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Abstract

Background
Forest �re is the primary disturbance affecting the structure and composition of many forest ecosystems
worldwide. Forest �res caused severe destruction to forest ecosystems in Namibia (South West Africa)
during the period of 2011–2021. The aim of this paper is to assess the impacts of climate variability on
forest �re occurrence in Namibia.

Results
A total of 38.184 Mha of forests was burned during the study period. Forest �re occurrence �uctuated in
response to changes in climate variability (temperature, precipitation, and wind speed). Using linear
regression models, ranked according to the Akaike information criterion (AIC), we found a combination of
average wind speed in the 3-month period of July, August, September, and average monthly wind speed in
January, May July, and August, to be the most important drivers of forest �res.

Conclusions
Forest �re occurrences are highly concentrated in the north-eastern and north-central regions. Forest �re
occurrence is not limited to climate variability. There is little scienti�c evidence about other factors
in�uencing forest �re occurrence in Namibia, in addition to climate variability.

1. Introduction
Forest �re is the primary disturbance affecting the structure and composition of many forest ecosystems
worldwide (Liu et al., 2010). The frequent forest �res in recent years are believed to be attributed to the
changing climate conditions. In other words, climate determines the spatiotemporal distribution, intensity,
and patterns of forest �res by affecting vegetation and the extent of drought (Zeng et al., 2022).

Studies have established that climate change is increasing forest �re occurrence due to extreme
temperatures, projected impacts on plant biomass accumulation, and socioeconomic factors (Camia et
al., 2017; Gebeyehu, 2019; Girardin et al., 2013). Predictive studies indicate that if climate change
continues, it will likely increase the �re season environments, that are more likely to incur large forest �res
(Anoszko et al., 2022; Davis et al., 2017). Future projections based on historical records, current trends,
and simulation modelling indicate that prolonged warmer and drier conditions will lead to lower fuel
moisture and longer �re seasons, thus likely increasing the frequency and intensity of future �re,
compared to that of the twentieth century (Halofsky et al., 2020).

In forest ecosystems, climate conditions are one of the central drivers of forest �res worldwide (Angra
and Sapountzaki, 2022; Aponte et al., 2016). Changing climate makes forest ecosystems vulnerable to
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wild�res (Heidari et al., 2021) and leads to adverse forest ecosystem destruction (Holden et al., 2018;
Juárez-Orozco et al., 2017). The effects include disturbance of wildlife habitat, acceleration of nutrient
cycling, and mortality of individual trees (Dale et al., 2001; Hutchinson et al., 2019; Jhariya and Raj,
2014). Additionally, forest �res can reduce precipitation by releasing substantial amounts of smoke into
the atmosphere, thus promoting more drought and �res (Kirsanov et al., 2020). Consequently, the
precipitation regime signi�cantly impacts the number of �res and areas burned (Chen et al., 2014). These
events can thus affect forest ecosystem services and biodiversity.

Despite the impacts of �re on the ecological aspect of forest ecosystems (Chuvieco et al., 2014; Pereira et
al., 2021), it also affects the socio-economic sphere (Chinamatira et al., 2016; Román et al., 2013)].
Wild�res also have direct economic costs, such as property losses and �re�ghting costs (Lang and
Moeini-Meybodi, 2021). Fire�ghting costs can potentially affect the economic performance of the forestry
sector. Fire costs are measured through prevention and suppression measures, and direct and indirect
costs (Stougiannidou et al., 2020).

On the regional level, in Europe, for example, the frequency of heat-induced �re is predicted to increase
signi�cantly, especially in the southern part of Eastern Europe (Carnicer et al., 2022). Representing the
Mediterranean region, another climate change-prone country, Greece, experienced increased temperature,
decreased precipitation, and a high frequency of forest �res (Angra and Sapountzaki, 2022). Similarly,
increased temperatures in Canada are associated with extended burned areas (Mukhopadhyay, 2009).

In Southern Africa, forest �res are predominantly evident during the dry season, typically from May to
October, while few �res occur during the wet season, mainly from November to April (De Sales et al.,
2019). In the same view, in South Africa, where a total of 15 Kha of forest was burned in 2017, it has been
highlighted that wild�re was preceded by a prolonged drought, which is also associated with temperature
rise (Kraaij et al., 2018).

Regarded as the driest country in sub-Saharan Africa (Mupambwa et al., 2019), Namibia is characterised
by high temperatures, with mean annual temperatures ranging from 14.3 to 24. 2°C (Lisao et al., 2017;
World Bank Group, 2021). Changing climatic conditions have resulted in prolonged dry summer seasons
in Namibia (Keja-Kaereho et al., 2019; Liu and Zhou, 2021), where summer months are generally warmer
and persistently dry. Warmer and dry conditions also create favourable �re environments (Seidl et al.,
2017); hence, the trends in �re occurrence are primarily a response to changes in vegetation biomass
during dry seasons (Lenihan et al., 2003).

Studies have predicted that climate change will continue to signi�cantly in�uence �re behaviour and
cause destruction to forest ecosystem services in Namibia (Kapuka et al., 2022; Keja-Kaereho et al., 2019;
Nikodemus et al., 2022; Reid et al., 2007). This phenomenon has already started to manifest in most
parts of the country (Kapuka and Hlásny, 2020), which is prone to forest �res due to the dry conditions
(Mwansa, 2018). Hence, forest ecosystems are vulnerable to forest �res in the increasingly changing
climate (Kazapua et al., 2009; Mayr et al., 2018).
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Forest �res play an essential role in the Namibian ecosystems and economies, and provide vital
ecological functions (Sheuyange et al., 2005). More than one million hectares of forest and grasslands
are burned every year in Namibia. In 2022 alone, burned areas accounted for 920,944 ha in various
regions between April and September (Ministry of Environment and Tourism, 2022). Most of the �res in
Namibia occur in the northern regions of the country (van Wilgen, 2009), where most of these �res are
human-induced; for example, as a result of some agriculture practices such as slash-and-burn, that often
leads to the uncontrollable spread of �re (Ministry of Environment and Tourism, 2016; Verlinden and
Laamanen, 2006), or it is started unintentionally (Sheuyange et al., 2005). In Namibia, most �res occur
during the periods of May-July, the dry and windy seasons (early dry season: low-intensity �res), and
August-September (late dry season: high-intensity �res) (Kazapua et al., 2009; Siljander, 2009). The most
�re-prone areas are the communal lands in the north-central and northeastern parts of the country
(Verlinden and Laamanen, 2006). Depending on the intensity and timing, Forest �res may cause
environmental damage and loss of biodiversity, which impact the livelihood of local people, and regional
economies (Pricope et al., 2015).

A better understanding of forest �re trends can increase predictive capacity regarding the long-term
consequences of global change on forest ecosystems in dry and highly climate change-vulnerable
developing countries like Namibia. However, assessments of forest �re occurrence trends and intensity in
correlation with climate variables, such as precipitation, temperatures, and wind speed are not su�ciently
addressed on the national level in Namibia. Therefore, this paper aims to assess the impacts of climate
variability on forest �re occurrences in that country.

2. Materials And Methods

2.1 Study area
Namibia is located in the southwestern part of the African continent, between the Namib Desert and the
Kalahari Desert (Liu and Zhou, 2021). It is bordered by Angola and Zambia to the north, Botswana to the
east, and South Africa to the south (Fig. 1). Covering a total surface area of 825,615 km2, Namibia has a
population of 2.5 million (Kapuka and Hlásny, 2020).

The vegetation types of Namibia are characterised by its geographical location, situated between the
Namib Desert stretching along the coast on the west, and the Kalahari Desert which borders its eastern
and southern neighbours, Botswana and South Africa, respectively (Bliss, 2018; Nikodemus et al., 2022;
Radatz, 2003). The dry climatic conditions have a signi�cant in�uence on its vegetation types. Hence, the
three main vegetation types in Namibia can be classi�ed as woodlands, savannas (grass cover, trees, and
shrubs), and deserts (Namib grassland) [(Bhardwaj, 2019; Giess, 1986)].

2.2. Meteorological data
Our climate variables include wind speed, temperature, and precipitation. Future �re regimes were
estimated using climate conditions to calculate future �re weather (de Groot et al., 2013). We used the
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average monthly and annual (Figs. 2, 3) temperature (°C) and precipitation (mm), as well as average
monthly and clustered (in three-month periods) (Fig. 4) wind speed (m/s) per region for 12-year time
series (2010–2021). The Namibia Meteorological Service Head O�ce in Windhoek (capital of Namibia)
provided meteorological data, which were available for 269 weather stations in different regions across
the country with varying climatic conditions.

In addition to temperature and precipitation, wind is another atmospheric factor that plays a huge role in
the spread of �re (Puri�cação et al., 2022). In other words, the wind’s intensity determines the �re’s
intensity and spread (Evers et al., 2022). Wind also determines �re direction (Sanjuan et al., 2014).
However, it is noteworthy that other factors, such as tree density, determine the wind’s in�uence on �re.
For example, low tree densities need extreme wind to transfer �re between widely-spaced trees, whereas,
at high tree densities, �re spreads quickly regardless of the strength of the wind (Song and Lee, 2017). As
a result, we focused mostly on seasonal wind speed as a focal variable to test our model (Fig. 4).

2.3. Forest �re data
We obtained the forest �re area data from the Remote Sensing and Mapping Section of the Directorate of
Forestry (DoF) of the Ministry of Environment, Forestry, and Tourism (MEFT) Head O�ce in Windhoek. We
used �re (burned areas) data per region for 12-year time series (2010–2021).

We further mapped the distribution of forest �re across the country. The maps were produced with ArcGIS
Desktop version 10.8. The shape�les of Namibia - Subnational Administrative Boundaries - were
downloaded from the freely-available database at the Humanitarian Data Exchange of the United Nations
O�ce for the Coordination of Humanitarian Affairs (UNOCHA) (https://data.humdata.org/).

2.4. Statistical analyses and model selection
Before the analysis, data were checked for outliers and collinearity. We plotted the response variable with
each covariate during data exploration to check their relationship. Based on the data exploration, the
relationship between tree loss and the explanatory variables was analysed using linear regression (Zuur
et al., 2010). A set of a priori [1] models (Dochtermann and Jenkins, 2011; Rosen, 2016) was selected
prior to analysis (Table 2) in order to test which model would best explain the loss of forested areas.
These models were constructed using previously known variables that were identi�ed as important for
forest �re development dynamics, mainly climatic variables. The information-theoretic analysis approach
(Burnham et al., 2011) was used to assess competing models. Models were ranked according to the
Akaike information criterion (AIC); and the most parsimonious model was selected based on the lowest
AIC value. We also calculated Akaike weights to arrange candidate models in order of parsimony, where
Akaike weight is a number from 0 to 1, providing a measure of the relative likelihood of each model, given
the data and candidate model set (Burnham et al., 2011).

We tested the correlation between changes in annual area affected by forest �re in a particular year, and
changes in annual area affected by forest �re in previous years, by calculating the autocorrelation



Page 6/22

function (ACF). Because we used previous year forest �re area as an explanatory variable in our analysis,
the sample size changed from 12 (2010–2021) to 11 years (2011–2021). All data cleaning, plotting,
calculations, and statistical analysis were conducted in VSCode 1.73.1 using Python programming
language (Rossum and Drake, 2010) version 3.8.5, and using statsmodels 0.13.5, scikit-learn 1.1.2
(Pedregosa et al., 2011), pandas 1.5.0 and Matplotlib 3.6.0 (Trubin et al., 2022).

3. Results

3.1. Burned areas
Total area affected by forest �re, considering all 12 years from 2010 to 2021, amounted to 38.184 Mha
(Fig. 5). Forest �re area was above zero for all years, with the lowest damage of 0.179 Mha in 2019.

Forest �re occurrences have been �uctuating since 2010. However, the highest forest �re occurrence was
in 2011 (6.6 Mha) and 2012 (7.1 Mha), respectively. The lowest forest �re occurence was recorded in
2018 (0.2 Mha) and 2019 (1 Mha), respectively. There was an increase in forest �re occurrences in 2020
(3.5 Mha), and a slight decline was recorded in 2021 (3 Mha).

3.2. Forest �re distribution
Forest �re is predominantly concentrated in the north-eastern regions throughout the period of 2011–
2021 (Fig. 6).

Our results show that forest �re occurs mainly in the forested areas according to the vegetation
distribution of Namibia (Fig. 1). The most affected regions were the Zambezi, Kavango East and West,
and some parts of the Oshikoto, Oshana, and Omusati regions. Relatively smaller patches of forest �re
occurrence were also recorded in the central regions, the Khomas and Otjozondjupa regions, as well as
some parts of the Erongo, Omaheke, and Hardap regions.

3.3. Annual burned area
We tested the data on damage by forest �re throughout our study period for autocorrelation; the ACF
function did not reveal trends between damage caused by forest �re in a given year and the previous year.
Linear regression was used further to investigate the relationships between burned area and
meteorological variables. The a priori set of competing models that differ by a combination of predictor
variables is given in Table 1.
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Table 1
Proposed models to study annual changes of forest �re areas for a 12-year period.

Model Variables

1 Annual burned area = AugW + JAS_W + 

2 Annual burned area = JulW + AugW + 

3 Annual burned area = JanW + MayW + 

4 Annual burned area = MayW + JulW + 

5 Annual burned area = FebP + JulP + 

6 Annual burned area = JanW + AugW + 

7 Annual burned area = JulW + AMJ_W + 

8 Annual burned area = AprT + DecW + 

9 Annual burned area = MarP + JFM_P + 

10 Annual burned area = FebP + MarP + 

11 Annual burned area = MayW + AMJ_W + 

12 Annual burned area = MayW + JFM_W + 

13 Annual burned area = AugW + JFM_W + 

14 Annual burned area = FebW + AMJ_T + 

15 Annual burned area = SepW + AMJ_T + 

16 Annual burned area = Y_P(t-1) + JulT + 

17 Annual burned area = JunP + JulP + 

18 Annual burned area = AprT + SepW + 

19 Annual burned area = JunT + SepW + 

20 Annual burned area = MayW + JAS_W + 

Notes: Annual burned area is the yearly change according to Eq. 1 ( is random error).
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Table 2
Akaike’s information criterion (AICc) values

for a small sample dataset (ΔAIC values
and Akaike weights (AIC weight) for the
competing models are listed in Table 1).

The model with the lowest ΔAIC is the most
parsimonious, given the data. Models with
ΔAIC < 2 may be considered as good as the
best, while models in the ΔAIC range of 2–

7 are also plausible. The AIC weight is a
value between 0 and 1, with the sum of all
models in the candidate set being 1. This
weight can be considered the probability

that a given model is the best-
approximating model.

Model AIC ΔAIC AIC weight

1 25.669 0.000 0.051

2 26.637 0.968 0.031

3 27.605 1.936 0.019

4 28.687 3.018 0.011

5 28.808 3.139 0.011

6 29.689 4.020 0.007

7 30.191 4.522 0.005

8 30.260 4.591 0.005

9 30.273 4.604 0.005

10 30.306 4.637 0.005

11 30.339 4.669 0.005

12 30.422 4.753 0.005

13 30.519 4.850 0.005

14 30.547 4.878 0.004

15 30.560 4.891 0.004

16 30.691 5.022 0.004

17 30.703 5.034 0.004

18 30.862 5.193 0.004

19 30.871 5.202 0.004

20 30.923 5.254 0.004
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The most parsimonious model, according to AICc, was Model 1 (Table 2). Our model revealed (Table 4)
that August average wind speed in a given year (AugW) and average wind speed in the period of July,
August, and September in a given year (JAS_W) had a greater effect on forest �re area change from
2011–2021 (Table 4 and Fig. 4). Higher average wind speed in August of any given year resulted in more
burned areas. On the other hand, higher average wind speed in the period of July, August, and September
in a given year resulted in less area affected by forest �res.

The rest of the explanatory variables (Table 1) were not included in the most parsimonious models
although, according to ΔAIC, Model 2 and Model 3 can also have strong explanatory power, because their
ΔAIC < 2. These two models contain variables related to average monthly wind speed. The rest of the
models tested, in the range of ΔAIC 2–7, may have biological meaning, although they are not considered
optimal in our study period and area. These models represent different combinations of various wind
speed (more often), precipitations, and temperature and underscore the tree loss change, although they
have a much smaller probability of being the best model (AIC weight).

Table 3
Linear model equation estimating the alteration in annual area
change (see Eq. 1) by forest �res as a function of the August

average wind speed in a given year (AugW), and average wind speed
in the period of July, August, and September in a given year (JAS_W)

during the period of 2011–2021 in Namibia.
Parameter Estimate p-value Model values

Intercept 0.4155 0.012 *  

AugW 0.4155 0.0038 ** Adjusted R-squared: 0.541

JAS_W -0.4094 0.37  

4. Discussion

4.1 Summary of the results
Forest �res have become more severe in recent years in Africa due to prolonged �re seasons, due to
changing climate scenarios (Siljander, 2009). Studies in other parts of the world have raised the same
concern (Stougiannidou et al., 2020). In the case of Namibia, forests have been subjected to large-scale
�re outbreaks in recent years. However, although �re is a vital ecosystem process in savannas (van
Wilgen, 2009), to the best of our knowledge research in this area is limited.

Our study examined forest �re occurrence in areas with forests across Namibia from 2010 to 2021
(Fig. 6). A total of 38.184 Mha of forests were burned during the study period. Forest �res were highly
concentrated in the north-eastern region. However, the north-central and central regions also experienced
�re, but in relatively more minor measures. Fire intensity was the highest between 2010 and 2012. During
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this period, Namibia experienced severe droughts. However, an increase in forest �re occurrence has been
witnessed recently, since the period of 2019–2021.

Our results showed that forest �re occurrence �uctuated in response to changes in climate variability
(temperature, precipitation, and wind speed) over the study period (Fig. 5). We further identi�ed that forest
�res are most frequent during dry seasons. In Namibia, the dry season is between August and October.
During this season, the wind speed, which is one of the leading climate variables, is stronger (Kazapua et
al., 2009). In the case of forest �re, wind speed is considered the most critical weather parameter (Beer,
1991).

The occurrence of forest �res during the summer season is not only limited to Namibian conditions. A
similar study in the United States also highlighted that forest �re occurrence was high during summer
(August – December) (Heidari et al., 2021). In south-central Chile too, a study on socio-economic and
land-cover drivers of wild�re activity and its spatiotemporal distribution also showed that forest �re
occurred mostly during summer (Pozo et al., 2022).

There is a link between climate variability and forest �re. For example, if climate change leads to
increased air temperature, reduced humidity, and stronger winds, we can expect larger �res (Lohmander et
al., 2022). Our results show that the average annual temperature has risen since 2010 (Fig. 2). However,
there was a decline in the average annual temperature in 2017 (16.7°C) and 2018 (16.2°C). As a result,
the average annual precipitation has been affected, although it �uctuated during the period of 2010–
2021 (Fig. 3). Similar trends have been noted in forest �re occurrence.

However, we discovered that although a relationship between climate variability and forest �re occurrence
exists, it is complex due to other factors (Tomašević et al., 2022), such as socio-economic factors (Pozo
et al., 2022), human behaviours, and forest ecosystems management practices. For example, in 2017, the
annual average precipitation was the highest (1.08 mm), with a relatively small burned area (2.0 Mha).
Conversely, in 2019, there was relatively the lowest rainfall of 0.4 mm, and at the same time, an
insigni�cant number of forest �res occurred (1.0 Mha) (Figs. 3 and 5). Therefore, our results show that
forest �re occurrence is not limited to climate variability. However, to the best of our knowledge, there is
little scienti�c evidence about other factors in�uencing forest �re occurrence in Namibia, in addition to
climate variability.

As well as the effects on forest ecosystems, forest �res can have signi�cant economic and social
consequences for local communities, and can be harmful or even fatal for humans living in the regions
close to the burning areas (Kirsanov et al., 2020; Ntinopoulos et al., 2022). Although it is not
comprehensively investigated, the effects of forest �res in Namibia have severely affected economic,
social, and environmental spheres in recent years.

4.2 Limitations of study
For the creation of the dataset with average climate variables, data from all of the weather stations were
aggregated, despite the relatively large size of the study area with different landscape and climate
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patterns. Input variables did not demonstrate correlation with the target variable. However, during the
examination for multicollinearity, it was found that the variables in Model 1 exhibited a high degree of
correlation (0.906). The decision to retain this combination of variables was made to include as much
information as possible. Other best models had correlation between variables less than 0.7. Additionally,
the dataset’s small sample size precluded the use of a variance in�ation factor (VIF) in linear regression
modelling.

To further investigate the relationships between forest �re areas and meteorological variables, a set of
generalised additive models (GAM) were also tested, with the assumption of non-linear relationships. The
best GAM models of the set remained identical to those during linear modelling.

To our knowledge, this study is one of the pioneer studies on the impact of climate variability on forest
�re in Namibia and the Southern African region. Hence, we experienced several limitations, including a
lack of historical data, monthly �re data, and research papers in the body of literature. Furthermore,
Namibia’s conditions, ranging from forestry to climate variability, are unique. Therefore, the results cannot
be con�dently extrapolated to other parts of the world. However, comparative research on a regional level
is encouraged.

5. Conclusions
Our study provides novel and timely insights into the impact of climate variability on forest �re
occurrence in Namibia during the period of 2010–2021. The results of our study prove that climate
change signi�cantly in�uences forest �re occurrence. A total of 38.184 Mha of forests were burned
during the study period. During this period, Namibia has experienced an increase in temperature,
�uctuating precipitation, and strength of wind speed. However, although forest �res in the changing
climate have attracted considerable attention in recent decades, huge research gaps remain in Southern
Africa.

Our paper was limited to assessing the impact of climate variability on forest �re occurrence across
Namibia. Climate variables in this study included wind speed, precipitation, and temperature. We
identi�ed a positive correlation between climate variability and forest �re occurrence. Our results coincide
with the body of literature at �rming a link between climate change and the emergence of new �re
regimes (Aponte et al., 2016). For example, our best model revealed a positive relationship between
windspeed and forest �re. Wind speed is the main climate variable that drives forest �re.

Namibia has no complete historical records for forest �re and climate variability. There is also a lack of
monthly forest �re data. However, it should be emphasised that modelling forest �re and climate change,
including remote sensing, can provide forest managers, �re protection agencies, and policy-makers with
empirical estimates of how much, and where, climate change might affect the geographic distribution of
large �res and alter the frequency of their occurrence (Davis et al., 2017). Therefore, we propose
continuous research on this subject whereby assessments can focus on predictive analysis of future
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forest �re trends and climate variability, excluding non-forested areas such as coastal/non-vegetation
areas.
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Figure 1

Map of the study area (Namibia) and forest covers.

Figure 2
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Time series of average annual temperature in the study area

Figure 3

Time series of average annual precipitation in the study area

Figure 4

Time series of average wind speed in three-month periods in the study area.
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Figure 5

Annual burned area (Mha)
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Figure 6

Fire forest occurrence distribution across Namibia in the period of 2010-2021.
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Figure 7

The result of �tting a two-predictor best model visualisation of LM function for the relation between the
annual burned area of the August average wind speed in a given year (AugW), and average wind speed in
the period of July, August, and September in a given year (JAS_W) in a 12-year study in Namibia.


