 

 
Figure 1. Mean (±SE) net biomass of Acacia karoo, Acacia nilotica and Acacia rehmanniana following shoot 
clipping in a semi-arid savanna. Source: Tsumele et al., 2009 
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Under-compensation of lost biomass may prevent further browsing while full- or over-
compensation may increase forage availability and quality and thus initiate further 
browsing (Bowyer & Bowyer, 1997). Dube et al. (2009) also reported A. nilotica as more 
tolerant to herbivory than Acacia nigrescens and Faidherbia albida. Resprouting of shoots is 
intense following herbivory early in the growth season as plants have more time to recover 
before the end of the growth season. Shoot regrowth depends on the amount of 
carbohydrates that can be mobilized through photosynthesis or in carbohydrate reserves 
(Page & Whitham, 1987). Regrowth following defoliation is positively correlated with the 
carbohydrate status of the plant (Trlica & Singh, 1979) and resilience to defoliation 
depends on the rapidity with which reserves are restored (Dahl & Hyder, 1977). 
Compensatory regrowth of woody plants following herbivory occurs when nutrient and 
water resources are not limiting (Rosenthal & Kotanen, 1994). In the early growth season 
nutrient and water resources are abundant allowing plants to over-compensate lost 
biomass while late in the growth season the resources are inadequate leading to under-
compensation (See Figure 2).  

 
Figure 2. Mean (±SE) net biomass of Grewia monticola following shoot clipping during early growth 
season (NB 1) and late growth season (NB 2) in a semi-arid savanna. Source: Sebata et al., 2009 

Herbivory during the early growth season coincides with nutrient flush enabling plants to 
benefit from energy mobilized from stored reserves. Scogings (2003) found defoliation 
during the early growth season to stimulate plant growth while growth of once-defoliated 
trees was not elevated above that of undefoliated trees when defoliation took place during 
the dormant season. Teague & Walker (1988) reported Acacia karroo as very sensitive to 
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of a plant is removed resulting in more water and nutrients becoming available to the 
remaining photosynthetic components to increase their growth performance. Defoliation 
modifies the balance between growth promoting and inhibiting hormones in the plant 
resulting in various internal changes, such as increased photosynthesis, reduced rate of leaf 
senescence, changes in metabolite allocation and increased cell division and elongation 
which all contribute to increased growth (McNaughton, 1979; Teague & Walker, 1988). The 
growth following defoliation results in leaf replacement within weeks and then elevated 
levels of growth continue thereafter for more than a year, resulting in very large increases in 
leaf and shoot production compared to undefoliated plants (Teague & Walker, 1988). 
Compensatory regrowth following herbivory is considered an evolutionary response to 
herbivory (McNaughton, 1979). Crawley (1983) studied the implications of plant 
compensation at an ecosystem level and concluded that compensation following defoliation 
can improve ecosystem stability and increase the abundance of herbivores. Teague & 
Walker (1988) argued that compensation would benefit the plant only if herbivores fed on 
the plant intermittently or for a limited time each year, with the plants able to compensate 
once feeding has stopped. Strong plant compensatory growth cannot occur under 
continuous herbivore foraging. 

Removal of the main shoots during browsing reduces apical dominance leading to the 
development of lateral shoots from activated dormant buds. Twig browsing in woody 
species can remove significant proportions of meristems resulting in fewer shoots in the 
following growth season (Bergstrom et al., 2000). The remaining shoots will experience less 
competition and thus grow larger and have higher nutrient concentrations than those on 
undamaged trees (Bergstrom et al., 2000; Rooke et al., 2004). Teague & Walker (1988) 
reported the increases in leaf and shoot of A. karroo plants following defoliation as due to the 
large increases of relatively few dominant shoots in the upper canopy. Danell et al. (1994) 
found leaf stripping of trees during the growth season to result in an increase in the number of 
shoots and a decrease in shoot size the following season. Some woody plants respond to 
severe defoliation from intensive browsing by producing many sprouts from basal shoots 
from the lower part of the stem enhancing the persistence of the plant (Bond & Midgley, 2001). 
This increases the plant’s photosynthetic capability and creates the potential for increased 
juvenile recruitment. Resprouting shoots have been reported to have reduced defence 
compounds as a result of resources being allocated for fast growth at the expense of defence or 
the breakdown of existing defence compounds for use in growth (Coley et al., 1985). 

Browsing reduces tree density, canopy cover and canopy diameter (Noumi et al., 2010) and 
affects tree regeneration (Mekuria et al., 1999). Fornara & du Toit (2008) reported Acacia 
trees at lightly browsed sites as having wider canopies and branches with longer internodes 
than trees at heavily browsed sites. The short internodes in the heavily browsed Acacia trees 
resulted in reduced canopy volume and increased side-branching on browsed shoots due to 
suppression of apical dominance (Du Toit et al., 1990). Browsing by megaherbivores e.g. 
African elephants (Loxodonta africana) reduces tree height resulting in a larger proportion of 
shoots and leaves becoming available within the browsing height of most terrestrial 
herbivores (Makhabu et al., 2006). Makhabu et al. (2006) reported impala (Aepyceros 
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melampus) and greater kudu (Tragelaphus strepsiceros) as benefiting from the impacts of 
elephants in converting tall trees to short trees. More shoots were produced in heights 
reachable by both impala and kudu. Other studies have reported browsed trees as 
producing shoots with increased biomass per shoot (Bergström & Danell, 1987), increased 
nitrogen concentration and decreased concentration of secondary compounds like 
condensed tannins (Du Toit et al., 1990) compared with unbrowsed individuals. Eland at 
high densities prevent the recruitment of Combretum apiculatum from the 2.6 – 5.5 m height 
class to the >5.6 m height class (see Figure 3).  

 
Figure 3. Mean (±SE) per cent of Combretum apiculatum trees in three height classes in relation to eland 
density. Source: Nyengera & Sebata 2009. 

Shoot regrowths after defoliation have higher crude protein, phosphorus and biomass 
leading to repeated herbivory (Makhabu & Skarpe, 2006). Repeated browsing by 
megaherbivores such as the African elephant (Loxodonta africana) leads to the formation of 
low, intensely coppiced trees or stands of trees with high production of preferred browse 
(Makhabu et al., 2006). Rebrowsing means that the targeted trees suffer repeated damage 
and may eventually die or suffer reduced competitive ability relative to other woody plants 
(Skarpe & Hester, 2008). Heavy browsing by giraffe reduces tree growth rates increasing 
their susceptibility to drought (Birkett & Stevens-Wood, 2005). Fornara & du Toit (2008) 
reported high plant compensatory growth abilities of Acacia nigrescens as important for its 
persistence under heavy browsing in the Kruger National Park, South Africa. Herbivores 
also restrict the growth and the survival of young trees (Mwalyosi, 1990). Noumi et al. 
(2010) reported browsing as improving the regeneration of Acacia tortilis trees through the 
recruitment of new individuals. Skarpe (1990) argued that browsing accelerates tree growth 
in semi-arid savanna through reducing competition for moisture from herbaceous plants. 
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Herbivory may interfere with sexual reproduction in plants, either indirectly by changing 
physiology and allocation of resources, or directly by consumption of flower buds during 
the dormant season and flowers and fruits during the growth season (Skarpe & Hester, 
2008; Fornara & du Toit, 2008). Herbivory results in plants allocating more resources to 
vegetative growth at the expense of sexual reproduction favouring species that reproduce 
vegetatively (Crawley, 1997). Goheen et al. (2007) reported herbivory as negatively affecting 
Acacia drepanolobium reproduction in an eastern African savanna.  

3. Woody plant response to herbivory 

Woody plants have evolved different strategies to reduce the negative effects of herbivory 
on their fitness (Rosenthal & Kotanen, 1994; Strauss & Agrawal, 1999). The strategies 
employed by plants to cope with herbivory can be classed into tolerance and avoidance 
mechanisms.  

Tolerance strategies minimise the impacts of the damage (Hanley et al., 2007), with tolerant 
plants being generally palatable to the herbivores (Skarpe & Hester, 2008). Woody plants 
show tolerance to herbivory through morphological means such as quick replacement of lost 
leaves and shoots from protected meristems or through physiological processes such as 
compensatory photosynthesis and high and flexible rates of nutrient absorption (Hester et 
al., 2006). Re-sprouts have higher photosynthetic rates than older leaves. Teague (1989) 
reported Acacia karroo as relying on deep rooting, strong reserves and rapid growth to 
counter herbivory. Tolerance in plants is assumed to have little direct effect on herbivore 
fitness and is thus considered unlikely to trigger counter-adaptations in herbivores 
(Rosenthal & Kotanen, 1994). 

Plants avoid being consumed by employing structural deterrents such as spines and thorns, 
biochemical compounds such as proanthocyanidins (condensed tannins) and internal 
constitutive defences such as lignin and cellulose, which also act as structural support. 
Lignin influences the physical toughness and digestibility of plants reducing intake rates 
(Jung & Allen, 1995; Scogings et al., 2004; Shipley & Spalinger, 1992). The structural 
deterrents are defined as spines when they are made of leaves and thorns when they are 
made of branches (Raven et al., 1999). Spines and thorns are the first line of defence against 
herbivores foraging on most woody plants in semi-arid savanna. They provide mechanical 
protection through injuring herbivores’ mouths, digestive systems and other body parts. 
The presence of spines and thorns reduces the rate of herbivory by impeding stripping 
motions and forcing the herbivore to eat around the defence (Myers & Bazely, 1991; Wilson 
& Kerley, 2003a). Spinescent woody plants also have small leaves further reducing 
herbivore foraging efficiency since the reward received is seldom worth the time or energy 
needed to exploit it (Belovsky et al., 1991; Gowda, 1996). Plant spinescence increases with 
exposure to herbivory by large browsers as an induced defence (Milewski et al., 1991). 
Spines and thorns protect both leaves and axillary meristems (Gowda, 1996). Spine and 
thorn removal experiments have been carried out to demonstrate the protective value of 
these structures (Wilson & Kerley, 2003b; Hanley et al., 2007). Milewski et al. (1991) reported 
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the removal of Acacia drepanolobium thorns as causing a threefold increase in mammalian 
browsing of new foliage. Increased rates of herbivory by bushbucks (Tragelaphus scriptus) 
and boergoats (Capra hircus) was also reported following the removal of thorns from 
spinescent shrub species in the Eastern Cape region of South Africa (Wilson & Kerley, 
2003b).  

Avoidance strategies also involve keeping most edible biomass beyond the reach of 
terrestrial herbivores. This means that the plant will have to survive herbivory before 
growing beyond the reach of the browsers. Woody plants growing in nutrient–rich 
environments are likely to grow above browsing height for most herbivores faster than trees 
in nutrient-poor environments, which will suffer browsing for a longer period (Danell et al., 
1997). Woody plants growing in nutrient-poor environments have slow growth rates that 
limit their capacity to grow rapidly beyond the reach of most browsing mammals. They 
have developed strong defences for protection against herbivory (Coley et al., 1985; Teague, 
1989; Borchard et al., 2011). Woody plants that grow in resource-rich environments often do 
not avoid herbivory, but develop tolerance traits to minimize the harmful effects of 
herbivory (Skarpe & Hester, 2008).  

Storage of carbohydrates reserves in woody stems or underground is also a kind of escape 
strategy. Plants may also escape herbivory by association with either less palatable or more 
palatable species, depending on the foraging pattern of the herbivore (Hjalten et al., 1993; 
Hester et al., 2006). When palatable plants gain protection from their unpalatable 
neighbours the phenomenon is referred to as associational defence (McNaughton, 1978; 
Hjalten et al., 1993). However, palatable plants are usually susceptible to attack when they 
occur in a patch with unpalatable neighbours, a situation referred to as neighbour contrast 
susceptibility (Bergvall et al., 2006).  

Plants do not respond passively to damage by herbivory. The optimal defence hypothesis 
predicts increases in defences in direct response to herbivory (Rhoades, 1979). Herbivore 
attack leads to decreased acceptability and plant nutritional quality (Malecheck & Provenza, 
1983; Rhoades, 1985; Lundberg & Astrom, 1990). Plant defences will either reduce 
consumption rates or reduce the ability of herbivores to digest material once consumed 
(Belovsky et al., 1991; Robbins, 1993). Plants damaged by herbivores prevent further damage 
through an increase in digestion inhibiting compounds such condensed tannins (Cooper & 
Owen-Smith, 1985) and an increase in structural deterrents such as spines and thorns 
(Milewski et al., 1991). Some African woody species such as A. karroo have been shown to 
increase chemical defences following physical damage (Teague, 1989). Condensed tannins 
deter herbivory by giving plants an undesirable, astringent taste (Harborne, 1991; Bryant et 
al., 1992) or by reducing availability of protein and other nutrients (Robbins et al., 1987) 
through protecting plant cell walls from being degraded in the rumen of herbivores and 
inactivating digestive enzymes (Cooper & Owen-Smith, 1985). Milewski et al. (1991) 
reported branches of African Acacia trees that had been browsed by large herbivores as 
producing longer thorns and a greater density of thorns than inaccessible branches on the 
same trees. Rohner & Ward (1997) also reported intense herbivory of Acacia tortilis as 
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increasing thorn length and density. Long thorns deter large herbivores by decreasing bite 
sizes and biting rates (Cooper & Owen-Smith, 1986; Belovsky et al., 1991; Gowda, 1996). 
Teague (1989) suggested that young shoots of A. karroo relied on chemical defences because 
their thorns were soft and offered little structural deterrence to the herbivores.  

Both avoidance and tolerance involves costs for the plant such as in the building and 
maintenance of stores of energy and nutrients as well as of dormant buds that can be activated 
following herbivory (Bilbrough & Richards, 1993). Plant defences compete with growth and 
reproductive requirements for nitrogen and carbohydrate resources (Hanley et al., 2007). 
Owen-Smith & Cooper (1987) reported fewer plants as investing in both chemical and 
structural anti-herbivore defences to reduce costs to growth and reproduction. Acacia tortilis is 
heavily defended by both chemical and structural defences (Rohner & Ward, 1997; Sebata et 
al., 2011). Most Acacia species occur in areas of low fertility (Rohner & Ward, 1997) and adapt 
to these conditions by slow growth rates and efficient use of available nutrients (Coley et al., 
1985), which may explain the ability of A. tortilis to invest in both types of defence.  

4. Herbivore adaptations to plant defences 

Herbivores need to develop ways of counteracting plant defences in order to utilise woody 
plants as browse (Hanley et al., 2007). Herbivores that forage on spinescent plants have 
smaller mouthparts to deal with the intricate task of removing small leaves from between 
dense assemblages of spines and thorns (Belovsky et al., 1991). Most browsing animals have 
agile lips and tongues that allow them to select leaves and avoid thorns (Gordon and Illius, 
1988). For example goats with their mobile and narrow muzzle, can manoeuvre their 
mouths more easily among thorns to pluck small leaves, making thorns less effective in 
reducing cropping rates (Shipley et al., 1999; Cooper & Owen-Smith, 1986). Giraffe (Giraffa 
camelopardalis) foraging on spinescent Acacia trees is facilitated by the possession of a long 
flexible tongue (Hanley et al., 2007). Most ungulate herbivores in the semi-arid savanna 
where spinescence is most prevalent also have tough, leathery mouthparts, and nicitating 
eye membranes, both thought to be adaptations for coping with foraging on spinescent 
plants (Brown, 1960). Browsers foraging on spinescent plants may compensate for the 
reduced foraging efficiency by spending more time at plants of that species. Foraging on 
twig tips where growth is occurring and thorns are soft may also be adopted as a strategy to 
increase intake rates (Singer et al., 1994). 

The evolution of a ruminant stomach can also be considered as an adaptation to plant 
defences since this allows the ungulates to digest fibrous plant material (Perez-Barberia et 
al., 2004). The ungulate stomach has symbiotic microorganisms and also releases cellulase 
enzymes which break down cellulose-rich cell wall fractions of plant material releasing 
volatile fatty acids that are immediately absorbed by the stomach (Hanley et al., 2007).  

Some herbivores are able to develop behavioural and physiological counter adaptations 
against chemical plant defences (Iason & Villalba, 2006). For example, browsers such as 
goats secrete tannin-binding salivary proteins which counter the digestibility-reducing effect 
of ingested condensed tannins (Robbins et al., 1987). Tannin-binding salivary proteins 
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contain a high proportion of proline, and proline-rich salivary proteins have a greater 
binding affinity for tannins than other proteins, and thus act to prevent tannins from 
interacting with other proteins in mammalian digestive systems (Shimada, 2006). The 
production of proline-rich proteins enhances cell wall (fiber) digestion of high-tannin 
forages by ungulates (Robbins et al., 1987).  

5. Browse instantaneous intake rates 

The foraging efficiency of browsers on different woody species can be defined in terms of 
the instantaneous intake rate (Wilson & Kerley, 2003b). Browse instantaneous intake rate is a 
product of bite size and bite rate and is influenced by plant characteristics. Different browse 
species will allow browsers to crop varying number and size of bites leading to highly 
variable instantaneous intake rates. Illius & Gordon (1990) estimated that browsers crop 
between 10 000 and 40 000 bites per day from different individual plants. Decisions made by 
the browser when selecting a bite have important consequences for its nutritional intake and 
hence fitness (Shipley et al., 1999). Most woody plants with nutritious forage have thorns or 
spines (Wilson & Kerley, 2003b). In semi-arid and arid African savannas thorny plants occur 
in areas with many large browsers (Grubb, 1992). Plant characteristics such as leaf size, 
thorn density and inter-thorn spacing (leaf accessibility) affect instantaneous intake rates 
through their effects on bite size and bite rate (See Table 1).  
 

           r         r2 Regression equation  
a) Intake rate vs 
    Bite size 
    Bite rate 
b) LAIN vs 
    Bite rate 
    Bite size 
    Intake rate 
 
c) Thorn density vs 
    Bite size 
    Bite rate 
    Intake rate 
 
d) Leaf size vs 
    Intake rate 
    Bite size 
    Bite rate 

 
    0.89 
    0.76 
 
    0.70 
    0.45 
    0.62 
 
 
    - 0.57 
    - 0.66 
    - 0.69 
 
 
     0.73 
     0.60 
     0.51 

 
    0.79 
    0.58 
 
    0.49 
    0.20 
    0.38 
 
 
   0.33 
   0.43 
   0.48 
 
 
   0.53 
   0.36 
   0.26 

 
 y = 0.04 +0.02x 
y = 20.87 + 3.02x 
 
y = 36.09 + 7.35x 
y = 0.14 + 0.03x 
y = 4.97 + 1.63x 
 
 
y = 0.12 – 0.03x 
y = 31.79 – 6.42x 
y = 3.86 – 1.70x 
 
 
y = 0.87 + 0.20x 
y = 0.05 + 0.05x 
y = 22.2 + 7.13x 

 
** 
** 
 
** 
** 
** 
 
 
  * 
  * 
  ** 
 
 
 ** 
   * 
 ns 

ns - not significant, * < 0.05, ** < 0.01. Source: Sebata & Ndlovu, 2010. 

Table 1. Relationships (y = a + bx) of intake rates, leaf accessibility indices (LAIN), thorndensity and 
leaf size (y) of five woody species in a semi-arid southern African savanna and various browse intake 
rate parameters (x) achieved by goats when browsing on these plants (n = 14) 
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To achieve higher instantaneous intake rates browsers have to select browse species that 
allow large bite sizes and higher bite rates. Thus factors that constrain both bite size and bite 
rate will reduce instantaneous intake rates. Leaf accessibility and leaf size positively 
influenced bite size while thorn density had a negative effect (Table 1). Species with higher 
leaf accessibility allowed higher bite rates as the goats could easily maneuver their mouths 
between thorns when plucking the leaves. Thorns restricted goat muzzle movement slowing 
down the rate of browse harvesting (Belovsky et al., 1991). Thorns also force browsers to 
change foraging strategy from twig biting and leaf stripping to the less detrimental picking 
of leaves from between the thorns (Cooper & Owen-Smith, 1986; Gowda, 1996), reducing the 
loss of foliage to mammalian browsers. Browsers will achieve higher instantaneous intake 
rates through selecting species with higher leaf accessibility and larger leaves. However, 
handling time increases with increasing leaf size, suggesting that there is an optimum leaf 
size (Wilson & Kerley, 2003a).  

6. Relationship between shoot morphology and herbivory 

Shoot morphology has an influence on how plants protect themselves against loss of 
valuable nutrients and photosynthetic tissue to herbivores (Sebata & Ndlovu, 2012). 
Scogings et al. (2004) reported defences as being distributed among woody plants in semi-
arid savannas according to shoot morphology because it affects the vulnerability of plant 
parts to browsers. Woody plants can be divided into two groups viz. those that produce all 
their new leaves on new long shoots (shoot-dominated species) and those that produce most 
of their new leaves in clusters on short shoots at the nodes of old unbrowsable branches 
(shoot-limited species) (Scogings et al., 2004). Shoot-dominated species depend on active 
apical buds to extend internodes and add new leaf area and should thus have higher 
concentrations of nutrients than shoot-limited species which simply add new leaf area without 
shoot elongation (Ganqa & Scogings, 2007; Scogings et al., 2004). Shoot-dominated species 
have more browseable shoots than shoot-limited species. Shoot-limited species tend to result 
in high bite rates and reduced instantaneous intake rates, while shoot-dominated species allow 
bigger bite sizes and relatively high instantaneous intake rates (Dziba et al., 2003). The apical 
meristems of shoot-dominated species are more vulnerable to herbivores than those of shoot-
limited species (Dziba et al., 2003) and thus require better anti-herbivory defences (Rhoades, 
1979). Plants and plant parts exposed to herbivores are expected to be better chemically 
defended than those protected by structural deterrents (Cooper & Owen-Smith, 1985). Goats 
have been shown to prefer shoot-limited over shoot-dominated species (See Figure 4).  

The shoot-limited species are poorly defended chemically and depend on structural 
defences (thorns) which the goats are able to avoid using their mobile upper lips. Shoot-
limited species have lower contents of plant secondary compounds (condensed tannins and 
fibre) and higher digestibility and rumen fermentation than shoot-limited species (Sebata & 
Ndlovu, 2012). Fibre enhances leaf toughness and reduces browsing (Jung & Allen, 1995; 
Shipley & Spalinger, 1992). Shoot-limited species also rapidly replace lost tissues through 
regrowth (Scogings et al., 2004). Shoot-limited and shoot-dominated species are able to 
adapt different anti-herbivory defences. 
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Figure 4. Browse selection indices of shoot-dominated and shoot-limited species in a semi-arid savanna 
ecosystem. Source: Sebata & Ndlovu 2012  

7. Conclusion 

Woody plants, at light stocking rates, are able to compensate biomass lost to herbivory. 
However, at high animal densities they may not be able to replace lost foliage, which could 
eventually lead to their mortality. Thus to maintain a positive herbivore-plant relationship 
ungulate populations in savanna ecosystems need to be regulated. Although herbivory 
stimulates woody plant resprouting, there is still need for defences against excessive 
defoliation. However, plant defences compete with growth needs requiring a balance in 
resource allocation. The allocation of nutrients and water resources to defence and growth is 
poorly understood necessitating further studies. The most effective herbivore adaptation to 
plant defences is selection of browse with low physical and chemical defences e.g. selecting 
shoot-limited over shoot-dominated woody species. The extent to which herbivore 
adaptations to plant defences allow ungulates to exploit the diverse woody plant resources 
needs to be studied. Woody plants in semi-arid savanna ecosystems are able to persist 
under intense herbivory due to key adaptations that include structural defences, chemical 
defences and compensatory growth abilities of the plants. The relationship between plant 
defences and high compensatory growth abilities of the plants are poorly understood. 
Structural defences are effective in limiting foliage loss to browsers and represent a cheap 
form of defence in semi-arid savannas. 
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