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ABSTRACT 

A molecular phylogenetic hypothesis was generated for Tylecodon, Cotyledon and Adromischus 

in order to estimate the timing and spatial dynamics of diversification across these three southern 

African genera. These data were used to investigate the correlates and consequences of 

adaptations to extreme aridity and summer drought in members of the group. 

Molecular sequence data from three plastid regions (trnL-F, psbA-trnH and rpoB-trnC), together 

with nuclear ITS1 and 2 were produced and used to estimate phylogenetic relationships among 

and within the three focal genera. Bayesian and parsimony-based analyses of combined data 

supported the monophyly of Cotyledon and Adromischus, however Tylecodon was found to be 

polyphyletic as T. racemosus was recovered as sister to Adromischus. The level of genetic 

divergence exhibited by T. racemosus necessitated its elevation to a new genus, thus 

Toelkenocodon was erected to accommodate the lineage. Relationships within Cotyledon were 

resolved and well-supported, and some well-supported clades were recovered within Tylecodon 

and Adromischus. Broad patterns of flowering phenology and geographic distributions emerged 

across the genera. Resolution at the level of species was generally poor within Tylecodon and 

Adromischus due to low sequence divergence. 

Divergence time estimation was performed to test hypotheses of climate-driven diversification in 

the genera focal to this study. Four methods were used: NPRS and Multidivtime, both of which 

assume autocorrelation of rates between ancestor-descendent lineages, a global molecular clock, 

and a relaxed phylogenetics approach that Simultaneously estimates phylogeny and divergence 

times (BEAST). Topology based tests for significant shifts in diversification rate were used, and 

parsimony and likelihood ancestral reconstruction of the transition to succulent karoo endemism 

across the group was performed. Diversity within the genera was found to be relatively young, 

although there was variation among the dating methods, with NPRS and Multidivtime returning 

older dates for events than either the molecular clock or BEAST. Diversification events among 
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and within Tylecodon, Cotyledon and Adromischus were coincident with major climatic events 

hypothesised to be drivers of speciation in the south-west of southern Africa during the late 

Miocene and early Pliocene. Tylecodon exhibits significantly higher rates of diversification than 

either Cotyledon or Adromischus. No significant shifts in diversification rates were detected 

across the phylogeny of the group and species accumulation appears to have been more or less 

linear throughout the separate histories of the genera. A clade of succulent karoo endemic 

species was identified in Tylecodon and the timing of the transition to this vegetation type 

occurred between 5.5 and 3.2 Myr, consistent with the establishment of the winter rainfall regime 

in the region. Data from a related study which involved estimating the timing of shifts to succulent 

karoo endemism in distantly related angiosperm groups corroborated this pattern. The majority of 

instances of endemism emerged during the last 5 Myr suggesting that the succulent karoo is 

considerably younger than the neighbouring fynbos biome. 

Analyses of range size characteristics of Tylecodon and Cotyledon demonstrated that species of 

Tylecodon have significantly smaller ranges than species of Cotyledon. The hypothesis that 

range size is determined by plant size and the height at which seeds are released (the sum of 

vegetative height and inflorescence height) was tested and a positive relationship was found in 

Tylecodon, but not in Cotyledon. Further correlation-regression analyses revealed significant 

associations between the height of vegetative organs, inflorescences and the size of flowers in 

Tylecodon. Thus it was proposed that the proclivity of species with small ranges in Tylecodon is 

the result of limited dispersal. The expectation for the geographical mode of speciation under 

such a scenario is one of allopatry. Age-range correlations revealed that the predominant mode 

of speciation in both Tylecodon and Cotyledon is allopatric. 

The hypothesis that Cotyledon and Tylecodon occupy different climatic niches was tested using 

using discriminant function analysis. The genera could be distinguished along an axis of 

increasing summer drought and potential evaporation. Species of Tylecodon occupy niches 

concentrated at the arid extremes of conditions where summer drought prevails: Cotyledon is 
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largely absent from these areas. The shift into arid environments in Tylecodon coincides with the 

evolution of putative morphological adaptations, including leaf deciduousness and vegetative 

diminution which likely represent evolutionary innovations that enabled ancestral forms of 

Tylecodon to colonise new habitats created during the formation of the winter rainfall desert of the 

succulent karoo. Passive dispersal coupled with the morphological adaptations exhibited by 

species of Tylecodon have led to the strong association observed between range size and plant 

size, such that small plants are effectively isolated in microhabitats; a factor which is likely to 

enable differentiation as a result of highly restricted gene flow. The increased stature of plants of 

Cotyledon and the fact that inflorescence height is uncoupled from vegetative height, may lead to 

the relative mobility of propagules of members of the genus. Species can disperse more broadly, 

gene flow sustains the genetic integrity of species, and they are able to colonise new areas. 
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INTRODUCTION 

Southern Africa is a region of outstanding botanical diversity. It is home to three of the world's 34 

biodiversity hotspots (Mittermeier et aI., 2004). Two of these hotspots, namely the Cape Floristic 

Region (CFR) dominated by fynbos (sclerophyllous evergreen heath), and the succulent karoo, 

neighbour one another in south-western South Africa and collectively are known as the Greater 

Cape Floristic Region (GCFR: Jurgens, 1991, Born et aI., 2007). In addition to their tremendous 

diversity, both floras have exceptionally high levels of endemism. The succulent karoo is 

dominated by dwarf succulent shrubs and is unique amongst the world's winter rainfall deserts on 

account of endemism and the high incidence of leaf succulence in the vegetation (Desmet & 

Cowling, 2004). The distribution of the GCFR concurs broadly with an area that experiences a 

Mediterranean-type climate. The fynbos-succulent karoo boundary is thought to be primarily 

determined by moisture availability (Cowling et aI., 1997) such that the increased aridity of the 

succulent karoo results in plant spacing that is too great to carry fire (Rebelo et aI., 2006). 

The origins of the diverse flora of the fynbos biome are hypothesised to be the result of climate 

driven diversification. Levyns (1964) was one of the earliest proponents of the procession of 

aridification leading ultimately to the relictual distribution of temperate forest vegetation that we 

see today. It is thought that the progenitors of fynbos, having a higher tolerance for more arid 

conditions, replaced forest throughout much of its former range. In turn, as aridity intensified in 

what is now the succulent karoo region, fynbos became restricted to higher ground and succulent 

vegetation invaded lowland areas (Werger, 1983, Scott et aI., 1997), thus implying a more recent 

origin for succulent karoo. Fynbos and succulent karoo experience different intensities of aridity 

yet are hypothesised to share high rates of speciation. Levyns (1964) attributed the latter to the 

shared seasonality, rather than to the total amount of rainfall received by the regions. 

Floral components of fynbos have been the focus of considerable research into the patterns and 

processes of speciation (Linder, 2003 for a review). Molecular phylogenetic techniques have 
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been applied to many of the lineages that characterise the vegetation. Research on these groups 

has been geared towards uncovering evolutionary relationships and the timing of diversification 

events. It is becoming increasingly apparent that fynbos elements have a long history of 

diversification (Linder, 2005) that began approximately 42 million years ago (Mya). The extent to 

which members of the succulent karoo share a common and contemporaneous history of 

diversification has received relatively little attention. Divergence time estimation carried out on 

members of Aizoaceae, the most speciose lineage that dominates much of the vegetation of the 

succulent karoo, revealed rates of diversification that are unsurpassed in plants, and suggested 

that rapid radiation had taken place in the group between 3.8 and 8.7 Mya (Klak et aI., 2004). 

Tylecodon, Cotyledon and Adromischus, three closely related taxa of Crassulaceae, are the focus 

of this study which investigates questions of speciation history. The biogeography of the genera, 

together with their contrasting range size characteristics, morphologies and life-history traits pose 

interesting questions for testing hypotheses regarding drivers of the diversification processes that 

have determined current diversity patterns in the group. Cotyledon is a small genus, comprising 

11 species of leaf succulent shrubs and sub-shrubs distributed widely across southern Africa (Fig. 

1). Cotyledon barbeyi and C. orbiculata are the only representatives found outside this region; C. 

barbeyi occurs from north-eastern South Africa to the Arabian Peninsula, and C. orbiculata is 

found throughout South Africa and extends northwards into southern Angola (van Jaarsveld & 

Koutnik, 2004). Species diversity within Cotyledon is relatively diffuse across its range and the 

highest concentration of species occurs along the coastal plains south of the Great Escarpment, 

between Robertson and East London. Cotyledon orbiculata is notable for its wide distribution 

which encompasses that of all other species in the genus. Five varieties are recognised within 

this species (T6Iken, 1985) and, according to van Jaarsveld & Koutnik (2004), it is possibly the 

most variable species in southern Africa. All Cotyledon species have showy yellow to orange-red, 

pendulous flowers, often covered with a thick waxy bloom (Fig.1). In contrast, Tylecodon has 

many more species than Cotyledon, but occupies a restricted geographic area. 
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Most of the 46 species of Tylecodon are found within the winter rainfall zone of South Africa, with 

some ranging northwards into Namibia (Fig. 2); many species have highly restricted distributions. 

The genus has centres of diversity in the Richtersveld and Namaqualand where plants are 

strongly associated with rocky montane areas in gravelly and pebbly substrates (van Jaarsveld & 

Koutnik, 2004). Members of Tylecodon have seasonally deciduous, succulent leaves and 

succulent stems. Growth forms in the genus range from tiny, single-leaved plants with reduced 

pachycaulous stems and subterranean storage organs, to the dwarf succulent tree Tylecodon 

paniculatus, which can grow to over 2.5 metres tall (van Jaarsveld & Koutnik, 2004). Species of 

Tylecodon bear erect to spreading inflorescences and the tubular flowers are diverse in colour, 

ranging from white and pink to yellow, orange and red. Adromischus is a genus of dwarf shrubs 

with evergreen succulent leaves; in many species leaves are amassed in a basal rosette (Fig. 3). 

Adromischus shares several distributional characteristics with Tylecodon. Many of its 28 species 

are found within the winter rainfall zone of southern Africa; however it differs from Tylecodon in 

having several representatives restricted to aseasonal and summer rainfall areas. Adromischus 

has notable levels of species diversity in the south of its distribution from the Robertson Karoo 

and Little Karoo, eastwards to Willowmore and Graaff-Reinet, and to the north-west of its 

distribution in Namaqualand. Flowers are borne on spike-like inflorescences and the corolla tube 

is often green, while corolla lobes are variously coloured white, pink, maroon, or a combination 

thereof. 

Cotyledon, Tylecodon and Adromischus are well-known taxonomically through the work of T61ken 

(1978 & 1985), and more recent synopses have been produced to include newly described 

species (Pilbeam et aI., 1998; van Jaarsveld & Koutnik, 2004). Representatives of this southern 

African alliance of genera have been included in family-level analyses of relationships based on 

molecular data (van Ham & 't Hart, 1998, Mort et aI., 2001). However, due to the taxonomic 

breadth of these studies, sampling within Cotyledon, Tylecodon and Adromischus has been very 

sparse. Cotyledon was the focus of a recent, well-sampled molecular phylogenetic study (Mort et 
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aI., 2005), but no equivalent hypotheses of evolutionary relationships exist for Tylecodon and 

Adromischus. 

The first main aim of this work is to produce a phylogenetic hypothesis for Cotyledon, Tylecodon 

and Adromischus. Extensive species-level sampling is used in order to test the generic 

boundaries that are currently defined according to morphological characters (Tolken, 1978, 

1985). Secondly, the timing of significant divergence events across and within the three genera 

will be investigated within the phylogenetic framework generated. Rates of diversification 

between genera will be calculated, and possible shifts in rates of diversification within clades will 

be tested. Temporal information will be used to test hypotheses of climate-driven diversification 

having occurred in this group of succulents. An increasing amount of corroborative evidence 

regarding palaeo-climates of south-western southern Africa is available (e.g. Zachos et aI., 2001, 

deMenocal, 2004, and sources reviewed in Linder, 2003) and provides information on the 

important abiotic factors likely to be correlated with diversification in Tylecodon, Cotyledon and 

Adromischus. In particular, the role of increasing aridification and changes in rainfall seasonality 

is considered to be a potentially important determinant of the evolution of Tylecodon and 

A dromisch us. Occurrence of a large number of species of these two genera in the succulent 

karoo is examined and the evolution of succulent karoo endemism in the group, combined with 

comparative information from distantly related groups (Verboom et aI., in press), is used as a 

proxy to estimate the timing of the formation of the biome. The strong association between 

species of Tylecodon and the succulent karoo is of particular interest as the genus possesses 

morphological attributes such as deciduous leaves, swollen, subterranean stems and reduced 

plant size that are putative adaptations to increased aridity and severe summer drought. Such 

adaptations may play a role in determining gene flow and hence influence processes of 

differentiation in Tylecodon. Mechanisms by which features unique to Tylecodon may have led to 

increased diversification are investigated via examination of range sizes and their association 

with selected morphological characters to test the hypothesis that the evolution of these 

morphological characters is contemporaneous with increased aridity in the south-west of southern 
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Africa and represent adaptations or pre-adaptations that enabled Tylecodon to exploit areas of 

extreme aridity and summer drought, and ultimately led to increased species numbers and rates 

of diversification in the genus. 

Thus the four main components of this thesis are as follows: 

• Estimation of phylogenetic relationships among and within the predominantly southern 

African genera of Kalanchoideae: Tylecodon, Cotyledon and Adromischus. 

• Use of the phylogenetic hypothesis to evaluate current generic limits. 

• Inference of a temporal scenario against which to test hypotheses of climatically-driven 

diversification of the three genera, and in the succulent karoo as a whole. 

• Determination of the predominant geographic mode of speciation in Tylecodon and 

Cotyledon, and evaluation of the role of adaptations to aridity in driving speciation. 
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CHAPTER 1 

Cotyledon, Tylecodon and Adromischus (Kalanchoideae; Crassulaceae): 

phylogeny and generic delimitations inferred from nuclear and plastid DNA 

data. 

INTRODUCTION 

Cotyledon L., Tylecodon T61ken and Adromischus Lem. are closely related genera of the 

Crassulaceae (Kalanchoe clade sensu Mort et aI., 2001) with a predominantly southern African 

distribution. Collectively they represent approximately one-sixth of the family's species diversity. 

Uncertainties regarding relationships in Crassulaceae have existed since De Candolle (1801) 

erected the family and result largely from the apparent multiple origins of sympetaly and variation 

in the number of staminal whorls found in members of the family ('t Hart & Eggli, 1995). 

Relationships within Crassulaceae have also been confounded by apparent convergence of 

vegetative characters due to a strong association with xeric habitats found in many 

representatives. Recently, molecular data have contributed to resolving higher-level taxonomic 

relationships and delimitation of the large, heterogeneous taxon Sedum (e.g. van Ham and It 

Hart, 1998), together with the monophyly of other large and complex genera such as Crassula, 

Sempervivum, and Kalanchoe (Mort et aI., 2001). These studies are largely consistent in 

recovering seven major clades within Crassulaceae. The ranking of these clades has recently 

been modified by Thiede & Eggli (2007), such that three subfamilies are recognised: the large 

and cosmopolitan Sempervivoideae, comprising five tribes; and the predominantly African 

subfamilies Crassuloideae and Kalanchoideae. The latter contains the three genera that are the 

focus of this study, together with Kalanchoe. 
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Despite the taxonomic instability within Crassulaceae, the mutual affinities of Cotyledon, 

Tylecodon and Adromischus have been reiterated throughout the family's history. Cotyledon was 

first recorded in 1624 when Heurnius documented Cotyledon orbiculata from South Africa (van 

Jaarsveld and Koutnik, 2004). A monotypic Cotyledon was formally recognised in the first edition 

of Species Plantarum (Linnaeus, 1753), and nine species of Cotyledon were included in De 

Candolle's 'Crassuleae Legitimae' (1828a). In 1852 Lemaire erected Adromischus to 

accommodate representatives with spike-like inflorescences and long corolla tubes. The name 

Adromischus was not generally used until Berger applied it in his monograph of the Crassulaceae 

in 1930. While Berger (1930) accepted the segregation of Adromischus from Cotyledon, both he 

and Schon land (1915) maintained Cotyledon as a mix of species with opposite-decussate and 

alternate leaves. 

The current taxonomy of Cotyledon, Tylecodon and Adromischus follows Tolken's 1978 and 1985 

treatments. In his re-evaluation of Cotyledon and Adromischus Tolken (1978) used leaf 

arrangement and leaf persistence (among other characters) to redefine the genera and to erect 

the genus Tylecodon. This new genus comprised 27 species with alternate, soft, deciduous 

leaves; 22 of these had previously been included in Cotyledon, and one in Adromischus, while 

four were newly described. Tolken retained Adromischus and Cotyledon, distinguishing them 

from Tylecodon by their stiff, evergreen leaves and from one another by the arrangement of their 

leaves. In Adromischus leaves are alternate, while in species of Cotyledon they are opposite

decussate. Thus, Tolken's new circumscription recapitulated De Candolle's (1828b) three 

informal groupings within Cotyledon, namely "Foliis oppositis; Foliis alternis, marcescentibus; 

Foliis alternis, persistentibus". Tolken divided Adromischus into five sections based on floral 

morphology, but no such subdivisions exist for Cotyledon or Tylecodon. Cotyledon and Tylecodon 

were the subjects of a recent synopsis by van Jaarsveld & Koutnik (2004), while Adromischus 

was similarly updated by Pilbeam et al. (1998). 
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In addition to conclusions based on morphology, the close evolutionary affinities between 

Cotyledon, Tylecodon and Adromischus, together with their distinction from other members of 

Crassulaceae, has been supported by data from a broad range of sources. Uhl (1948) found that 

both Cotyledon and Adromischus have a haploid chromosome complement of nine, such that the 

genera cannot be distinguished cytologically. Mort et al. (2001) reconstructed the base 

chromosome number of Crassulaceae as eight, and nine was identified as the synapomorphous 

number of the Kalanchoe clade. A chemotaxonomic study of pigments contributing to red flower 

colour in representatives of Crassulaceae revealed that Cotyledon and Tylecodon share a very 

similar suite of anthocyanins, while Crassula shows a different pigment signature (van Wyk & 

Winter, 1995). Hideux (1981, in t'Hart & Eggli, 1995) analysed primarily palynological-based 

characters for members of Crassulaceae and identified the early divergence of a 'Crassula'

lineage from the remainder of the family. Collectively, Cotyledon, Adromischus and Kalanchoe 

represented an African clade derived from the 'Crassula'-lineage. 

Despite the historical interest in Cotyledon, Tylecodon and Adromischus, the phylogenetic status 

of the genera, relationships among them, and interspecific relationships within genera remain 

unclear. Cotyledon was recently the subject of a comprehensively sampled species-level analysis 

reconstructing relationships using plastid and nuclear DNA data (Mort et aI., 2005). Cotyledon 

was recovered as a strongly supported clade but there was little support for relationships within 

the genus. The current study is the first to use extensive sampling of all three genera for 

phylogenetic analyses. A molecular-based approach is implemented and aims to clarify 

phylogenetiC uncertainty within and between Cotyledon, Tylecodon and Adromischus with near

complete species sampling. In addition, significant findings will be contextualised in terms of the 

geographical distribution of clades and patterns of flowering phenology across the genera. Plastid 

and nuclear DNA sequence data are generated and analysed to: a) test the monophyly of 

Cotyledon, Tylecodon and Adromischus; b) investigate evolutionary relationships amongst the 

study genera; c) elucidate relationships within each genus. 
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METHODS 

Taxon sampling 

Accessions of Cotyledon, Tylecodon and Adromischus were sampled to attain as thorough 

specific- and intraspecific-level representation as possible in initial analyses. Members of 

Kalanchoe were included as representatives of the fourth genus of the Kalanchoideae. The more 

distantly related Sempervivoideae was represented by Aeonium leucoblepharum, and 

Crassuloideae was represented by species of Crassula. Details of accessions that represent a 

core sample of species across the genera of interest are provided in Table 1.1. The rationale and 

methodology for selection of the core samples is detailed under 'Parsimony analyses' later in the 

text. Taxonomic arrangement at the familial and subfamilial level, together with numbers of 

species currently recognised within genera, follow Thiede & Eggli (2007). 

DNA extraction, amplification, and sequencing 

DNA was extracted from fresh or silica-dried leaf material using a modified protocol based on that 

of Doyle and Doyle (1987), as outlined in Bruyns et al. (2005). To reconstruct relationships 

among the study group sequence data from four DNA regions were generated, namely: the 

plastid trnL UAA 5' exon - trnF GAA gene (including the trnL 5' exon, intron, the trnL UAA 3' exon and 

the trnL 3' - trnF intergenic spacer) (Taberlet et aI., 1991); the plastid psbA - trnH intergenic 

spacer (Sang et aI., 1997); the plastid rpoB-trncf'CA (Shaw et aI., 2005); and the nuclear-encoded 

internal transcribed spacers 1 and 2 (ITS1 and ITS2) flanking the 5.8s subunit of the 18-26s 

ribosomal RNA cistron (White et aI., 1990). DNA regions were amplified using the following 

primer combinations: c and f (Taberlet et aI., 1991) for the trnL-F region, psbAF and trnHR (Sang 

et al.,1997) for psbA-trnH, rpoB (Shaw et aI., 2005) and trncf'CA 'internal' (5' -

CACAAAACAACAACTCAGGAC - 3') designed specifically for this group for the rpoB-trncf'CA 

region, and its4 and its5 (White et aI., 1990) for ITS. 
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Amplifications were performed using 0.75 units of Super-Therm DNA polymerase in 30 pi 

volumes also containing 1 X NH4 buffer and 5 mM MgCI2 (both supplied with polymerase), 

together with 0.1 mM of each dNTP, 0.3 pM of each primer, and 3 pi of DNA template. 

Polymerase chain reactions (PCRs) were performed using a GeneAmp® PCR System 2700 

Version 2.07 (Applied Biosystems) set to the following thermal conditions: an initial denaturation 

at 94°C for 2 mins followed by 30 cycles of 94°C for 1 min., 52°C for 1 min., 72°C for 2 mins, with 

a final polymerisation step of 72°C for 7 mins. PCR products were purified using the GFXTM DNA 

and Gel Band Purification Kit (Amersham Biosciences). 

Both strands of PCR products were cycle-sequenced as per the manufacturer's instructions using 

the ABI PRISM® Big Dye™ Terminator v3.1 Ready Reaction Kit (Applied Biosystems). 

Amplification primers were also used for cycle sequencing. Sequenced products were resolved 

on an ABI PRISM® 3100 Genetic Analyzer. Sequences were assembled and checked for 

inaccurate base calling using Seq Man II (LaserGene System Software, DNAStar, Inc.). 

Consensus sequences were aligned by eye using MegAlign (LaserGene System Software, 

DNAStar, Inc.) and alignments were trimmed in order to exclude messy ends. Only simple indels 

were found throughout the datasets, and indel presence/absence was coded in a binary manner 

using the 'simple indel coding' method of Simmons and Ochoterena (2000), and included in 

analyses. 

Parsimony analyses 

Initial parsimony analysis was carried out on a 132-taxon dataset (Table 1.1) in which a number 

of species were represented by multiple accessions. This procedure was done to test the 

monophyly of these species such that those recovered as monophyletic could be reduced to a 

single representative in subsequent analyses. This way the core samples needed to obtain the 

most complete phylogenetic representation were identified using the smallest number of 

accessions. 
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Table 1.1. Details of the 132 accessions for which DNA data were generated and used for phylogenetic analyses in this 

work. Samples preceded by an * are those included in the 90-taxon 'core' dataset referred to in the text. Voucher 

specimens collected by PVB (Peter V Bruyns) and TLN (author) are all deposited at the Bolus Herbarium, The University 

of Cape Town. Others are as indicated. Sequence data generated for this study are indicated by 'x', missing data are 

indicated by '-' and accession numbers are given for sequences obtained from GenBank. 

Taxon Voucher DNA region 
Herbarium, collector trnL-F psbA rpoB ITS 

Kalanchoideae A. Berger 

Adromischus Lem. 
*A. alstonii (Schonl. & Bak.f.) CA Sm. PVB 9265 x x x x 
*A. bicolor P.C. Hutch. PVB 9797 x x x x 
*A. caryophyl/aceus (Burm.f.) Lem. PVB 8219a x x x x 
*A. cooperi (Bak.) Berger PVB 9325 x x x x 
A. cristatus (Haw.) Lem. var. mzimvubuensis PVB 8928 x x x x 
*A. cristatus (Haw.) Lem. var. schonlandii (Phill.) 

Tolken PVB 8942 x x x x 
*A. fal/ax Tolken PVB 2997 x x x x 
*A. filicaulis (Ecklon & Zeyher) C.A. Smith subsp. 

filicaulis PVB 9880 x x 
*A. filicaulis (Ecklon & Zeyher) C.A. Smith subsp. 

filicaulis PVB 9918 x x 
A. filicaulis (Ecklon & Zeyher) C.A. Smith subsp. 

marlothii (Schon land) Tolken TLN 280 x x 
*A. hemisphaericus (L.) Lem. Parker sn x x x x 
*A. humilis (Marloth) V. Poelln PVB 4868 x x x 
*A. inamoenus Tolken PVB sn x x x x 
A. cf. inamoenus Tolken PVB sn x x x 
*A. leucophyl/us Uitew. PVB 3738 x x x 
*A. liebenbergii P.C. Hutch. PVB 9183 x x x x 
*A. liebenbergii P.C. Hutch. 'oriental is' PVB 4401 x x 
*A. maculatus (Salm-Dyck) Lem. TLN 281 x x x x 
*A. mammillaris (L.f.) Lem. PVB 8981 x x x x 
*A. marianiae (Marloth) Berger PVB 9493a x x x x 
A. marianiae (Marloth) Berger PVB 9145a x x x 
A. marianiae (Marloth) Berger PVB 9176 x x x 
A. marianiae (Marloth) Berger PVB 9928 x x x 
A. marianiae (Marloth) Berger 'hallii' PVB 9872 x x x 
A. marianiae (Marloth) Berger 'hallii' PVB 9493a x x x 
A. marianiae (Marloth) Berger 'immaculatus' PVB 9849 x x x 
A. marianiae (Marloth) Berger 'immaculatus' PVB 9901 x x x 
A. marianiae (Marloth) Berger 'herrei' PVB 3877 x x x 
*A. maximus P.C. Hutch. PVB 9082 x x x x 
*A. montium-klinghardtii (Dinter) Berger PVB 9235 x x x x 
*A. nanus (N.E. Br,) V. Poelln. PVB 9493 x x x x 
*A. phil/ipsae (Marloth) V. Poelln. PVB 6079 x x x x 
*A. roaneanus Uitew. PVB 9924 x x x 
*A. schuldtianus (V. Poelln.) V. Poelln. Subsp. 

Schuldtianus PVB 8334 x x x x 
*A. schuldtianus (V. Poelln.) V. Poelln. subsp. 

brandbergensis B.Nord & Van Jaarsv. PVB 2838 x x 
*A. sphenophyl/us CA Sm. PVB 9326 x x x x 
*A. sub viridis Tolken PVB 7939 x x x x 
*A. triflorus (L.f.) Berger PVB 9767 x x x x 
*A. triflorus (L.f.) Berger PVBsn x x x x 
*A. trigynus (Burch.) V. Poelln. PVB 9404 x x x 
*A. umbracticola CA Sm. PVB 7000 x x x x 
A. spp. PVB 5021 x x 

Cotyledon L. 
*G. adscendens R.A. Dyer van Jaarsveld sn AY596345 x AY596330 
*C. barbeyi Schweinf. Ex Barker PVB 6570a x x x x 
*C. campanulata Marloth PVB 1786 x x x x 
*C. cuneata Thunb. TLN 271 x x x x 
C. cuneata Thunb. PVB 8870 x x x 
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Table 1.1. continued 

Taxon Voucher DNA region 
Herbarium, collector trnL-F psbA rpoB ITS 

·C. eliseae Van Jaarsv. HBG 17212 AY692295 AY596338 x AY596323 

C. orbiculata L. PVB 9326 x x 
·C. orbiculata L. var. orbiculata PVB 9225 x x x x 
C. orbiculata L. var. orbiculata TLN 272 x 
C. orbiculata L. var. spuria (L.) T61ken TLN 273 x x 
C. orbiculata L. var. spuria (L.) T61ken TLN 274 x x 
·C. papillaris U. PVB 9900 x x x x 
C. papillaris L.t. PVB 8400a x x x 
C. papillaris L.t. PVB 9020 x x x 
C. papillaris L.t. PVB 9850 x x x 
C. tomentosa Harv. subsp. tomentosa T61ken PVB 7046 x x x 
·C. tomentosa Harv. subsp. ladismithensis 

(Poelln.) T61ken PVB 7657 x x x x 
·C. velutina Hook.t. PVB 8413 x x x x 
·C. woodii Sch6nland & Baker t. PVB 7094 x x x x 

Tylecodon T61ken 
'r. albiflorus Bruyns PVB 7516 x x x 
T aridimontanus G. Will. Tribble 2941 x x x 
T atropurpureus Bruyns PVB 2658 x x x x 
'r. aurusbergensis G. Will. & Van Jaarsv. Lavranos sn x x x 
T bayeri Van Jaarsv. PVB 1490 x x x x 
·T. bayeri Van Jaarsv. PVB 2664 x x x x 
'r. buchholzianus (Schuldt & P. Stephan) T61ken PVB 1491 x x 
·T. cacalioides (U.) T61ken PVB 8940 x x x x 
T cordiformis G. Will. PVB 9095 x x x x 
T decipiens T61ken PVB 9137 x x x x 
·T. ellaphieae Van Jaarsv. PVB 3238 x x x 
T faucium (Poelln.) T61ken PVB 2542 x x x 
T fragi/is (A.A. Dyer) T61ken PVB 6711 x x x 
'r. grandiflorus (Burm.t.) T61ken PVB 6721 x x x 
T hallii (T6Iken) T61ken PVB 9254 x x x 
·T. hirlifolius (W.F. Barker) T61ken PVB 8905 x x x x 
·T. kritzingeri Van Jaarsv. PVBsn x x x 
'r. leucothrix (C.A. Sm) T61ken PVB 3730 x x x x 
r. leucothrix (e.A. Sm) T61ken PVB 7347 x x x 
T. leucothrix (e.A. Sm) T61ken PVB 8870 x 
T longipes Van Jaarsv. & G. Will. PVB 9124 x x x x 
'r. nolteei Lavranos PVB 9084 x x x x 
'r. occultans (T6Iken) T61ken PVB 6806 x x x x 
·T. paniculatus (U.) T61ken TLN 152 x x x x 
T pearsonii (Sch6nland) T61ken PVB 9086 x x x x 
·T. pusi/lus Bruyns PVB 2668 x x x x 
·T. pygmaeus (W.F. Barker) T61ken PVB 1087 x x x x 
r. racemosus (Harv.) T6lken; PVB 2769 x x 
'r. racemosus (Harv.) T6lken; PVB 9865 x x x x 
r. reticulatus U. PVB 3884 x x x 
T reticulatus (U.) T61ken subsp. reticulatus PVB 9143 x x x 
T. reticulatus (L.t.) T61ken subsp. reticulatus PVB 9085 x x 
T reticulatus L.t. subsp. phyllopodium T61ken PVB 2817 x x x x 
r. reticulatus U. subsp. phyllopodium T61ken PVB 6332 x x x 
·T. rubrovenosus (Dinter) T61ken PVB 4658 x x x 
T scandens Van Jaarsv. PVB 9090 x x x x 
T schaeferianus (Dinter) T61ken eM 1999 x x x x 
'r. similis (T6Iken) T61ken PVB 4609 x x x x 
'r. singularis (A.A. Dyer) T61ken PVB 8839 x x x x 
T stenocaulis Bruyns PVB 7577 x x x x 
T striatus (Hutchison) T61ken PVB 7501 x x x x 
T striatus (Hutchison) T61ken PVB 9177 x x x 
T suffultus Bruyns ex T61ken PVB 6373 x x x x 
T sulphureus (T6Iken) T61ken PVB 5244 x x x x 
T tenuis (T6Iken) Bruyns PVB 3219 x x x 
T torulosus T61ken PVB 1391 x x x x 
'r. tribblei Van Jaarsv. PVB 8263 x x x x 
·T. tuberosus T61ken PVB 2660 x x x 
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Table 1.1. continued 

Taxon Voucher DNA region 
Herbarium, collector trnL-F psbA rpoB ITS 

"T. ventricosus (Burm.f.) T61ken TLN 133 x x x 
"T. viridiflorus (T6Iken) T61ken PVB 9119 x x x x 
"T. wallichii (Harv.) T61ken subsp. wallichii PVB 9826 x x x 
T. wallichii (Harv.) T61ken subsp. ecklonianus 

(Harv.) T61ken PVB 8915 x x x 
Tylecodon spp. PVB 7936 x x x 
Tylecodon spp. PVB 8265 x x x 
Tylecodon spp. PVB 8841 x x x 

Kalanchoe Adans. 
"K. elizae Berger PVB 7743 x x x x 
"K. gracilipes (Kitchinga gracilipes Baker) PVB 6232 x x x x 
"K. humilis Britten PVB 7749 x x x 
K. ct. umilis Britten PVB sn x x 
K. lanceolata (Forssk.) Pers. PVB 9732 x x 
K. lateritia Engl. PVB 7651 x x 
K. latisepala N.E.Br. PVB 7749 x x 
K. marmorata Baker PVB sn x x 
K. rotunditolia (Haw.) Haw. PVB 9346a x x 
K. ct. sexangularis N.E.Br. PVB 8750 x x x 

Sempervivoideae Am. 
"Aeonium leucoblepharum Webb ex A.Rich. PVB 8432 x x x 

Crassuloideae Burnett 

Crassula L. 
C. barbata Thunb. PVB 9173 x x 
C. tascicularis Lam. TLN 161 x x 
C. multiceps Haw. PVB 9269 x x 
C. sericea Sch6nland TLN 135 x x 
"C. pellucida L. TLN 174 x x x 
"C. rupestris Thunb. TLN 153 x x x 

This reduced redundancy in datasets and facilitated more thorough tree searches in subsequent 

analyses. A core set of 90 taxa was identified. ParSimony-based searches were also used to 

detect conflict among data partitions for a 71-taxon set, comprising accessions for which data 

from all four DNA regions were available. Sets of common taxa were used to identify topological 

variation resulting from different histories among DNA regions that was not confounded by 

variation in taxon sampling across data partitions. Conflict among data partitions was assessed 

on a node-by-node basis by comparing topologies generating from separate analyses of each 

partition. This approach allowed the nodes involved in incongruent reconstructions to be 

identified, and levels of support for such relationships to be assessed. Formal measures of 

incongruence such as the incongruence length difference (ILD; Farris et aI., 1994) do not facilitate 
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such investigation. In addition, ILD has been criticised for its high type I error rate (e.g. 

Cunningham, 1997; Darlu & Lecointre, 2002; Barker & Lutzoni, 2002), and has been found to be 

a poor indicator of dataset combinability (Barker & Lutzoni, 2002). Only conflicting relationships 

that attained Jackknife (JK) percentages ~ 75% were considered. Four taxa were identified as 

potentially problematic and final parsimony and Bayesian tree searches were carried out both 

with these taxa included (90 taxa) and with them excluded (86 taxa). 

Parsimony analyses were carried out using PAUP* 4.0b10 (Swofford, 2002). Heuristic searches 

were performed with the following search options implemented: 10,000 random addition 

sequence replicates with three trees held at each step, tree-bisection-reconnection (TBR) branch

swapping performed on all trees, with no more than three trees saved from each replicate. 

Characters were given equal weight and states were unordered. Nodal support was evaluated 

using the jackknife (JK) emulating Jac resampling (Farris et aI., 1996), also implemented in 

PAUP*. Ten thousand jackknife replicates were generated, deleting 36.79% of the characters at 

each replicate (Farris et aI., 1996), with TBR branch-swapping performed at each replicate. 

Bayesian inference 

In order to perform mixed-model phylogenetic analyses on combined data, models of nucleotide 

evolution were selected for each data partition using Modeltest version 3.06 (Posada & Crandall, 

1998). One of the most parsimonious trees (MPTs) recovered from parsimony analysis of 

combined plastid data was used as the input topology for selecting a model for combined plastid 

data, similarly, one of the MPTs from parsimony of analysis of ITS data was used for selecting the 

model for the ITS partition. Huelsenbeck and Rannala (2004) found that using a model that 

assumes unnecessary parameters has a negligible effect on posterior probability (pp) estimation, 

while under-specification of an evolutionary model leads to over-estimation of the pp that the tree 

is correct. They therefore recommended that " ... the model should be as complex as possible 

while still allowing parameters to be identified." (2004: 912). Pol (2004) demonstrated that 

hierarchical likelihood ratio tests (hLRTs) are sensitive to the addition/removal sequence of 
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parameters. Given that hLRTs implemented in Modeltest (Posada & Crandall, 1998) evaluate 

models from the simplest to the more complex, the procedure has a tendency to select less 

complex models. The AIC, on the other hand, evaluates competing models simultaneously and 

shows no such tendency (Posada & Buckley, 2004). Models selected by the Akaike Information 

Criterion (Ale) implemented in Modeltest were applied to subsequent Bayesian analyses. 

Mixed-model phylogenetic analyses were performed on combined data for the 90- and 86-taxon 

datasets using MrBayes version 3.1 (Ronquist & Huelsenbeck, 2003). This programme 

implements a Metropolis-coupled Markov chain Monte Carlo (MC3
) algorithm to sample the 

posterior probability distribution of trees for a given dataset. Two simultaneous analyses of 6 x 

106 generations were undertaken, each running four Markov chains of which three were heated to 

a setting of 0.2. Model parameters for each data partition were sampled every 100 generations 

under a General Time-Reversible model of nucleotide evolution, using empirical base 

composition, with rate heterogeneity among sites modelled by a gamma distribution (GTR+G). In 

addition, a proportion of invariant sites was estimated for the psbA-trnH and the rpoB-trnC plastid 

regions (GTR+I+G). To estimate the number of generations required for the chains to converge 

on the pp distribution (ppd) of trees, log-likelihood values of sampling points were plotted, and the 

average standard deviation of split frequencies (ASDSF) and the convergence diagnostic: 

potential scale reduction factor (PSRF) were examined following each MCMC run, as outlined in 

Ronquist et al. (2005). Trees from the burn-in phase of analyses, i.e. those that did not converge 

on the ppd of trees, were discarded. Remaining trees were combined to produce a composite 

sample for the combined data. The pp of clades was estimated by calculating a 50% majority-rule 

consensus tree in PAUP* 4.0b1 0 (Swofford, 2002). 
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RESULTS 

Parsimony Analyses 

Alignment of sequence data resulted in a combined dataset of 2833 characters. Collectively the 

plastid partitions contributed 2163 aligned nucleotide positions and 19 insertion-deletion 

characters (indels). Plastid DNA sequence data were generated for a total of 132 accessions, 

representing 97 species (Table 1.2). There were 821 bases and seven indels available from the 

tmL -F region for 128 accessions, 467 bases and seven indels from the psbA-tmH region for 128 

accessions, and 875 bases, five indels from the rpoB-tmC region for 100 accessions. Alignment 

of ITS data for 71 taxa contributed 670 nucleotide characters but no informative indels. 

Jackknife (JK) analysis of the initial 132-taxon dataset recovered most species as monophyletic, 

including the highly variable, widely distributed taxon, Cotyledon orbiculata (Fig. 1.1). 

Monophyletic taxa were pruned to a single representative. Exceptions to this were Adromischus 

triflorus, A. liebenbergii, Tylecodon reticulatus and T. striatus, each recovered as polyphyletic. An 

accession representing each phylogenetic position for these taxa was retained in subsequent 

analyses. As the 10 species of Kalanchoe formed a clade and relationships within the genus are 

beyond the scope of this investigation, only three were retained. Similarly, Crassula was reduced 

to two accessions, giving a dataset of 90 taxa. There was limited resolution following analysis of 

the 132-taxon set (based on tmL-F and psbA-tmH data only) however, nodes that were resolved 

concurred strongly with those present following analyses of the smaller datasets, descriptions of 

which follow. In addition, support observed in the 132-taxon set was generally similar, albeit lower 

in many instances, as that in subsequent analyses. 

Conflict among data partitions 

Analysis of each plastid data partition recovered poorly resolved and largely congruent 

topologies, with no supported conflicts (trees not shown). All three datasets, each of 71 taxa, 

were therefore combined for assessing conflict between plastid and ITS data partitions. 

- 19 -

Univ
ers

ity
 of

 C
ap

e T
ow

n



Computed JK consensus trees are shown in Figure 1.2., and a brief description of conflicting 

phylogenetic positions follows. Jackknife support for each relationship is given in parentheses. 

Table 1.2. Summary of number of species and accessions for which DNA data were generated for phylogeny 
reconstruction, as detailed in Table 1.1. 

Subfamily No. of 
No. of species Total no. of 

No. of accessions 

Genus species 
represented in current accessions available !=>er DNA region 

study trnL-F psbA rpoB ITS 

Kalanchoideae 

Cotyledon 11 10 19 15 19 14 10 

Tylecodon 46 43 55 55 54 48 31 

Adromischus 27 27 41 41 38 35 24 

Kalanchoe - 144 10 10 10 10 3 3 

Sempevivoideae 

Aeonium - 36 0 

Crassuloideae 

Crassula - 195 6 6 6 6 0 2 

Totals 97 132 

A dromisch us 

ITS recovers A. fal/ax as sister to A. phillipsae (90), both being outside the A. nanus - A. 

bieolor clade (86); in contrast, plastid data place A. fal/ax as sister to A. umbraetieola + A. 

schuldtianus (90), nested within the A. nanus - A. bieolor clade (80). 

TyJecodon 

(i) The ITS data place T. stenocaulis as sister to T. ventricosus + T. striatus (86), while 

plastid data recover T. stenocaulis as sister to T. leucothrix (95), and include T. ventricosus + T. 

striatus within a clade of seven other taxa (T. cacalioides - T. nolteei clade) (93). 

(ii) ITS places T. fragi/is as sister to T. schaeferianus (96), and plastid data recover T. fragilis 

as sister to T. decipiens (89). 

(iii) ITS resolves T. suffultus, T. oecultans, T. reticulatus ssp reticulatus and T. nolteei as 

members of the T. cordiformis - T. pusillus clade (72), with T. occultans being placed 

sister to T. reticulatus ssp phyl/opodium (87). In contrast, analysis of plastid data recovers 

these taxa within the T. eacalioides - T. ventricosus clade (93), retaining T. reticulatus 

ssp. phyl/opodium as a member of the T. cordiformis - T. pusillus clade (76). 
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K. elszae 
K. lat/sepala 
K. marmorata 
K. rotundlfolia 
K.lateritia 
K. lanceo/ata 
C. woodli 
C. barbeyi 
C. tomentosa ladismlthensis 
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C. ve/utina 
C. orbicufata 9225 
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C. campanulata 
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T. cordiformis 
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T. bayeri.2664 
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T. buchholzianus 
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T. rubrovenosus 
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Figure 1.1. Jackknife consensus tree recovered following analysis of plastid data (trnL -F and psbA-trnH) for 132 taxa. 
Several taxa are represented by multiple accessions in order to determine whether or not they represent monophyletic 
groups. Jackknife values of 2: 63% are shown above branches. 
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Applying the 75% JK criterion to the conflicts outlined above identifies A. tal/ax, T. stenocaulis, T. 

tragilis and T. occultans as potentially problematic for inclusion in an analysis of combined ITS 

and plastid data. Subsequent analyses were carried out with these taxa included (90-taxon set), 

and with them excluded (86-taxon set). The former comprised 10 of the 11 Cotyledon species (10 

accessions), 43 of the 46 Tylecodon species (45 accessions), and 27 of the 28 species of 

Adromischus (29 accessions), together with three species of Kalanchoe, Aeonium 

leucoblepharum, and two species of Crassula. Topological information from the strict consensus 

trees computed from results of parsimony analysis is incorporated into Figures 1.3 and 1.4. Tree 

statistics are shown in Table 1.3, and reporting of results is combined with those from Bayesian 

inference that follows. 

Bayesian inference: generic relationships and monophyly 

Trees sampled after the ASDSF stabilised at < 0.03 and the PSRF was at or close to zero (after 

approximately 4,000,000 generations) were retained for both taxon sets. Independent runs 

produced highly similar results and so trees from only one run were used. Thus for both taxon 

sets a 50% majority rule consensus tree was computed from the remaining 20,000 trees 

considered to be a good representation of the posterior probability distribution of trees (Figs. 1.3 

& 1.4). Posterior probabilities 2! 0.90 are reported in parentheses. 

Table 1.3. Tree statistics of combined plastid and ITS dataset analysed for 90 and 86 taxa. 

PICs - parsimony informative characters, MPTs - most parsimonious trees, CI - consistency 

index, RCI - rescaled consistency index. 

Taxon Characters Characters Tree 
set included variable PICs MPTs length CI RCI 

90 2852 872 494 939 1631 0.556 0.500 

86 2852 865 490 5250 1596 0.567 0.510 
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Parsimony and Bayesian reconstructions of phylogeny are highly congruent, with the exception of 

the position of Kalanchoe (Figs. 1.2 & 1.3). Parsimony recovers Kalanchoe as sister to a well

supported clade (JK=91 %) containing Cotyledon, Tylecodon and Adromischus, whereas 

Bayesian analysis recovers Adromischus as sister to a clade comprising Kalanchoe and 

Cotyledon + Tylecodon which attains pp=0.92. 

Eliminating taxa previously identified as problematic from Bayesian analysis has no effect on the 

deep relationships in the phylogeny. Variation in topology occurs only within genera and differs 

between the taxa involved. Adromischus tal/ax is strongly supported as sister (pp=1.00) to A. 

phillipsae + A. humilis, and its inclusion results in the sister pair being placed within the A. 

sub viridis - A. humilis clade. When A. tal/ax is omitted A. phillipsae + A. humilis is sister to all 

other species of Adromischus - a relationship also highly supported (pp=1.00). Under parsimony 

all nodes relevant to this conflict are unresolved. Within Tylecodon, removing T stenocaulis has 

no effect on relationships between remaining clade members. Tylecodon occultans is sister to T 

suffultus + T reticulatus ssp reticulatus + Tnolteei, forming a clade that is nested within the T 

ventricosus - T tuberosus clade. When T occultans is removed, the clade to which it belonged is 

placed as sister to a correspondingly reduced T ventricosus - T tuberosus clade with high pp 

(1.00). In addition, JK support for the reduced clade increases from 70 to 81 %. Omitting T tragilis 

has no effect on support for the clade to which it belonged - it remains high (pp=0.96), while JK 

support increases from < 50% to 78%. 

Relationships within Kalanchoideae 

Kalanchoideae are monophyletic and support for this is strong (pp=1.00; Fig. 1.2). Generic-level 

relationships within the subfamily are resolved and also attain strong support from the data. The 

monophyly of Cotyledon, Adromischus and most of Tylecodon is strongly supported (pp=1.00). In 

turn, the sister relationship between Cotyledon and Tylecodon attains high probability (pp=1.00). 

The strongly supported (pp=1.00) placement of T racemosus as sister to Adromischus, renders 

Tylecodon, as currently circumscribed, polyphyletic. 
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T. striatus 100 93 T. cacalioides 
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T. cordiformis 
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T. paniculatus 

T. su/phureus T. suffuitus 
T. atropurpureus T. noiteei 
T. bayeri2664 T. cordiformis 
T. decipiens T. bayeri2664 

T. similis T. bayeri 1490 
T. /ongipes 

Plastid data 
T. relicu/atus phyllo. 

T. pearsonii T. /ongipes 
T. toru/osus T. pusillus 
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T. viridiflorus 76 T. toru/osus 

T. tribb/ei 
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Figure 1.2. Jackknife consensus trees from analysis of ITS (left-hand tree) and plastid data (right-hand tree) for a common set of 71 taxa. Nodes with a group frequency 

of ~ 50% are shown as resolved, and JK values of ~ 63% are given above branches. Species which have conflicting relationships between the two topologies are 

indicated by a solid square on the branch. 
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In order to assess the genetic divergence of Tylecodon racemosus from other taxa focal to this 

study, genetic distances (uncorrected p distances) between pairwise species comparisons of 

sequence data were calculated in PAUP (Swofford, 2002). Pairwise distances between species 

were calculated for species of Cotyledon, Tylecodon, and Adromischus, and between members 

of these genera and T. racemosus. Tylecodon racemosus was found to be a highly divergent 

lineage (Table 1.4). Genetic distances between species within each genus are small (0.012 -

0.014), while the distances between genera range from 0.029 to 0.066. Tylecodon racemosus is 

at least as different from Tylecodon, Cotyledon and Adromischus as each is from the other 

(0.054-0.068). 

Table 1.4. Summary of pairwise genetic distances calculated between species of 

Cotyledon, Tylecodon, Adromischus, and between these genera and Tylecodon 

racemosus. Values are uncorrected 'p' distances. 

Comparison Average +/- stdev 
genetic distance 

Within Cotyledon 0.012 0.006 

Within Tylecodon 0.013 0.011 

Within Adromischus 0.014 0.006 

Cotyledon - Tylecodon 0.029 0.009 
Cotyledon - Adromischus 0.066 0.037 
Tylecodon - Adromischus 0.058 0.006 

T. racemosus - Cotyledon 0.068 0.013 
T. racemosus - Tylecodon 0.059 0.007 
T. racemosus - Adromischus 0.054 0.006 
T. racemosus - all 0.059 0.009 

Species-level relationships 

Relationships within Cotyledon are completely resolved. Two strongly supported clades are 

recovered within the genus, each with pp=1.00. Cotyledon woodii is placed as sister to C. barbeyi 

+ C. tomentosa + C. velutina (p=1.00). The latter two species form a highly supported pair 

(p=1.00). The second clade comprises C. campanulata + C. adscendens (pp=1.00) recovered as 

sister to the remaining four species. Within this clade C. papillaris + C. eliseae is highly supported 

(pp=1.00), with C. cuneata sister to this pair. The latter relationship attains high JK support (93%), 
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Figure 1.3. Majority rule consensus tree (50%), computed from 20,000 trees following Bayesian analysis of combined ITS and plastid 
data for 86 taxa. Four taxa involved in conflicting resolutions from ITS and plastid datasets were omitted from these analyses. Posterior 
probabilities of clades are given above branches and JK percentages from parsimony analysis are given below branches. Nodes marked 
with black dots are unresolved in the parsimony strict consensus tree, and that marked with an open circle conflicts with the parsimony 
reconstruction (see text). Numbers opposite species of Adromischus indicate the section in which T61ken (1985) placed each species: 1 
Adromischus; 2 Boreali; 3 Brevipeduncu/ati; 4 /ncisi/obati; 5 Longipeduncu/ati. 

- 26-

Univ
ers

ity
 of

 C
ap

e T
ow

n



1 
100 

0.92 
100 

(0.89) 

0.99 
99 

100 

Crassu/a rupestris 
Crassula pel/ucida 
Aeonium leucoblepharum 
T. racemosus 9865 

r---------------- A. bic%r 
.-_____________ A. liebenbergii orienta/is 

64 
0.99 
75 

100 

A. sphenophyl/us 
A. triflarus 9767 
A. caryophyllaceus 
A. hemisphaericus 
A. liebenbergii liebenbergii 
A. triflorus sn 
A. mammillaris 
A. maximus 
A. inamoenus 
A. maculatus 
A. alston;; 
A. fificaulis fiflcau/is 9880 
A. montium-kfinghardtii 

--",-__ A. roaneanus 
A. marianiae 
A. cristatus schonlandii 8942 
A cooperi 
A. trigynus 
A. subviridis 
A. nanus 
A. leucothrix 
A. umbratico(a 
A. schufdtianus schuldtianus 
A. schuftianus brandbergensis 

_,r----- A. fal/ax 
A. phillipsae 
A. humilis 

.-_____________ ....,,1h-______________ r-;--;::== K. gracilipes 

1 00 ~: :~;;/~s 

1 
100 

1 
95 

1 
100 

1 
69 

100 

86 

97 

70 

99 

.-______ C. woodii 

r----;;9
1
"9--I C. barbeyi 

C. tomentosa 
C. vefutina 
C. campanulata 
C. adscendens 

.-______ C.orbicu/ata 

C. cuneata 
C. papiflaris 
C. eliseae 
T. singularis 
T. krilzingeri 
T. leucothrix 
T. hallii 
T. albif/orus 
T. stenocaulis 
T. faucium 
T. striatus 9177 
T. ventricosus 
T. striatus 7501 
T. QCCultans 
T. suffultus 
T. reticulatus reticulatus 
T. no/teei 
T. caca/ioides 
T. paniculatus 
T. hirtifolius 
T. wallichii 
T. tuberosus 
T. pygmaeus 
T. scandens 
T. sulphureus 
T. tenuis 
T. grandifJorus 
T. aridimontanus 
T. aurusbergensis 
T. schaeferianus 
T. decipiens 
T. fragilis 
T. reticu/atus phyl/opadium 
T. viridifJorus 
T. bayeri 2664 
T./angipes 
T. buchholzianus 
T. tribble; 
T. similis 
T. atropurpureus 
T. pearsonii 
T. torulosus 
T. cordiformis 
T. rubrovenosus 
T. bayeri 1490 
T. ellapiae 
T. pusiflus 

Figure 1.4. Majority rule consensus tree (50%) computed from 20,000 trees following Bayesian analysis of combined ITS and plastid 
data for 90 taxa. Taxa involved in conflicts between data partitions are included in this analysis. Posterior probabilities of clades are 
given above branches and JK percentages from parsimony analysis are given below branches. Nodes marked with black dots are 
unresolved in the strict consensus tree, and that marked with an open circle conflicts with the parsimony reconstruction (see text). 
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but is not supported in Bayesian reconstructions. Cotyledon orbiculata is recovered as sister to 

these species, although the relationship is unsupported. 

Resolution within Tylecodon is poor; however some structure is recovered. Tylecodon singularis 

is recovered as sister to all other species of Tylecodon, and four main clades that attain support 

are identified. Two such clades emerge, and while they receive high support (pp=1.00), there is 

no information regarding their affinities to the remaining species in the genus. The first clade finds 

T. albiflorus as sister to T. faucium + T. striatus 9177, while in the second clade T. kritzingeri is 

recovered as sister to T. leucothrix + T. hallii (pp=1.00) Two larger clades that group most other 

species are recovered. The T. suffultus - T. tuberosus clade houses 10 species, with pp=1.00. 

Within this T. suffultus is resolved as sister to T. reticulatus ssp reticulatus + T. nolteei (pp=0.93) 

and the other clade, supported by pp=1.00 contains T. ventricosus + T. striatus (pp=1.00), T. 

cacalioides + T. paniculatus (pp=0.99), and finally T. hirtifolius as sister to T. wallichii + T. 

tuberosus. The latter pair is unsupported. Finally, a clade of 20 species is recovered and 

supported with pp=0.90. Whilst there is little structure within this clade, four species pairs are 

reliably identified (i.e. pp ~ 0.95), namely T. decipiens + T. schaeferianus (pp=0.96), T. 

aridimontanus + T. aurusbergensis (pp=1.00), T. atropurpureus + T. pearsonii (pp=1.00), and T. 

ellaphiae + T. pusillus (pp=1.00). An additional strongly supported pairing between T. pygmaeus 

and T. scandens (pp=1.00) is recovered and falls outside any of the clades described. 

The five sections of Adromischus recognised by T61ken are indicated on Fig. 1.3. There is 

reasonable correspondence between his morphology-based classification and the molecular data 

analysed here. Adromischus phillipsae and A. humilis are sister species, both from Section 

Brevipedunculati (3), (pp=1.00) this pair being recovered as sister to the rest of Adromischus. The 

subsequent divergence of A. bicolor leaves a well-supported clade (pp=1.00) within which two 

main clades are partly resolved. The A. liebenbergii - A. roaneanus clade (pp=1.00) contains 

members of Sections Adromischus (1) and Incisilobati (4) only. The second main group, A. 

marianiae - A. leucophyllus (pp=1.00) is further resolved as the A. marianiae - A. trigynus clade 
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(pp=1.00) containing members of Sections Boreali (2) and Longipedunculati (5), and the A. 

umbraticola - A. leucophyllus clade (pp=0.94) comprising members of Sections Boreali, 

Brevipedunculati, and Longipedunculati. 

DISCUSSION 

Phylogenetic relationships estimated from data from the nuclear and plastid loci used in this study 

are highly congruent indicating that they share a common evolutionary history. Thus hybridisation 

and paralogy are not of major concern in the interpretation of relationships in this group given 

these data. Several supported conflicts do emerge, however most conflict lacked clear support. 

Nuclear ITS data could not be produced for 20 of the terminals, mostly species of Tylecodon, in 

the 90-taxon dataset using standard sequencing techniques as there was evidence of multiple 

signals in sequence traces. The ITS region is a popular source of information in plant 

phylogenetic inference. As a result of its widespread application the potential for incorrect 

inference has been uncovered and the region's utility for phylogenetic reconstruction questioned 

(Alvarez and Wendel, 2003). The region occurs in multiple and tandemly repeated 18S-26S rONA 

arrays that can evolve independently and thus blur or even obscure phylogenetic relationships at 

the organismal level (Alvarez and Wendel, 2003). Without knowing whether the ITS data 

generated here represent orthologous or paralogous loci, the assumption must be that no one set 

of data are more correct than the other, and topological inconsistencies are interpreted as 

indicating potential biologically significant processes (Wendel and Doyle, 1998). It has been 

suggested that plastid DNA alleles coalesce faster than nuclear alleles due to their smaller 

effective population sizes (Wendel and Doyle, 1998). In modelling this process Moore (1995) 

proposed that in order to match the level of confidence in the congruence of a single organellar 

tree, 16 independent nuclear gene trees would be required. This level of DNA sampling is 

impractical for the current investigation and as analyses of nuclear and plastid data produce 

generally concordant topologies on supported nodes, whereas most conflict lacks clear support. 
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Caution has been exercised in interpreting the phylogenetic discord found in this study and the 

small amount present is not sufficient to undermine the value of this phylogenetic hypothesis. 

Including Adromischus tal/ax in analyses clearly confounds relationships between A. phillipsae + 

A. humilis and the remaining members of the genus. When A. tal/ax is included the three species 

form a clade which is of relatively recent origin, nested within a larger well-supported clade (A. 

marianiae - A. humilis, Fig. 1.4). When A. tal/ax is omitted the remaining two species form a pair 

whose lineage diverged very early in the history of the genus (Fig. 1.3). It is not surprising that A. 

tal/ax, A. phillipsae and A. humilis form a clade. Tolken (1985) placed them in Section 

8revipedunculati as they all have softly herbaceous leaves - unusual in the genus. Adromischus 

tal/ax is a little known species, restricted to a single mountain top near Graaff-Reinet in the 

Eastern Cape Province. Additional field collected material is needed to establish whether the 

individual sequenced for this study is of hybrid origin, or whether the seemingly different histories 

result from the species being the product of hybridisation. It would be interesting to clarify the 

timing of the evolution of softly herbaceous leaves in the group as, although they are not 

seasonally deciduous, they closely resemble the leaves of species of Tylecodon, and those of the 

new genus described in the next chapter (Toelkenocodon). 

The data are inconclusive regarding the relationship between Kalanchoe and the remaining 

genera of Kalanchoideae. Plastid and combined data recover Kalanchoe as sister to Cotyledon + 

Tylecodon, with Adromischus sister to these three genera. These findings are consistent with 

those of a family-wide analysis by Mort et al. (2001). Similarly, van Ham and 't Hart (1998) 

recovered Adromischus as an earlier diverging lineage, sister to a clade comprising Cotyledon, 

and Kalanchoe + 8ryophyl/um (the latter has since been included in Kalanchoe: Thiede & Eggli, 

2007). Their inferences were based on a single representative of each genus and Tylecodon was 

not included, thus direct comparison between their work and the current study is somewhat 

limited. In contrast to analysis of plastid and combined data, ITS data place Kalanchoe as sister 

to a clade comprising Cotyledon, Tylecodon and Adromischus. Kalanchoe is a large and variable 

- 30-

Univ
ers

ity
 of

 C
ap

e T
ow

n



group comprising some 144 species distributed throughout the Old World tropics, especially 

Africa and Madagascar (Mabberley, 1997). Only 13 species occur within southern Africa (T6Iken, 

1985) and the monophyly of the genus has yet to be tested with thorough sampling and molecular 

phylogenetic analyses. The uncertainty regarding the relationships of the genus within 

Kalanchoideae may well result from the low numbers of species represented in this and other 

studies (e.g. Mort et aI., 2001). Species of Kalanchoe included here are however, recovered as 

monophyletic and are not nested within any of the focal study genera. Increased sampling in 

future investigations will help to clarify the situation. Kalanchoe is known to be of polypoid origin 

(Mort et aI., 2001): thus the conflict between nuclear and plastid data revealed here may well 

indicate historical hybridisation. 

The monophyly of Cotyledon, Tylecodon and Adromischus recovered by molecular data in this 

study concurs almost completely with the most inclusive generic-level classifications based on 

morphology (T6lken 1978, 1985; van Jaarsveld & Koutnik, 2004). That Tylecodon racemosus is 

not included in the Tylecodon clade is an unexpected finding. Two accessions of T. racemosus 

from separate localities were used to check the validity of this finding. Their monophyly was 

strongly supported by both ITS and plastid data, independently (JK=100%). All data partitions, 

whether analysed singly or in combination, using parsimony and Bayesian methods, recovered T. 

racemosus as sister to Adromischus. Morphology unambiguously places T. racemosus within 

Tylecodon, and no mention of suspicion regarding its taxonomic position has been made in 

treatments detailing the taxon (T6lken 1978, 1985; van Jaarsveld & Koutnik, 2004). It shows little 

morphological resemblance to Adromischus with which it shared a MRCA, and in the context of 

the southern African members of the Kalanchoideae, molecular evidence regarding the relative 

divergence of T. racemosus is clear. There is little doubt that the taxon should be elevated to the 

rank of genus. Morphological interpretation is potentially more challenging and is the subject of 

the following chapter. 
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There is little topological agreement between this study and that of Mort et al. (2005) regarding 

relationships within Cotyledon. Although the phylogeny of Cotyledon is fully resolved in their 

study, the only relationships that attain bootstrap (8S) values> 50% are the pairing of the two 

subspecies of C. tomentosa (8S=97%), and the recovery of C. orbiculata var. oblonga as sister to 

these (8S=61 %). In contrast, the data analysed here produce a well supported topology. Direct 

comparison of the two reconstructions is somewhat hampered by differences in sampling within 

Cotyledon orbiculata. Mort et al. (2005) include representatives of all varieties of C. orbiculata, 

while only C. orbiculata var. orbiculata and C. orbiculata var. spuria were available for the current 

work. More detailed sampling within the highly variable C. orbiculata, together with analysis of 

additional sequence data are needed to produce a more robust phylogenetic hypothesis for the 

genus. There is concordance between geography and the two main clades recovered in 

Cotyledon (Fig. 1.5). The 'eastern', C. barbeyi - C. velutina clade is distributed mostly east of 

Cape Agulhas. Cotyledon barbeyi is its northern-most member and is a widespread, common 

species found from KwaZulu-Natal, South Africa northwards to the Arabian Peninsula. A 'western' 

clade also emerges: the C. campanulata - C. eliseae clade, with representatives found in 

Namaqualand, ranging south to the coast and eastwards to East London. There is substantial 

overlap between the eastern and western clades in the southern-most part of the genus' range 

between Cape Agulhas and East London, and Cotyledon orbiculata of the western clade is 

widespread and occurs throughout the ranges of all other species of Cotyledon. The geographic 

mingling of representatives of these two divergent clades suggests that species of Cotyledon are 

relatively mobile, dispersing into new areas and expanding their current ranges to overlap with 

members of the more distantly related clade. 

Several geographically cohesive clades emerge from analyses of Tylecodon. The T. albiflorus -

T. striatus clade comprises species restricted to succulent karoo vegetation in the Little Karoo 

Centre (van Wyk & Smith, 2001) and the Ceres Karoo, with T. striatus extending northwards into 

the Roggeveld Mountains (Fig. 1.6). A Gariep Centre (sensu van Wyk & Smith, 2001) clade is 

recovered and represents almost half of the species of Tylecodon. The diversity of the Gariep 

- 32-

Univ
ers

ity
 of

 C
ap

e T
ow

n



clade is concentrated in the Richtersveld, while some species range eastwards along the Orange 

River Valley, and others extend north into Namibia. The Gariep Centre coincides with an area 

that receives regular, coastal fog that contributes significantly to annual precipitation (Williamson, 

2000). Within the Gariep Centre clade two strongly supported groups emerge: the narrowly 

distributed montane sisters: T. aridimontanus and T. aurusbergensis, and a clade of coastal 

species, namely T. schaeterianus, T. decipiens and T. tragi/is. All species, except T. 

aridimontanus, have subterranean tubers. Ty/ecodon kritzingeri and T. hallii, also found in the 

Richtersveld, are recovered within the same clade as T. /eucothrix, which is distributed in the 

distant Little Karoo Centre. This is a considerable disjunction between closely related species. 

Several explanations are equally plausible given that no decisive evidence exists: extinction of 

intervening species or populations, seed dispersal, and post-speciation range shifts. Interestingly, 

four of the six most widespread species of Ty/ecodon, namely T. wallichii, T. panicu/atus, T. 

reticu/atus (currently ssp. reticu/atus) and T. ventricosus, are confined to one clade. There is no 

obvious unifying feature exclusive to these species that might account for their relatively 

widespread distributions. They are amongst the larger species in the genus, and this may confer 

increased dispersal distances, although other species of similar stature are not widespread. The 

remaining members of this clade are restricted to the Knersvlakte Centre (T. no/teei and T. 

suffu/tus) , northern Namaqualand (T. tuberosus and T.hirfitolius) , while T. caca/ioides is restricted 

to the Little Karoo Centre. 

Adromischus is noteable for the high incidence of close relatives that are geographically widely 

separated (Fig. 1.7). Two main, well-supported clades account for the majority of species, namely 

the A. liebenbergii - A. roaneanus clade and the A. marianiae - A. /eucophyllus clade. 

Disjunctions are prevalent in the latter. For example, A. nanus occurs from the Richtersveld to 

Springbok (Pilbeam et al. 1998) and its sister is found between Roberston, Montagu, and around 

the Little Karoo. Adromischus umbratico/a is also part of this clade and is found on the Highveld 

around Pretoria and the Soutpansberg and Blouberg, while its closest living relative, A. 

schu/dtianus, occurs in Namibia. As with some members of Ty/ecodon, these disjunctions 
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suggest mobility of seeds and, in the case of species of Adromischus which propagate readily 

from fallen leaves, asexual propagules. Given the current data however, extinction and post

speciation range shifts cannot be ruled out. The second of the two main clades contains species 

with somewhat more cohesive distributions. The A. mammillaris - A. maculatus subclade is found 

mainly in the Western Cape Province, and the A. alstonii - A. roaneanus clade ranges from the 

Western Cape Province north into the Richtersveld. 

Different patterns of flowering phenology emerge across the three genera investigated here. 

Coincident with the east-west split in the two main clades of Cotyledon is the separation of 

flowering time. Members of the western clade flower mostly in spring and early summer, with the 

exception of C. eliseae, which flowers in January (Fig. 1.5). In contrast, species of the eastern 

clade exhibit greater variation, with flowering occurring from late summer through to winter. 

Across the entire distribution of Cotyledon flowering occurs after the main rainfall season and is 

likely to be synchronous with a greater availability of pollinators in the dry season when many 

other plants have finished flowering (van Jaarsveld & Koutnik, 2004). A very broad phenological 

sequence is apparent across the phylogeny of Tylecodon, with a shift from spring to late summer 

flowering in more recently diverged clades (Fig. 1.6). This coincides with the evolution of a 

speciose clade with many representatives distributed in Namaqualand and the Richtersveld area 

(T. viridiflorus - T. pusillus clade). Most members of this clade flower during early to mid summer. 

There is very little phylogenetic structure within the clade of late summer flowering species, but it 

is interesting that flowering times between well-supported sister species identified by these 

analyses, both in this and other clades, are more often than not asynchronous. In some 

instances, such as with T. pygmaeus and T. scandens, species are sympatric and they flower 

from November to January, and February to March, respectively. Others that are allopatric also 

separate their flowering times. Tylecodon ellaphiae from the north-eastern Richtersveld flowers in 

January and February whereas its sister, T. pusillus found in the south-eastern Richtersveld, 

flowers from March to June. Across the succulent karoo, which is home to many species of 

Tylecodon, succulents tend to flower after the herbaceous annuals of the region. Succulents are 
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able to separate growth and flowering due to the availability of water stored in the plant body, and 

the shift in flowering may be an adaptation to reduce competition for pollinators (Esler, 1999). 

Across Adromischus flowering times are relatively conserved; some flower in November

December, others in December-January. As with Tylecodon, there are temporal shifts in flowering 

between several sister species. Unfortunately flowering times are not known for several species 

of Adromischus, but in sister pairs for which times are known, flowering rarely overlaps. 

Adromischus nanus found east of the Richtersveld flowers during November and December, 

while A. leucophyl/ous of the Little Karoo, flowers in January and February. Likewise, A. 

caryophyl/aceus reported from the Little Karoo to Hermanus flowers from January to March, 

whereas its sister A. hemisphaericus, found in the south-western Cape and north to the 

Knersvlakte, flowers in early summer. Very little is known about pollination in the southern African 

members of Kalanchoideae and so the phylogenetic context of phenological patterns presented 

here offers considerable scope for comparative analysis of sister pairs within these genera. 

Combining investigations of population genetic structure with those of habitat isolation and the 

natural history of pollination would provide valuable insight into the processes determining 

reproductive isolation and speciation across this group of succulents. 

Analyses of data from two independent loci generated for this study recover highly concordant 

estimates of phylogeny for Cotyledon, Tylecodon and Adromischus. Testing current generic limits 

with extensive species-level sampling and molecular sequence data identified Tylecodon 

racemosus as having a separate evolutionary history, sufficiently divergent from all currently 

described clades to necessitate its elevation to the rank of genus: Toelkencodon. The 

morphologically cryptic nature of this taxon's divergence highlights the importance of using DNA 

data as a source of information for phylogenetic inference that is independent of the confounding 

effects of morphological convergence. In light of these findings, the value of thorough sampling 

when investigating species-level relationships cannot be over-emphasised. Further data are 

required to produce more robust estimates of relationships within clades, however the phylogeny 

presented here provides a great deal of information on the evolutionary history of Cotyledon, 
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Tylecodon, Adromischus and Toelkenocodon. Relationships are sufficiently resolved and well

supported to facilitate the investigations of the temporal and spatial patterns of diversification that 

have occurred across these southern African genera of Kalanchoideae; analyses that are the 

subject of Chapters 3 and 4. 
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CHAPTER 2 

Toelkenocodon, a new genus of southern African Crassulaceae. 

INTRODUCTION 

Tylecodon is a genus of seasonally deciduous, dwarf, succulent shrubs distributed in the winter 

rainfall region of south-western southern Africa. Many species of Tylecodon are restricted to 

succulent karoo vegetation. Information on the taxonomy of the genus, together with that of its 

sister Cotyledon, has been recently updated to include the many species described since T61ken 

erected Tylecodon in 1978 (van Jaarsveld & Koutnik, 2004). The genus comprises 46 species, 

and is one of four genera of Kalanchoideae, the subfamily of predominantly African 

representatives of Crassulaceae. Kalanchoideae also includes Adromischus with 28 species, 

having near equal representation in the winter and summer rainfall regions of southern Africa, 

and Cotyledon with 11 species, found mostly in summer rainfall areas. Members of 

Kalanchoideae are easily distinguished from other members of Crassulaceae by the possession 

of a well-developed corolla tube (Thiede & Eggli, 2007). While the aforementioned genera are 

pentamerous, Kalanchoe - the fourth member of the subfamily - has flowers in four parts. 

Kalanchoe is a variable and widespread genus comprising around 150 species distributed in 

summer rainfall areas. 

Tylecodon, Cotyledon and Adromischus, were the focus of a recent, near completely sampled 

species-level phylogeny that used plastid and nuclear DNA data to test the monophyly of and 

elucidate relationships within the three genera (Chapter 1). This molecular study revealed that 

Tylecodon is polyphyletic as Tylecodon racemosus is recovered as sister to A dromisch us. This 

relationship is very strongly supported by data from both independent loci. Analyses of genetiC 
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distances within and among genera (Table 1.4, Chapter 1) indicate that T. racemosus is as 

different from Adromischus as it is from either Tylecodon or Cotyledon, arguing for its elevation to 

the rank of genus. Morphologically T. racemosus closely resembles species of Tylecodon. It has 

soft, seasonally deciduous leaves, a pachycaulous base, and erect to spreading inflorescences of 

1-6 monochasia. Adromischus is a morphologically coherent genus which differs from T. 

racemosus in having stiff persistent leaves, often with a waxy bloom and horny margin, spike-like 

inflorescences, and corolla lobes joined by a thin membrane. The seemingly cryptic nature of 

features that might be unique to T. racemosus necessitates further examination of the distribution 

of morphological characters across members of the Kalanchoideae. Thus the aims of this chapter 

are two fold: to determine whether T. racemosus has unique features, and to describe it formally 

as a new genus. 

METHODS 

Specimens of T. racemosus (hereinafter referred to as Toelkenocodon) held at the Compton 

Herbarium (NBG), Kirstenbosch, were examined in order to identify morphological characters by 

which the taxon might be distinguished. In addition, a re-evaluation of putative synapomorphies 

for existing genera of the Kalanchoideae was performed by extracting information, pertinent at the 

generic level, from T61ken (1978, 1985), van Jaarsveld & Koutnik (2004), and Thiede & Eggli 

(2007). Characters selected and the character states determined for each genus are provided in 

Tables 2.1 and 2.2, respectively. Binary and multistate characters were coded, and polymorphic 

character states, non-applicable characters and missing information were treated as unknown (?). 

Character reconstruction was performed using a summary tree topology (Fig. 2.1) of 

Kalanchoideae under Fitch parsimony (Fitch, 1971 as implemented in PAUP* 4.0b10: Swofford, 

2002). The multistate character (character 6) was treated as unordered and the delayed 

transformation (DEL TRAN) character optimisation criterion was employed (Swofford & Maddison, 

- 41 -

Univ
ers

ity
 of

 C
ap

e T
ow

n



1987, also implemented in PAUP* 4.0b10). Aeonium (Sempervivoideae) was used as the 

outgroup. 

Table 2.1. Generic-level characters recorded across genera of Kalanchoideae and Aeonium 

1. Leaves spirally arranged (0). leaves decussate (1) 
2. Leaves deciduous (0). leaves persistent (1) 
3. Transition from leaves to bracts on peduncle abrupt (0). transition gradual (1) 
4. Flowering whilst functional leaves present (0). or after leaves have withered (1) 
5. Inflorescence pendent (0). erect-spreading (1) 
6. Number of floral parts 5 (0). or 4 (1). 6+ (2) 
7. Petals free (0). fused (1) 
8. Membrane at corolla lobe sinus (0). membrane absent (1) 
9. Corolla lobes as long or longer than tube (0). lobes shorter (1) 
10. Filaments fused to corolla (0). filaments free (1) 
11. Filaments with hairs where attached to corolla (0). filaments glabrous (1) 
12. Anthers exerted (0). or included (1) 
13. Follicle dehisces along entire ventral suture (0). or at apex of follicle only (1) 
14. Nectary scales free (0) or fused to carpel. cup-like (1) 

Table 2.2. Matrix of character states for genera of 
Kalanchoideae and Aeonium. Missing. non-applicable and 
polymorphic states (indicated below by *) were scored as "?". 

Genus 

Aeonium 
Toelkenocodon 
Adromischus 
Kalanchoe 
Cotyledon 
Tylecodon 

Character states 

01?01 201?1 1100 
00101 01110 1100 
01001010101* 00 
11001 11110 1* 00 
11100011000001 
00011 011100010 

Leaves whorled in C. orbiculata var. flanaganii 
Flowers pendulous in A. phillipsae. 

RESULTS AND DISCUSSION 

Unique synapomorphies are found for all genera of Kalanchoideae, except Toelkenocodon (Fig. 

2.1). Seasonally deciduous leaves have evolved independently in Tylecodon and Toelkenocodon: 

thus the character can no longer be viewed as a unique morphological synapomorphy of 

Tylecodon. 
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simultaneously. Members of Tylecodon s.str. often exhibit some temporal overlap between leaves 

and inflorescences, but leaves are frequently in a withered state by the time flowers are fully 

developed, and the plants are more usually hysteranthous. In addition, none of the specimens of 

Toelkenocodon examined had a tuft of hairs where filaments are connate with the corolla tube: a 

putative synapomorphy for Cotyledon and Tylecodon (Thiede & Eggli, 2007). Thus 

Toelkenocodon can be defined by a unique suite of morphological characters. It has seasonally 

deciduous leaves and flowering is synanthous. The inner surface of the corolla is glabrous and no 

tuft of hairs is present where the filaments are connate with the corolla tube. In addition members 

of the genus generally flower in September and October. This is considerably earlier than most 

species of Tylecodon with which it is likely to be confused. 

While the lack of phylogenetic informativeness of monotypic genera is undesirable (Schrire & 

Lewis, 1996), broadening the circumscription of Adromischus to accommodate T. racemosus 

(Toelkenocodon) would weaken considerably the predictive value of Adromischus as currently 

circumscribed. On the strength of molecular evidence presented in Chapter 1 a new genus is 

erected to accommodate this highly divergent taxon. The differentiation of Toelkenocodon from 

other genera in Kalanchoideae is supported by a unique combination of morphological 

characters. 

The name Toelkenocodon is proposed in recognition of Helmut T61ken whose exhaustive work on 

Crassulaceae has contributed tremendously to our knowledge and understanding of the family. 

The latter part of the name relates to its former taxonomic placement within Tylecodon and to the 

genetic nature of the evidence that uncovered its evolutionary history. 
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Toelkenocodon T.L.Nowell & P. V.Bryuns, gen.nov. (Kalanchoideae, Thiede &Eggli, 2007; 

Crassulaceae DC. in Lam. & DC.). 

Tylecodon valde affine a quo differt ferens flores et foliis simul et glabris interiorbus tubo corollae 

et filamentis. 

TYPE - Toelkenocodon racemosus (Harv.) T.L.Nowell & P.V.Bryuns (= Tylecodon racemosus 

(Harv.)) 

Deciduous dwarf succulent shrublets. Erect stems retaining withered leaves, later with pale brown 

peeling bark and white leaf scars. Leaves linear to rarely almost orbicular, more or less abruptly 

cuneate, acute to obtuse, terete or slightly grooved to dorsiventrally flattened, glandular

pubescent to glabrous, green to grey-green, often with large translucent papillae. Inflorescence a 

dense terminal thyrse with monochasia. Flowers glandular-pubescent to glabrous, peduncle 

green. Calyx glandular-pubescent to glabrous, pale green; lobes lanceolate-triangular, acute and 

usually with a colourless apex. Corolla glandular-puberulous to glabrous on outside; tube 

cylindrical but slightly broadened at mouth, glabrous inside, pale green; lobes recurved, white 

more or less tinged pink. Anthers more or less included. Squamae oblong-cuneate to almost 

square, entire to deeply emarginated, slightly fleshy, pale yellow. 

Distribution: A single species found in southern Namibia and the Northern Cape of South Africa. 

Etymology: Toelkenocodon is formed from Helmut T6lken, honouring his contribution to the 

taxonomy of Crassulaceae, from Tylecodon, the genus in which it was placed previously, and 

'codon' in reference to the DNA data that informed the authors of its new rank. 
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Toelkenocodon racemosus (Harv.) T.L.Nowell, & P. V.Bryuns, comb. nov. 

Tylecodon racemosus (Harv.) T61ken in Bothalia 12: 380 (1978). Type: Cape, between Kaus, 

Natvoet and Doornpoort, Drege s.n. (S, lecto; BM;K). 

Cotyledon racemosa Harv. in F.C. 2: 375 (1862), pro parte, excl. specimen b; N.E. Br. In Gdnr's 

Chron. Ser. 3, 51: 348 (1912); Schonl. in Rec. Albany Mus. 3: 149 (1915); V. Peolln. in Reprium 

nov. Spec. Regni veg. 42: 22 (1937). 

C. chloroleuca Dinter ex Friedr. In Mitt. Bot. StSamml., MOnchen 3: 597, one fig. (1960); in 

F.S.wA 52: 8 (1968). Type: South West Africa/Namibia, 20km north of Sendelingsdrift, Herre in 

SUG20039 (M, holo.). 

Deciduous dwarf succulent shrublets to 50 cm tall. Freely to sparsely branched, erect stems 

retaining withered leaves, later with pale brown peeling bark and white leaf scars. Leaves linear, 

oblanceolate to obovate rarely almost orbicular, (10-)20-45(-60) x (2-)5-25(-35) mm, more or less 

abruptly cuneate, acute to obtuse, terete or slightly grooved to dorsiventrally flattened, glandular

pubescent to glabrous, green to grey-green, often with large translucent papillae. Inflorescence a 

dense terminal thyrse with 1-6 monochasia, each with 1-4(-6) flowers, glandular-pubescent to 

glabrous; peduncle 30-50(-80) mm long, green; pedicels 5-12 mm long. Calyx 7-12mm long, 

glandular-pubescent to glabrous, pale green; lobes lanceolate-triangular, acute and usually with a 

colourless apex. Corolla glandular-puberulous to glabrous on outside; tube cylindrical but slightly 

broadened at mouth, 7-10 mm long, glabrous inside, pale green; lobes 4-6 mm long, recurved, 

white more or less tinged pink. Anthers 1.1-1.8 mm long. Squamae oblong-cuneate to almost 

square, 1-1.8 x 0.6-1 mm, entire to deeply emarginated, slightly fleshy, pale yellow. 

Distribution and ecology: Found to the north from Witputz in southern Namibia, southwards to 

Wildepaardehoek Pass, near Springbok, Namaqualand, and east to near Steinkopf (Fig. 2.3). 
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Plants are most frequently found in mountainous areas on gravely slopes and rocky outcrops, on 

cooler, well-drained, south-facing slopes. Distributed in areas receiving> 50% of rainfall during 

winter months, with average annual rainfall ranging from 25-200 mm. Plants almost exclusively 

confined to succulent karoo vegetation. Flowering: September, October. 

• 

Succulent karoa biome 

Figure 2.3. Distribution of Toelkenocodon racemosus. 

Additional material examined: 

NAMIBIA - Lorelei, Rosh Pinah, 8 September 1987, P.V. Bruyns 2769a (NBG). Sonberg, Rosh 
Pinah, 3 September 2000 (fruiting), P.V. Bruyns 8840 (NBG). Ratelpoort, 8 August 1979, E. van 
Jaarsveld 4002 (NBG). 
SOUTH AFRICA - Komaggas, 9 September 1950, H. Hall sn (NBG). Karrachab Poort, 1 
December 1976, P.V. Bruyns 1390 (NBG). Brakputs, Springbok, 3 June 1980, E. van Jaarsveld 
5314 (NBG). Gifberg, south of Port Nolloth, 27 September 1969, W. Wisura 682 (NBG). 
Gemsbokvlei, Augrabies, 30 March 1971, W. Wisura 1305 (NBG). Doornpoort, Namaqualand, 29 
October 1949, R.H. Compton sn. (NBG). Oemsberg, Vioolsdrif, 1992, G. Williamson 4437 (NBG). 
Stinkfonteinberg, Vioolsdrif, 1992, G. Williamson 4479 (NBG). Tafelkop Pass, Richtersveld, 15 
October 1988, G. Williamson 3936 (NBG). South of Port Nolloth, 23 September 1953, H. Hall sn 
(NBG). South west of Eksteenfontein, 3 December 1974, W. Wisura sn (NBG). Doringwater, 
Eenriet, 11 November 1991, J. Lavranos sn (NBG). 
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CHAPTER 3 

Diversification in Tylecodon, Cotyledon, and Adromischus and the 

timing of the formation of the succulent karoo biome. 

INTRODUCTION 

The vegetation of the winter rainfall region of South Africa and Namibia is dominated by the 

fynbos and succulent karoo biomes (as defined in Mucina and Rutherford 2006). Both 

vegetation types boast remarkable species richness and endemism (Myers et aI., 2000; 

Mittermeier et aI., 2004) and there is evidence that several of their constituent plant groups 

have undergone rapid radiation (see Linder 2003 for review; Klak et ai, 2004). Fynbos and 

succulent karoo vegetation border one another throughout much of their geographical range, 

and collectively they form the Greater Cape Floristic Region (Jurgens, 1991 & 1997). These 

vegetation types form phytogeographic units that have affinities with the Afrotemperate flora, 

and recent analyses of floristic elements corroborate the sharp distinction of fynbos and 

succulent karoo from the rest of the flora of southern Africa (Born et ai, 2007). Given the 

present day correlation between high diversity, endemism, and geography it is logical to seek 

environmental factors that explain the historical patterns of diversification in these biomes 

(Barraclough et aI., 1998; Linder, 2003). 

Subtropical and tropical woodland vegetation is believed to have dominated much of southern 

Africa in the Tertiary (Coetzee, 1978). During this era the African subcontinent migrated north, 

temperatures fell, and the seasonality of rainfall changed (Siesser, 1980). Extinction of 

woodland vegetation ensued, and is thought to have triggered the expansion and 

diversification of the Cape floral elements that survived the changing conditions. Thus a 

'tabula rasa' hypothesis (Linder and Hardy, 2004) has been invoked to explain simultaneous 

speciation across Cape floral groups, stimulated by the availability of new niches in aridifying 
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habitats (Levyns, 1964; Linder, 1985; Linder et aI., 1992; Goldblatt & Manning, 2000; and 

Linder & Hardy, 2004). Climatic changes in the region are strongly correlated with the glacial 

evolution of Antarctica (Coetzee, 1978 & 1983; Zachos et aI., 2001). Planktonic assemblages, 

increased rates of sedimentation, and higher organic carbon content in deep sea sediments 

off the coast of Namibia indicate greater primary and secondary production during the early 

Late Miocene (12-10 million years ago [Mya]: Siesser, 1980). Together with the presence of 

diatoms characteristic of upwelled waters, evidence suggests that the Benguela Current (the 

eastern-most section of the South Atlantic Gyre) was initiated around this time (Siesser, 

1980). Conditions incidental upon the Benguela Current have greatly influenced the climate, 

and therefore the vegetation of south-western southern Africa. Perhaps the most significant 

effect on the types of vegetation and their distributions is the drop in onshore precipitation 

resulting in aridification, and ultimately the establishment of the Mediterranean-type climate 

ca. 5 Mya, that prevails in the region today (Marlow et aI., 2000). 

Environmental change that accompanies variation in climate has been hypothesised to 

stimulate organismal diversification (Vrba, 1985; Marlow et aI., 2000; Midgley et aI., 2001). 

The species richness of fynbos is thought to be the product of fluctuating climate acting on a 

flora distributed across rugged topography, diverse soil-types and complex rainfall gradients 

(Kruger & Taylor, 1979; Goldblatt & Manning, 2000; Linder, 2003). Within this system 

recurrent fire induces local extinctions and is believed to promote allopatric speciation 

(Cowling, 1987). Contrary to long standing views on the evolution of the Cape flora (reviewed 

in Linder, 2003) recent findings point to a gradual accumulation of diversity beginning in the 

Oligocene, possibly earlier (Restionaceae, see below), and may be explained by lineages 

radiating at different times in response to different drivers (Linder, 2005). Evidence for this 

comes from analyses of molecular data for species-level phylogenies of Cape floral clades. 

Timings for diversification events include those of Restionaceae which began between 42 and 

20 Mya (Linder et aI., 2003), diversification within Protea occurred between 10 and 37 Mya 

(Barraclough and Reeves, 2005), while Phylica radiated 7-8 Mya (Richardson et aI., 2001) 

and Heliophileae diverged as recently as 5.4 - 3.7 Mya (Mummenhof et aI., 2005). Work on 

Pelargonium (Bakker et aI., 2005) indicates that the genus was present in the Cape Floristic 
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Region 30 Mya, with a radiation occurring in what is now the winter-rainfall area 22 - 16 Mya. 

This was followed by proliferation of a clade of xerophytes 18 - 11 Mya and the subsequent 

diversification of a clade of geophytes around 10 Mya. The geophyte clade has centres of 

diversity in Namaqualand in the succulent karoo. Nested radiations in Pelargonium indicate 

that adaptations that enabled species to survive and diversify in increasingly arid conditions, 

is derived in the group (Bakker et aL, 2005). Similarly, molecular evidence from species of 

Ehrharta points to a Late Miocene radiation out of mesic mountain habitats onto the newly 

seasonally arid coastal plains of the succulent karoo (Verboom et aL, 2003). 

The extent to which the origins and evolutionary history of diversity of the succulent karoo 

corresponds to that of fynbos is largely unquantified. Treatment of species distributed mainly 

within the succulent karoo is often incidental with work that focuses on the evolution of fynbos 

elements (Bakker et aL, 2005; Mummenhoff et aL, 2005; and Goldblatt et aL, 2002). This 

confounds inference of the ages of succulent karoo lineages as the pertinent nodes are not 

dated. Studies that have dated both fynbos and succulent karoo lineages (Bakker et aL, 2005; 

Verboom et aL, 2003) find support for Levyns' (1964) assertion that succulent karoo 

vegetation is younger than fynbos. In turn, their findings corroborate Werger's (1983) 

proposal that dwarf succulent shrubland has invaded areas made available by the retreat of 

sclerophyllous vegetation to higher altitudes, as it tracked more mesic conditions. Analysis of 

molecular evidence for a remarkably rich, predominantly succulent karoo group (Aizoaceae) 

revealed that more than 1500 species have evolved in the last 9 Myr or so (Klak et aL, 2004). 

So there are indications that the temporal dynamics of the succulent karoo do not mirror 

those of the fynbos, and represent a system that is, to some extent, independent from its 

sclerophyllous neighbour. To establish whether this pattern is general, or restricted to a 

handful of plant lineages will require the estimation of divergence times across a wide 

phylogenetic sample of groups with at least some representatives in the succulent karoo and 

fynbos. 

Approximately half of the species of Tylecodon are endemic to the succulent karoo. Many 

other members, together with species of Adromischus, have at least part of their range within 

_ 1'::1 _ 

Univ
ers

ity
 of

 C
ap

e T
ow

n



the biome. Detailed information on the distributions of Tylecodon and Adromischus, together 

with the availability of a comprehensively sampled species-level phylogeny (Chapter 1), 

provide an appropriate system with which to explore the dynamics of diversification in the 

succulent karoo biome. 'A flora cannot evolve, it can only reflect the sum diversities 

accumulated by its evolving lineages' (Linder, 2005: 540). Thus dates generated in this study 

of the Kalanchoideae will be combined with data from a study which extends this work to 

more distantly related taxa (Verboom et aI., in press; see Appendix 1 for manuscript) in which 

a common method of divergence time estimation is applied to a selection of published 

phylogenies that contain representatives in the succulent karoo. This will provide age 

estimates for lineages that are more comparable across groups as variation introduced by 

different dating algorithms is eliminated. Divergence times of nodes for which the 

reconstructed ancestral vegetation was succulent karoo will be used as a proxy for the 

formation of the biome. Such an approach assumes that the plants occupy the same habitat 

that they did when they diverged, and that their appearance in the phylogeny post-dates the 

establishment of succulent karoo vegetation. Combining information from distantly related 

lineages endemic to the succulent karoo will strengthen correlative inference regarding the 

formation of the biome. 

This chapter will address the following specific questions: a) When did Tylecodon, Cotyledon 

and Adromischus diverge and diversify? b) Is there evidence of increased lineage 

diversification rates coincident with the intensification of the Benguela upwelling at around 12-

10 Mya, or the onset of the true Mediterranean-type climate approximately 5 Mya? c) How old 

is the succulent karoo, and is the shift to succulent karoo simultaneous across lineages such 

that the 'tabula rasa' hypothesis is applicable to this biome? 
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METHODS 

Divergence time estimation 

Divergence times were estimated for Kalanchoideae applying a global molecular clock 

(Felsenstein, 1981) and two methods that relax the clock using the assumption that rates 

between ancestor-descendent branches are autocorrelated. These were nonparametric rate 

smoothing (NPRS: Sanderson, 1997) and Bayesian MCMC-based Multidivtime estimation 

(Thorne et aI., 1998; and Thorne & Kishino, 2002). In addition, ages were estimated using 

Bayesian Evolutionary Analysis Sampling Trees (BEAST: Drummond and Rambaut, 2006) - a 

method that simultaneously estimates phylogeny and divergence times. All procedures used 

the molecular data generated as detailed in the previous chapter. 

Calibrating divergence times. 

Kalanchoe and Sedum are estimated to have diverged 25-29 Mya; this range encompasses 

the dates published in Wikstrom et al. (2001) for three methods of branch length estimation. 

To incorporate further uncertainty into divergence time estimates the 95% confidence 

intervals of the prior distribution on the calibration node were set as ± 1.96*SE (assuming a 

normal distribution and df = 00). A standard error of 3 Myr was used (i.e. bootstrap standard 

error estimate given in Wikstrom et aI., 2001) and applied as ± 6 Mya (rounding up) to the 

range of age estimates. This gave a lower bound of 19 Myr and an upper bound of 35 Myr. 

The mean (27 Myr) of the 25-29 Myr range mentioned above was used for Bayesian-based 

methods. Aeonium leucoblepharum represents Sempervivoideae in this study. 

Dating methods 

Clock and NPRS procedures were performed using two datasets and a combination thereof: 

1288 bps of plastid trnL-F and psbA-trnH data for 82 taxa; 670 bps of ITS for 67 taxa; and a 

subset of 65 taxa with 1958 bps of these data combined. Parameters of molecular evolution 

for each of the partitions were estimated using Modeltest version 3.06 (Posada and Crandall, 

1998). Branch length optimisation was carried out with each dataset using the selected model 

parameters and the Bayesian maximum clade credibility tree (henceforth referred to as the 
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Bayesian summary tree) as a topological constraint, under a maximum likelihood (ML) 

criterion, both with and without a molecular clock enforced (Felsenstein, 1981), as 

implemented in PAUP version 4.1 Ob1 0 (Swofford, 2002). Log-likelihood ratio tests (LRTs: 

Felsenstein, 1988) were used to test for significant deviation from clocklike behaviour. P

values are obtained by comparing the difference in log-likelihoods (/\) to critical values of the 

Chi-square (X2) distribution with (n-2) degrees of freedom, both with and without a clock 

enforced; (/\, calculated as 2 [lnLclock - InLnoclock] ). Log-likelihood ratio tests were performed 

with Crassula included and excluded. Error associated with branch length assignment, and 

ultimately node ages, was estimated via 100 bootstrap replicates as for branch length 

optimisation described above, implementing a heuristic search, with data added 'as is' and no 

branch swapping performed. The 100 bootstrap replicates of the ultrametric tree were used to 

scale divergence times. Similarly, divergence times were profiled across 100 bootstrap 

replicates of the phylogram produced without a clock, using rate smoothing (Sanderson, 

1997) under Powell's optimisation algorithm implemented in r8s version 1.6 (Sanderson, 

2003). Both procedures were performed using the 35 Myr and 19 Myr calibrations for the 

eight nodes selected to represent the first branching event in each genus and the beginning 

of putative radiations (as detailed in Table 3.3). 

Bayesian relaxed clock age estimation was performed using Multidivtime (Thorne et aI., 1998; 

and Thorne & Kishino, 2002). Model parameter estimation, branch length optimisation and 

calculation of a variance-covariance matrix were performed on plastid, ITS and combined 

data partitions separately using a common 65-taxon set and the Bayesian summary tree. 

Procedures were implemented as described in the Multidivtime 'readme' files (Thorne and 

Kishino, 2002) and the step-by-step manual compiled by Rutschmann (2005). Parameters for 

the F84 + gamma model of molecular evolution were estimated with the baseml module of 

PAML (Yang, 1997) and the resulting formatted substitution file was used to optimise branch 

lengths and estimate a variance-covariance matrix using estbranches (Thorne et aI., 1998). 

Log-likelihood values reported by baseml and estbranches were used to check the 

performance of the likelihood optimisation. Five Bayes MCMC runs were performed: four 

were run for 106 generations with the Markov chain sampled every 100 generations, starting 
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with the 104+1 generation. Estimates of divergence times were compared across the four 

runs as a proxy for assessing whether the chains were converging on the same posterior 

distribution of node ages. The prior for genes having the same tendency to change rate 

(commonbrown) was set to 1 for two runs, and 0 for two runs. The prior for the mean and 

standard deviation of the Brownian motion constant (brownmean and brownsd) were set to 

either 0.4 or 0.6 for these runs. A final extended MCMC analysis of 106 generations, sampled 

every 400 cycles after a burnin of 105 cycles, was performed with commonbrown=1, 

brown mean and brownsd=0.6. Brownmean was set such that the product of brownmean and 

the a priori expected number of time units between the root and tips (rttm) lay between 1 and 

2 (Thorne and Kishino, 2002). The rUm and standard deviation (rttmsd) were set to 2.7 time 

units (where 1 time unit is 10 Myr), with upper and lower age constraints set to 1.9 and 3.5 

time units, respectively. The mean and sd of the prior distribution for the rate of molecular 

evolution at the root node were set to 0.9, calculated as the overall mean of the three 

weighted median amounts of molecular evolution (from ITS, psbA, and trnL-F) between 

Aeonium (the ingroup root) and the ingroup tips, using the genetic distance data generated by 

estbranches (Thorne & Kishino, 2002). 

Simultaneous estimation of phylogeny and divergence times was carried out on the 65-taxon 

combined dataset (as with Multidivtime), and on an 84-taxon dataset for the plastid partition 

(trnL-F and psbA) , using BEAST version 1.4 (Drummond & Rambaut, 2007). BEAST XML 

input files were produced for the two plastid regions combined, and for trnL-F, psbA and ITS 

data separately, after specifying priors using the Bayesian Evolutionary Analysis Utility 

(BEAUti, distributed with BEAST). A combined BEAST XML input file was created by hand 

from the trnL-F, psbA and ITS XML files in order to perform mixed model analysis. Priors 

were set as follows: a general time-reversible model of nucleotide substitution was assumed 

with gamma-distributed rate variation with four rate categories, and a proportion of invariant 

sites (GTR+r +1). The uncorrelated lognormal distribution (UCLN, as recommended by 

Drummond et aI., 2006) was selected to model rates on branches, and the time to the most 

recent common ancestor (tMRCA) for the ingroup subsets (i.e. everything except Crassula) , of 

the combined- (65 taxa) and plastid- (84 taxa) datasets, was specified with a mean of 27 and 
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standard deviation of 4.865, using a normal distribution prior. The ingroup was assumed to 

be monophyletic, and a Yule tree prior was used. All other priors were left at default settings. 

Tuning of the parameter operators was set to 'auto-optimize'. Four independent MCMC 

analyses were each run for 106 cycles, and operators were adjusted manually after each 

successive analysis according to suggestions in the operator performance report in order to 

improve convergence and mixing of subsequent MCMC chains. Convergence was assessed 

using Tracer version 1.2 (Rambaut & Drummond, 2003). A final analysis of 107 generations 

was performed to increase the effective sample size (ESS) of all parameters to above the 

suggested value of 200. Results of the final MCMC run were summarised using 

TreeAnnotator (distributed with BEAST). 

Shift(s) to succulent karoo in distantly related lineages 

The procedures described here for Tylecodon, Cotyledon and Adromischus were applied to 

an array of angiosperm groups, as summarised in Table 3.1. Divergence time estimation was 

carried out across these distantly related lineages in order to establish whether a shift to 

succulent vegetation was synchronous across independent phylogenetic groups. This work 

has been written-up separately and accepted for publication as Verboom et al. (In press). A 

brief description of the study is given here and the manuscript is provided in Appendix 1. 

Criteria for selecting the plant groups detailed in Table 3.1 were that a) the group had at least 

one lineage endemic to the succulent karoo and, b) a reasonably densely sampled, 

molecular-based species level phylogeny was available. Divergence time estimation was 

carried out using BEAST version 1.4.6 (Drummond & Rambaut, 2007), following the 

methodology outlined previously in this chapter. Uncertainty surrounding calibration times 

differed slightly from the method described in this chapter and was applied as a 95% 

confidence interval arbitrarily defined as (mean age - [0.2 x mean age], mean age + [0.2 x 

mean age]). Succulent karoo endemism was reconstructed using the parsimony criterion and 

BEAST-generated topologies for each group. The age of the root of the first unequivocal 

transition to succulent karoo vegetation in each of the clades or lineages was taken as the 

date of interest. 
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Table 3.1. Distantly related angiosperm groups used to estimate the age of the succulent karoo. Complete details can 

be found in the manuscript provided in Appendix 1 

No. of Age prior Dates of transitions 
Taxonomic species No. of SK for group to succulent karoo Data source 

grou~ in grou~ endemics (M}'r) (M}'r) 

Ehrharta 20 3 40.0 10.0,1.7,1.1,0.2 Verboom et al. 2003 

Heliophileae 50 9 21.0 0.71 Mummenhof et al. 2005 

Kalanchoideae 77 24 27.0 14.8,8.7,1.7,1.1,1.0, current study 
0.6,0.4 

Melianthus 8 2 63.0 13.4 Linder et al. 2006 

Moraea 75 11 25.5 14.0, 13.0, 10.4, 9.0, Goldblatt et al. 2002 
8.0, 5.5, 3.8, 1.93 

Muraltia 75 2 18.0 5.3,3.3 Forest et al. 2007 

Pelargonium 142 29 42.5 17.4, 17.1 14.7 13.1. Bakker et al. 2005 
9.3, 5.8, 1.0 

Tribolium 23 4 14.0 3.8, 1.8, 1.4, 0.4 Verboom et al. 2006 

Zaluzianskya 23 6 12.0 4.5 Archibald et al. 2005 

Accumulation of lineages through time 

Diversification rates (r) were calculated using a maximum likelihood estimator (Magall6n and 

Sanderson, 2001) r = [In (n) - In 2] / time. Diversification was measured from the deepest 

bifurcation in Tylecodon, Cotyledon, and Adromischus to the tips, thus treating each as a 

crown group (Magall6n & Sanderson, 2001). Cumulative log-lineage-through-time (L TT) plots 

were produced by hand for each genus from the Multidivtime and BEAST chronograms by 

counting the number of branches present at each successive node, beginning at the node 

representing the divergence of each genus from its sister, and working towards the terminals 

of that genus. The natural logarithm (In) of the number of lineages was plotted against node 

ages. 

Variation in diversification rates 

Whole-tree topological tests, implemented in SymmeTree (Chan & Moore, 2005) were used 

to test the null hypothesis that there are no Significant differences in diversification rates 

across the phylogeny of Cotyledon, Tylecodon and Adromischus. Tests were performed using 

the Bayesian maximum clade credibility tree (fully resolved), and the 50% majority rule 

consensus tree (with polytomies, as shown in Chapter 1, Fig. 1.3) for the 86-taxon set 
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generated with combined ITS and plastid data (Chapter 1) . To accommodate topological 

uncertainty present in the latter tree 105 random resolutions of polytomies were performed 

under a taxon-size sensitive, equal rates Markov (TSS-ERM) model of random branching. For 

both topologies, P-values for whole-tree test statistics were calculated with reference to null 

distributions produced from 105 simulated trees generated under an ERM model of branching. 

Succulent karoo vegetation-type reconstruction 

The biome in which each of 1710 geo-referenced accessions of Cotyledon, Tylecodon and 

Adromischus occur within South Africa was compiled from VEGMAP version 4.0b (Mucina 

and Rutherford, 2004) using Arcview GIS 3.2. These data were then summarised to a 

character state representing each species' range as either endemic to the succulent karoo 

(1), or not endemic to the succulent karoo (0). Ancestral character state reconstruction was 

performed using the Bayesian maximum clade credibility tree and both a parsimony criterion 

(using equal branch lengths) and the likelihood function (using Bayesian branch lengths); 

likelihood calculations were carried out using the Markov k-state one parameter (Mk1) model. 

All procedures were implemented in Mesquite version 1.12 (Maddison and Maddison, 2006). 

RESULTS 

Divergence time estimates 

Log(ln)-likelihood ratio tests (LRT; Table 3.2) indicated significant rate heterogeneity present 

in all data partitions, both with Crassula included and excluded. A strict molecular clock was 

thus rejected in all cases. A clock approach was still included in the study to aid evaluation of 

relative branch-length allocation across the tree by the various dating methods employed 

here. 
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Table 3.2. Results of Log-likelihood ratio tests used to detect significant deviations from clock

like behaviour within data partitions. Tests were performed with Crassula included (upper value) 

and excluded (lower value). 

Data partition Taxa (n) A P value 

Plastid 82 232.3 < 0.001 
80 213.9 < 0.001 

ITS 67 536.9 < 0.001 
65 358.8 < 0.001 

Combined 65 217.8 < 0.001 
63 178.9 < 0.001 

A summary of time estimates for selected nodes of Adromischus, Cotyledon, and Tylecodon, 

produced using all four dating techniques is provided in Table 3.3. Mean node ages and 95% 

credibility intervals (CI) or highest posterior densities (HPDs) generated using Multidivtime 

and BEAST are shown in Figure 3.1. Mean age ranges and standard deviations of six nodes 

dated using the clock and NPRS are also represented on these plots for visual comparison, 

and are shown on the trees in Figures 3.3 and 3.4. Comparing ages returned from the four 

divergence time estimation methods employed here, enforcing a clock consistently returns 

the youngest mean dates (Fig. 3.1). Multidivtime estimation represents the other extreme, 

with all mean ages being older than the clock, NPRS- and BEAST-derived dates. BEAST age 

estimates lie between those of NPRS and the clock, and error associated with mean node 

ages is considerably smaller than the error estimated using Multidivtime. 

Effects of the various branch length transformation methods adopted here are illustrated in 

Figure 3.2. The Bayesian summary phylogram, with unconstrained branch lengths, is 

provided as a benchmark against which to compare chronograms. Comparison suggests that 

the effects on branch lengths fall into two groups. The clock- and BEAST-derived 

chronograms more closely resemble the phylogram with greater branch length allocated to 

the deeper nodes of the tree. Non-parametric rate smoothing and Multidivtime methods 

allocate a considerably greater proportion of time to terminal branches. The relative allocation 

of time to deeper nodes of the tree is presented numerically in Table 3.4. 

In order to simplify presentation of results from dating exercises only age estimates produced 

using Multidivtime and BEAST will be considered further. These methods represent one that 
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Table 3.3. Timing of diversification events in Cotyledon, Tylecodon and Adromischus estimated using a forced 

global clock (Clock); nonparametric rate smoothing (NPRS); Multidivtime Bayesian relaxed clock estimation; and 

BEAST Bayesian relaxed phylogenetics. Age estimates are given for the eight nodes common to both the Bayesian 

maximum clade credibility tree and the BEAST 50% majority rule consensus tree. Clock and NPRS mean ages and 

standard deviations (±sd) are given for each of the three data partitions analysed using both the 19- and 35 Myr 

calibration points. Node age estimates were obtained from plastid and combined data using BEAST, and from 

combined data only using Multidivtime. Nodes 1-8 are indicated on the trees provided in Figs. 3.3 and 3.4. 

Clock NPRS Multidivtime BEAST 

NODE mean node age (±sd) mean node age (±sd) 
mean node age mean node age 

19M~r 35 M~r 19 M~r 35 M~r 195% Cl l 195% HPDl 

Toelkenocodon - Adromischus (1) 

plastid 7.9 (1.2) 14.5 (2.3) 10.5 (0.7) 19.3 (1.3) 
14.8 

(6.4 - 24.2) 

its 5.2 (1.0) 9.6 (1.9) 9.3 (2.6) 17.2 (4.9) 

combined 6.4 (0.7) 11.9 (1.3) 8.3 (1.2) 15.2 (2.2) 
19.5 12.6 

(12.9 - 28.2) (5.3 -20.4) 

Adromischus (2) 

plastid 4.1 (0.8) 7.5 (1.4) 8.6 (0.7) 15.8 (1.2) 10.3 
(4.3 -16.8 ) 

its 1.6 (0.4) 2.9 (0.7) 6.8 (2.7) 12.6 (5.0) 

combined 2.8 (0.4) 5.2 (0.7) 6.3 (1.1) 11.4 (1.9) 
11.0 7.6 

(5.8 -18.3) (3.2 -13.1) 

Adromischus (3) 

plastid 2.4 (0.4) 4.5 (0.8) 5.5 (0.8) 10.1 (1.2) 
6.5 

(2.7 -10.9) 

its 1.0 (0.2) 1.8 (0.4) 4.3 (2.3) 7.9 (4.4) 

combined 1.6 (0.2) 2.9 (0.4) 3.8 (0.8) 6.9 (1.2) 
7.7 4.3 

(3.6 - 13.7) (1.7 - 7.3) 

Cotyledon - Tylecodon (4) 

plastid 4.6 (0.8) 8.5 (1.5) 8.8 (0.7) 16.3 (1.3) 
11.4 

(4.8 - 18.4) 

its 2.6 (0.5) 4.8 (1.0) 7.2 (2.3) 13.3 (4.4) 

combined 3.6 (0.4) 6.7 (0.8) 6.9 (1.1) 12.6 (2.2) 
13.5 9.1 

(7.8 - 21.4) (3.5 -15.0) 

Cotyledon (5) 

plastid 2.6 (0.6) 4.7 (1.2) 7.0 (1.1) 13.0 (2.0) 7.5 
(2.8 -12.8) 

its 0.5 (0.1) 0.9 (0.3) 3.6 (2.1) 6.7 (3.9) 

combined 1.3 (0.3) 2.4 (0.5) 4.6 (1.2) 8.4 (2.0) 7.4 4.0 
(3.1 -13.8) (1.3 -7.2) 

Tylecodon (6) 

plastid 3.2 (0.6) 5.9 (1.1) 7.5 (0.8) 13.9 (1.4) 
8.7 

(3.7 - 14.5) 

its 2.1 (0.4) 3.9 (0.8) 6.4 (2.2) 11.9 (4.3) 

combined 2.8 (0.3) 5.2 (0.6) 5.9 (1.0) 10.9 (1.9) 11.7 7.0 
(6.5 - 19.2) (2.8-12.1) 

Tylecodon (7) 

plastid 2.1 (0.5) 3.9 (0.9) 6.6 (0.8) 12.2 (1.4) 
7.2 

(3.0 - 11.9) 

its 1.4 (0.3) 2.6 (0.6) 4.8 (2.0) 8.9 (3.8) 

combined 2.0 (0.3) 3.7 (0.6) 4.6 (0.9) 8.1 (1.7) 9.9 4.9 
(5.1 -16.9) (1.9 - 8.4) 

Tylecodon (8) 

plastid 0.9 (0.2) 1.6 (0.4) 3.9 (0.8) 7.1(1.4) 4.2" 
(1.6-7.1) 

its 0.7 (0.2) 1.3 (0.3) 3.7 (1.6) 6.9 (3.0) 

combined 0.8 (0.2) 1.5 (0.3) 2.9 (0.7) 5.4 (1.4) 5.5 2.4 
(2.4 - 10.3) (0.8 - 4.0) 
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phylogram 
,-----------Aeonium 

T. racemosus 
A. phillipsae 
A. bicolor 

A. caryophyllaceus 
A. hemisphaericus 
A. sphenophyllus 
A. triflorus 9767 

A. marianae hallii 
A. cristatus 
A. cooperi 

A. umbracticola 
A. schultianus 
A. sub viridis 

A. nanus 
A. liebenbergii 
A. triflorus 
A. filicaulis 
A. a/stonii 
A. montium-klinghardtii 
A. mammillaris 
A. maximus 
A. inamoenus 
A. maculatus 

Kalanchoe graci/is 
Ka/anchoe humilis 
Kalanchoe elizeae 

C. woodii 
C. barbeyi 
C. tomentosa 
C. velutina 
C. campanulata 
C. orbiculata 
C. cuneata 
C. papillaris 
C. eliseae 
T. singularis 

T. leucothrix 
T. sulphureus 

T. suffultus 
T. reticulatus reticulatus 

T. nolteei 
T. ventricosus 
T. striatus 7501 
T.hirtifolius 
T. cacalioides 
T. paniculatus 
T. pygmaeus 
T. scandens 

T. reticulatus phyllopodium 
T. decipiens 
T. schaeferianus 
T. viridiflorus 
T. cordiformis 
T. torulosus 
T. mallei 
T. pusillus 

T. bayeri 
T. longipes 
T. tribblei 
T. simi/is 
T. atropurpureus -0.005 changes 
T. pearsonii 

clock BEAST NPRS Multidivtime 

Figure 3.2. Relative time allocation in chronograms produced using the dating techniques indicated above each tree. The untransformed Bayesian maximum clade credibility 

phylogram (far left) is shown for comparison. Chronograms are drawn such that the branch leading to Aeonium is the same length in each case, with all other branches scaled 

accordingly. 
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assumes autocorrelation and one that does not, while both take models of molecular 

evolution into account. In addition, of the methods that accommodate rate heterogeneity, they 

returned the extremes of dates, and provide estimates for all nodes in the phylogeny (except 

for the 10 nodes with pp < 0.50 following analysis using BEAST). Chronograms annotated 

with node ages and the putative timing of initiation of the Benguala upwelling and 

establishment of the Mediterranean-type climate are illustrated in Figures 3.3 and 3.4. 

Table 3.4. Proportion of time allocated between ingroup root and first branching event in each genus across 

the methods of dating used in this study. Methods are ordered from most to least time allocated to deeper 

nodes (ef Fig. 3.2). 

Percentage of time between root and first branching point 

Dating technique 
Adromischus Tylecodon Cotyledon Average 

Clock 88 88 96 91 

BEAST 68 71 84 74 

Multidivtime 55 52 69 59 

NPRS 44 48 41 44 

Accumulation of lineages through time 

Per-lineage diversification rates estimated for Tylecodon, Cotyledon, and Adromischus are 

summarised in Table 3.5. Tylecodon exhibits the highest diversification rates, irrespective of 

the dataset or estimation method used. Combined data recover rates that are very similar 

within each method - Multidivtime estimates for all genera fall between 0.09 and 0.12 species 

My(1, while BEAST estimates range from 0.15 to 0.19 species My(1. More thorough taxon 

sampling, mostly of species of Tylecodon, increases the rate difference between Tylecodon 

(0.16 species My(\ Cotyledon (0.09 species My(\ Adromischus (0.11 species My(\ 

Log-lineages-through-time (L TT) plots are provided in Figure 3.5. Visual comparison of the 

plots suggests that the accumulation of diversity in all three genera has been more or less 

linear throughout their history, at least since the first branching event in each. Whole-tree 

tests of topology detected no significant shifts in diversification rate within the ingroup. 

Although significant shifts were detected in initial tests they did not persist once Crassula and 

Aeonium were excluded, suggesting that differential rates found to be significant initially 
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Table 3.5. Summary of estimates of per-lineage diversification rates (per million years, My(') for Tylecodon, 

Cotyledon and Adromischus. Dates were generated using combined data for 65 species (58 ingroup species) 

analysed with BEAST and Multidivtime, and using plastid data for 84 species (77 ingroup species) analysed with 

BEAST only. 

No. of 
Divergence date Diversification rate: 

Genus Dating method; data partition species per 
in Myr, Species My(' 

genus 

Tylecodon BEAST; plastid 8.8 0.155 
BEAST; combined 46 7.0 0.194 
Multidivtime; combined 11.7 0.116 

Cotyledon BEAST; plastid 7.7 0.091 
BEAST; combined 10 4.0 0.175 
Multidivtime; combined 7.4 0.094 

Adromischus BEAST; plastid 11.0 0.106 
BEAST; combined 28 7.6 0.153 
Multidivtime; combined 11.0 0.106 

resulted from undersampling in the outgroup. Plots of the accumulation of lineages within 

Tylecodon and Adromischus track each other for much of the time, and this pattern is robust 

to taxon-sampling and dating method. There is a phase dated at 4, 3 and 2 Myr (indicated by 

red arrows on Fig. 3.5) during which the curves of the two genera cross. After this phase 

Tylecodon continues to accumulate species, and outstrips Adromischus. This pattern is most 

pronounced following analysis of plastid data using BEAST (green plots) which reflects the 

improved sampling of Tylecodon in this dataset. There is a 4 - 6 Myr delay (depending on 

dataset and method) prior to the first bifurcation in Cotyledon. This post-dates that of its sister 

genus, Tylecodon, by 1.2 - 3 Myr. During this phase, up to 2.5 - 4.2 Myr, the plot of 

Cotyledon more closely resembles that of Adromischus. Thereafter rates are very similar to 

Tylecodon and Adromischus, particularly with BEAST analysis of the combined data. 

Succulent karoo vegetation-type reconstruction 

According to parsimony reconstruction the unequivocal shift to succulent karoo in Tylecodon 

occurred along the branch leading to the T. tenuis - T. pearsonii clade (Fig. 3.6) at around 6.4 

Mya (Multidivtime), 4.2 Mya (BEAST, plastid data), and 3.2 Mya (BEAST combined data). 

Such a transition may have occurred as early as 7.1 Mya (Multidivtime). The likelihood of 

succulent karoo being the ancestral vegetation type is represented diagrammatically at 
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selected nodes in Figure 3.6. Likelihood reconstruction of the ancestral vegetation-type of the 

ingroup as a whole is inconclusive - the MRCA is as likely to be endemic to the succulent as 

not. This also applies to the MRCA of Ty/ecodon. Within Ty/ecodon the likelihood of a 

succulent karoo endemic ancestor fluctuates until it reaches a value of 0.69 at the node 

bounding the T. suffultus - T. pearsonii clade. Thereafter the likelihood of the ancestor being 

succulent karoo endemic approaches, and remains close to 1.00. Shifts to succulent karoo 

endemism in various angiosperm groups range from 17 - 0.2 Mya (Table 3.1). The greatest 

proportion of these vegetation transitions occurred during the last 5 Myr. A near equal number 

of shifts are older and occurred between 5 and 17 Mya (Fig. 3.7). 
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Figure 3.7. Number of lineages entering the succulent karoo 

at various intervals during the last 20 Myr. 
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DISCUSSION 

The species diversity within Tylecodon, Cotyledon and Adromischus is comparatively young. 

This is especially true when estimation methods do not assume autocorrelation, although 

estimates are fairly robust to methodology. Increases in diversity coincide remarkably with 

major climatic shifts in south-western southern Africa. The start of the diversification process 

in Kalanchoideae is synchronous with the establishment of the Benguela upwelling 12 - 10 

Myr (Siesser, 1980): all major extant lineages diverged at, or near, this time (Figs. 3.3 & 3.4). 

In turn, species diversity within these lineages increased considerably following the onset of 

the Mediterranean-type climate around 5 Mya. This increased diversification phase is also 

visualised in Figure 3.5 (BEAST L TT plots) which highlights a slight upturn in diversification at 

around 4.5 - 5.5 Mya in Tylecodon and Adromischus. No significant shifts in diversification 

rates were, however, detected at these or any other points in the phylogeny. Tests used for 

detecting significant tree imbalance rely on the suitability of null models, and the equal-rates

Markov (ERM) model has been suggested to be a poor fit to many applications for which it is 

used (Mooers & Heard, 1997). These authors advocate use of the proportional-to

distinguishable-arrangements (PDA) model for cases in which tree shape may be affected by 

climate change. The PDA model (implemented in SymmeTREE; Chan & Moore, 2005) was 

applied to the topology of Tylecodon and Cotyledon, using Kalanchoe as the root, and results 

remained non-significant. Given the apparent rate constancy of diversification through time in 

the group it is necessary to explore possible processes by which this pattern may have 

arisen. 

The shift to succulent karoo endemism occurred fairly early in the evolutionary history of 

Tylecodon, possibly as early as 5.5 Mya. This is taken as a strong indication that the 

vegetation type we see in the area today had established by this time. Whilst most succulent 

karoo endemism is relatively young in Tylecodon, two considerably older lineages are 

endemic to the region. Tylecodon singularis diverged from other members of the genus 

around 9 Mya and Toelkenocodon (almost endemic to succulent karoo) diverged from the 

MRCA it shared with Adromischus approximately 15 Mya. Given the relative antiquity and 
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isolated phylogenetic positions of these taxa it is possible that occupation of succulent karoo 

habitats has occurred since each diverged from a MRCA. The timing of shifts to succulent 

karoo in Tylecodon and its relatives is likely to represent clade-specific responses to changing 

environments. It is therefore necessary to draw on information from a broader phylogenetic 

base in order to estimate the timing of the formation of this biome. 

By far the highest frequency of transitions to succulent karoo in the angiosperm groups dated 

occured during the last 5 Mya (Fig. 3.7). While 17 Myr is somewhat older than the 

hypothesised climatic changes that led to the establishment of the Mediterranean climate, it is 

still remarkably young. Early transitions to succulent karoo are estimated to have occurred in 

Pelargonium, Moraea, Melianthus and Kalanchoideae. Transitions dated for the related study 

(Appendix 1) were based on stem node dates which give older ages than if crown node dates 

are used. It is difficult to use the latter in cases where the transition to succulent karoo occurs 

in a single species as the crown age is zero. In addition, as discussed for T. singularis and 

Toelkenocodon, occupation of succulent karoo habitat may represent a post-speciational shift 

in these lineages, with adaptations to the current environment occurring via anagenesis. 

Alternatively, the antiquity of these lineages may reflect the inadequacies of calibration dates 

as these studies are all limited by the lack of available fossil evidence (discussed later). 

Whatever the caveats surrounding the accuracy of dates applied, the emergent story is that 

the succulent karoo is a young biome; younger than the neighbouring fynbos, which may date 

back to the Early Oligocene (Linder, 2005). The marked increase in the number of lineages 

making the transition to succulent karoo during the last 5-10 Mya is consistent with climatic 

trends documented for this period. The climate history of the region was not a linear trend of 

cooling but was interspersed with colder excursions that would have influenced the 

environments of the Greater Cape Floristic Region considerably. Wind-borne dusts recovered 

in marine sediments off the coast of Namibia provide a continuous record of sea surface 

temperatures (SST) for the last 4.6 Myr. Evidently there was a drop of around 10°C during the 

last 3.2 Myr which marked the onset of a prolonged period of cooling coincident with the onset 

of Northern Hemisphere glaCiation (Marlow et aI., 2000). Events such as this impacted on the 

mean climates experienced in the southern Africa, and likely intensified the process that 
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began in the region some 10 Mya. Patterns of lineage splitting and extinction in 

Kalanchoideae are interpreted against this historical climatic evidence. 

The chronological sequence of shifts into succulent karoo presented here suggests a gradual 

process of occupation of the biome between 17 - 5 Mya, with subsequent radiations 

occurring in some lineages. This overall pattern of transitions is not entirely consistent with 

the tabula rasa hypothesis, but rather suggests the gradual clearing of the table, at least 

initially. Plants requiring more mesic conditions were increasingly marginalised, giving 

lineages such as Tylecodon, Moraea and Pelargonium, having or evolving suitably adapted 

growth forms, the opportunity to enter the arena. Once established in the biome the extent to 

which lineages diversified was determined largely by the interaction between the traits they 

carried (phylogeny) and the new, relatively stable conditions that prevailed in the region. 

The log-linearity of species accumulation curves for Tylecodon, Cotyledon and Adromischus 

(Fig. 3.5) implies underlying exponential growth rates; pure birth processes consistent with 

little or no extinction (Nee, 2006). Whilst it may be unrealistic to dismiss extinction, Nee 

(2006) states that the fit of the pure birth model to a given dataset is implicit in the log-linearity 

of curves produced from the data. This suggests that the southern African representatives of 

Kalanchoideae, restricted predominantly to the winter rainfall region, are undergoing a phase 

of steady radiation. The genera are still in a bottom-heavy pre-equilibrium stage of their 

evolution (Gould et aI., 1977), and such a pattern ties in well with conditions in the winter 

rainfall region where climatic stability during the Pleistocene ' ... has relaxed the selection 

against speCialisation and traits associated with poor dispersaL .. ' (Oynesius & Jansson, 2000: 

9119). Vrba (1985) suggested that speCiation simply does not occur unless forced to by 

environmental change. Species are evolutionarily conservative, and therefore far more likely 

to track a shifting habitat than evolve to occupy a new one. The fossil record for plants is 

relatively poor, and so there is no paleontological evidence against which current diversity 

and distributions can be contextualised. The fossil record for many mammal groups is, by 

contrast, quite rich and has been interpreted in light of knowledge of shifting climates 
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(deMenocal, 2004; and Brehrensmeyer, 2006). The overarching finding of these works is one 

of climate-driven speciation and extinction. 

How can speciation driven by climatic change be reconciled with speciation coincident with 

stability in the winter rainfall region of southern Africa? It appears to be a question of the 

relative timing of events. The process of aridification and transition from aseasonal to 

seasonal rainfall in the area is well documented (Siesser, 1980, Zachos et ai, 2001). A 

general cooling trend followed the climatic optimum of the late Middle Miocene (17 - 15 Mya) 

with the re-establishment of the Antarctic ice sheet and concomitant upwelling of the 

Benguela Current (10 Mya: Siesser, 1980). Climatic changes are unlikely to have been 

instantaneous but would rather have altered selective regimes experienced by resident plant 

populations over a long period. Some populations may have been wiped out early in the 

process while others persisted in marginal habitats. Extinction of the most arid-sensitive 

species would render areas available for occupation. The plants that invaded these areas 

were a sample of those that were in the right place at the right time, possessing the right 

adaptations, or adaptive potential. The likely scenario for Tylecodon and Adromischus is one 

of ancestral species climatically 'forced' to diverge as aridity impinged upon their environment, 

possibly fragmenting ancestral ranges. Summer-drought squeezed out poorly adapted 

lineages that died out or, where possible, retreated to higher ground. Thus a change in the 

mean climatic conditions ensued producing a turnover pulse of extinction and subsequent 

diversification (sensu Vrba, 1985). Once the summer-arid climate was established the region 

became relatively stable, buffered from high amplitude Milankovitch oscillations by virtue of its 

geographical position (Dynesius & Jansson, 2000). Under these conditions, species of 

Tylecodon and, to a lesser extent, Adromischus underwent specialisation within the newly 

occupied areas. The process of differentiation is likely to have been reinforced by the 

inherently poor dispersal ability of members of these genera (Chapter 4). 

Overall rates of diversification in the focal genera of this study differ. When interpreted in a 

spatial context the conSistently higher rate found in Tylecodon is striking. The genus has 

accumulated four times the number of species of its sister Cotyledon, despite occupying only 
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15% of the land area. Diversification rates calculated on a per km2 basis are 8.8 x 10.7 

species per km2 per Myr for Tylecodon, and 7.3 x 10-8 species per km2 per Myr for Cotyledon 

and Adromischus. The strong link between Tylecodon and the succulent karoo points to an 

environmental cause for its high extant diversity. Such a conclusion is logical given that the 

area is famous for its diversity and high levels of endemism generally (Desmet & Cowling, 

2004). Adromischus too has many representatives within the succulent karoo but is not 

confined to the area in the same way that Tylecodon is. Hence the diversity within Tylecodon 

appears to be the result of derived morphological characteristics in the clade interacting with 

the abiotic environment. This process results in the partitioning of available land, with 

subsequent genetic differentiation and the formation of new species. These biological 

features are explored in the next chapter. 

Methodological considerations 

Invoking autocorrelation of rates, as done by NPRS and Multidivtime, greatly increases the 

proportion of time allocated to shallower nodes of the tree for this group. This leads to older 

age estimates of species. It is reasonably well documented that NPRS tends to overestimate 

node ages (Martin et aI., 2004; and Linder et al. 2006). Hugall and Lee (2004) noted that 

NPRS lowered the ratio between deeper and shallower nodes of a tree, and the pattern 

produced in Adromischus, Tylecodon and Cotyledon is consistent with their findings. 

Multidivtime has a similar though less pronounced effect on time estimates. It is reasonable to 

conclude for this phylogeny at least, that autocorrelation consistently overestimates the age of 

species, independent of whether or not the techniques include models of molecular evolution. 

Clock-like evolution was rejected for members of Kalanchoideae analysed here however the 

distribution of branch lengths produced under rate constancy most closely resembles that of 

the unconstrained phylogram (Fig. 3.2). Ho et al. (2005) assessed the performance of various 

time estimation methods on simulated data and concluded that if evolution of sequence data 

is clock-like or nearly so then precision, and possibly accuracy of substitution rates are 

improved by assuming a clock. Linder et al. (2005) advocate using a molecular clock 

whenever possible, mainly because of its robustness to under-sampling of taxa. A local clock 
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model (Rambaut & Bromham, 1998; and Yoder & Yang, 2000) may offer better precision of 

time estimates for A dromisch us, Tylecodon arid Cotyledon, given that different rates can be 

assigned to them, and to Crassula, Aeonium and Kalanchoe. Branch length optimisation in 

BEAST is not constrained by autocorrelation, and is not, therefore, a priori prone to 

overestimation of node ages. The method accommodates uncertainty surrounding calibration 

times with phylogenetic uncertainty. This allows calibration information to be applied to data 

without introducing false precision associated with point calibrations - an implementation that 

has been strongly criticised (Graur & Martin, 2004; Heads, 2005). There are few published 

studies against which to compare the performance of Bayesian relaxed phylogenetics. 

However, the uncorrelated relaxed clock models implemented in BEAST performed well in 

simulations, even when data were evolved under a model of rate constancy (Drummond et 

aI., 2006). Thus this method is favoured as the biologically most meaningful technique applied 

to diversification events in Adromischus, Tylecodon and Cotyledon and hence for distantly 

related lineages (Appendix 2). Correlates and potential causes of divergence events are 

interpreted accordingly. Dates obtained from analysis of plastid data offer inference from near 

complete sampling (84 taxa and 1288 base pairs) while analysis of combined data provide 

time estimates based on two genome sources and more sequence data, but with fewer taxa 

(65 taxa, and 1958 base pairs). It is likely then that divergence events occurred between 

those estimated with these two datasets. 

The importance of fossil evidence as a source of minimum ages of clades for dating exercises 

cannot be overemphasised (Thorne & Kishino, 2002; Magallon, 2004). Fossils assigned 

reliably within a phylogenetic context are scarce (Magallon & Sanderson, 2001). In a re

evaluation of fossil evidence of the angiosperms, Crepet et al (2004) estimated that 

Crassulaceae diverged from other clades in the Saxifragales around 70 Mya. An attempt was 

made in this study to apply the age of the fossil taxon Tarahumara sophiae discovered in 

Mexican strata deposited approximately 70 Mya, and assigned to Haloragaceae of the 

Saxifragales (Hernandez-Castillo & Cevallos-Ferriz, 1999). Unfortunately DNA sequences for 

members of Crassulaceae could not be aligned with those from extant species of Haloragis 

as they were too divergent. Hence it was necessary to apply calibration dates that are 

Univ
ers

ity
 of

 C
ap

e T
ow

n



extrapolated from scant palaeontological evidence to finer resolution phylogenies (i.e. 

Wikstrom et aI., 2001). Error inherent in the fossil record is therefore compounded (Pulquerio 

& Nichols, 2006), and interpretation of the tempo of evolutionary events in this group is 

carried out with such caveats in mind. Despite their inaccuracies, such data are invaluable to 

studies of this nature as they provide the only temporal anchor currently available for 

Adromischus, Tylecodon and Cotyledon, together with many other southern African plant 

groups. 
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CHAPTER 4 

The geography of speciation and range size determinants in Tylecodon 

and Cotyledon. 

INTRODUCTION 

Southern Africa boasts a rich flora that represents some 40% of the entire African flora 

(Linder et aL, 2005). Genera centred in the fynbos and succulent karoo biomes contribute 

disproportionately to the high species to genus ratio of the region (Gibbs Russell, 1985), and 

as a result of the dominance of a few very speciose families with high levels of endemism, 

namely Aizoaceae, Crassulaceae and Apocynaceae, the vegetation of the succulent karoo is 

a phylogenetically non-random assemblage (Cowling & Hilton-Taylor, 1994). The high 

representation of these families in the biome suggests either a long history of speciation, or 

elevated rates of speciation. Remarkably high speciation rates, outstripping those of taxa on 

oceanic islands, have been found in members of Aizoaceae (Klak et aL, 2004) and, as 

demonstrated in Chapter 3, Tylecodon has speciated at a notably higher rate than its sister 

Cotyledon. More than half of the species of Tylecodon are endemic to the succulent karoo; in 

the context of differences in land area occupied by each genus, the high diversification rate 

found in Tylecodon is extraordinary. The 46 species of Tylecodon occur within an area 

approximately 180 000 km2
, while Cotyledon is distributed across an area six to seven times 

larger. 

High rates of diversification in two succulent karoo-centred plant groups have been attributed 

to morphological key innovations thought to confer selective advantages for surviving the 

rigours of an arid environment. The evolution of wide-band tracheids in Ruschioideae 

(Aizoaceae), together with leaf and capsule morphology, are thought to have been pivotal to 

the recent and rapid radiation of the clade (Klak et aL, 2004). Tuber fattening in the geophytic 

Univ
ers

ity
 of

 C
ap

e T
ow

n



lineage of xerophytes of Pelargonium is purported to explain the subsequent radiation of the 

group in Namaqualand (Bakker et aI., 2005). The mechanisms by which these innovations 

have led to high diversity has been alluded to but rarely thoroughly explored. Identifying 

characteristics common to members of speciose clades is an important component of 

revealing the mechanisms that underlie the generation of diversity. It has been argued 

however, that establishing a link between such characters and the diversification process is 

difficult, if not impossible, and renders this approach untestable (Cracraft, 1981; Slowinski & 

Guyer, 1993). Using sister groups mitigates this problem to some extent as comparison of 

numbers of species in clades is relative, being between two contemporaneously diverging 

lineages thus eliminating the need for conjecture regarding the significance of absolute clade 

sizes among distantly related groups (Cracraft, 1981). Sister group comparisons are used 

here to investigate some of the correlates of characters unique to each of Cotyledon and 

Tylecodon as a means of exploring mechanisms by which these genera have diverged in their 

evolutionary trajectories. In particular, this chapter explores the association between selected 

morphological adaptations to extreme aridity exhibited by species of Tylecodon and increased 

rates of speciation in the genus. The aim is to test the hypothesis that limitations to dispersal 

imposed by reduced plant size and photosynthetic capacity are a primary determinant of 

range size in Tylecodon, and have had consequences for gene flow, and ultimately speciation 

in the genus. 

Plant succulence is strongly associated with limited water availability (von Willert et aI., 1992) 

so, by virtue of their phylogenetic history, species of Cotyledon and Tylecodon are adapted to 

survive periodic drought. Morphological and life-history traits of members of Tylecodon 

appear to represent further specialisation that enables the plants to tolerate extreme aridity. 

Leaf deciduousness, hysteranthy, development of pachycauls (sensu Rowley, 1987), 

geophytism, diminution of vegetative organs and the general tendency towards reduced 

surface area to volume ratios, are strategies for conserving moisture during periods of low 

extrinsic availability, and for reducing the risk of overheating of the plant body. The distribution 

of many diminutive growth forms, particularly those of 'stone plants' (e.g. Conophytum, 

Argyroderma: Aizoaceae) is suggested to be linked to the occurrence of coastal fog that 
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penetrates much of the succulent karoo: condensed fog can provide significant moisture 

supplements to small plants (Midgley & van der Heyden, 1999). In addition, the strong 

association that many dwarf succulent species have with rock crevices and rocky habitats 

may relate to the fact that rock surfaces promote the condensation of fog and thus increase 

water availability to nearby plants through run-off (von Willert et aI., 1992). 

The absorbance of photosynthetically active radiation (PAR) increases with increasing 

degrees of succulence resulting in reduced carbon gain (Von Willert et ai, 1992). This has 

repercussions for growth and reproductive effort. Bakker et al. (2005) postulated that the 

trade-off for improved water storage conferred by fattened tubers in species of Pelargonium 

was that of lower seed production and dispersal, which ultimately led to restricted gene flow. 

There is a high proclivity of passive dispersal in the karoo generally, and it has been proposed 

that propagules landing close to parent plants have a selective advantage in these arid 

environments (Esler, 1999). Short dispersal distances may also reflect physiological 

constraints imposed by succulent growth forms, as suggested for Pelargonium (Bakker et aI., 

2005). Irrespective of the evolutionary history of such dispersal mechanisms, the most likely 

determinant of dispersal distance is the height at which propagules are released from the 

parent plant. Seeds of Tylecodon and Cotyledon have no adaptations for long-range 

dispersal; they are usually < 1 mm in size and are scattered as wind-blown dust or by 

raindrops hitting follicles (personal observations after Hoffman and Cowling, 1987). The 

significant association between growth form and endemism in broken, rocky habitats of the 

succulent karoo (Cowling & Hilton-Taylor, 1994, refs therein; Hilton-Taylor, 1996) suggests 

that dispersal distances in Tylecodon may be strongly influenced by topography. All else 

being equal, the shorter the plant, the shorter its dispersal distance. If Tylecodon is effectively 

a succulent karoo specialist then, given the size of this biome, there should be no correlation 

between species age and range size. 

Reduced dispersal ability is often associated with species having small ranges and 

concomitantly small population sizes. In turn, small population size is associated with low 

density (Gaston, 1997). These characteristics can impact upon gene flow and ultimately, rates 
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of speciation. High levels of centre-mediated gene flow in widespread, common species are 

believed to prevent differentiation of individuals that occupy the periphery of the species' or 

population's range (Gavrilets et aI., 2000). In the absence of such cohesive gene flow - as in 

range-restricted, rare populations of low density - individuals at the periphery of the population 

that may be sUNiving in sub-optimal conditions are able to diverge and adapt to the local 

environment (Gavrilets et ai, 2000). Similarly, dispersal to new environments, although rare, 

can lead to new divergent populations and incipient species, as founders are not constrained 

by the homogenising effects of gene flow. This process is basically peripatric speciation as 

defined by Mayr (1963). Such a scenario was invoked to explain diversification in 

Argyroderma (Ellis et aI., 2006). This small genus of ruschioids (Aizoaceae) is restricted to the 

unique quartz gravel habitat of the Knersvlakte within the succulent karoo biome. Following 

an investigation of the mechanisms of divergence in Argyroderma, Ellis et al. (2006) and Ellis 

& Weis (2006) reported a process of differentiation in allopatry at extremely fine spatial 

scales. Hydrochastic capsules ensure highly localised dispersal in members of the genus 

(Ellis et aI., 2006) and restricted gene flow is maintained by edaphic specialisation and 

divergent habitat selection, while post-speciational flowering time shifts have maintained 

differentiation upon secondary contact between species (Ellis et aI., 2006; Ellis & Weis, 2006). 

In addition to seed-mediated gene flow, pollen movement between populations can greatly 

influence processes of differentiation. Pollination syndromes are associated with different 

effective spatial scales due to the foraging distances of pollinators. Species of Cotyledon 

exhibit classic bird-pollination characteristics, namely pendulous, tubular flowers that are red 

to yellow in colour and produce copious amounts of nectar (van Jaarsveld & Koutnik, 2004). 

Most species of Tylecodon are thought to be insect-pollinated (van Jaarsveld & Koutnik, 

2004) and a few specific plant-pollinator interactions have been obseNed. Tylecodon hallii is 

pollinated by a pollen wasp (Masarina tylecodoni: Gess et aI., 1998) and T. cacalioides is 

pollinated by a long-proboscid horse-fly (Philoliche tumidifacies: Gess, 2001). Interestingly, 

two of the widespread species of Tylecodon (T. paniculatus and T. grandiflorus) are pollinated 

by sunbirds (Gess, 2001; van Jaarsveld & Koutnik, 2004). The effect of pollination syndrome 

on gene flow was the focus of a recent study of two species of Streptocarpus in South Africa: 
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one sunbird-pollinated (S. dunniJ) , the other (S. primulifolius) pollinated by a species of 

nemestrinid fly (Hughes et aI., 2007). Greater pollen-mediated gene flow was observed in the 

sunbird pollinated species, and is believed to account for the higher levels of genetic cohesion 

between populations of S. dunnii. Although information on the pollination biology of succulent 

karoo groups is scarce, the pollinator fauna is documented to share the high levels of 

endemism found in the flora of the region (Esler, 1999). Short distances involved in insect 

pollination in Tylecodon may well serve to reinforce patterns of fine-scale differentiation that 

arise from localised dispersal. 

In a system of reduced or no gene flow resulting from short dispersal distances the prediction 

for the predominant mode of speciation in Tylecodon is one of allopatry, as found to be the 

case in Argyroderma (Ellis et aI., 2006). Information on the spatial distribution of species 

combined with species-level phylogenies that trace the historical sequence of lineage splitting 

can be used to infer geographical modes of speciation (Barraclough & Vogler, 2000). Lynch 

(1989) developed a method that involved measuring species range areas, areas of overlap, 

and distances separating non-overlapping species' ranges, for ever-more inclusive groups of 

a cladogram, working from the tips to the deeper nodes of the tree. Several workers have 

elaborated upon Lynch's method. Barraclough et al. (1998) incorporated explicit expectations 

into plots of the degree of sympatry against node height under the null model that geographic 

ranges are random with respect to phylogeny. Initially, models Simulating cladogenesis under 

several modes of geographic speciation, with varying degrees of random range shifts, were 

generated as a means of assessing whether current species' ranges retained any 

phylogenetic pattern (Barraclough & Vogler, 2000). More recently, randomisation tests have 

been introduced. Species ranges are randomly shuffled amongst the tips of the phylogeny to 

test whether closely related species display a geographic pattern of overlap that is 

significantly different from that of randomly chosen species (Fitzpatrick & Turelli, 2006; Perret 

et aI., 2007). Such an approach is adopted in the current study. To date, broad-scale 

investigations into modes of speciation have focussed on animal groups (Lynch, 1989; 

Chesser and Zink, 1994; and Fitzpatrick & Turelli, 2006) and the work of Perret et al. (2007) 

on Gesneriaceae is the only example currently known of these methods being applied to 
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plants. This work on Cotyledon, Tylecodon and Adromischus represents a significant addition 

to the body of evidence on geographic modes of speciation in plants. Plants are amongst the 

least vagile organisms in terms of reproductive individuals and therefore provide data on 

modes of speciation that are likely to differ from those of highly mobile animals. 

In an effort to understand the processes driving elevated rates of diversification in Tylecodon, 

this chapter will address the following specific questions. 1} Does Tylecodon occupy 

significantly different climatic environments from its sister Cotyledon? 2} Do the two genera 

differ in terms of their range sizes, and can this difference be associated with traits reflecting 

adaptations to aridity? 3} Is there evidence to suggest that speciation in Tylecodon and 

Cotyledon has been predominantly allopatric? 

METHODS 

Climatic niche characterisation and trait reconstruction procedures were carried out for the 

two focal genera of this study - Cotyledon and Tylecodon, together with Adromischus and 

Toelkenocodon. The latter, more distantly related genera were included to faciliate more 

reliable inference of ancestral character states across the phylogeny of the southern African 

representatives of the clade. Interpretation of results is restricted to Tylecodon and Cotyledon. 

Climatic niche characterisation 

Climatic data for a total of 1652 geo-referenced localities of Tylecodon (665), Cotyledon 

(273), Adromischus (680), and Toelkenocodon (34) in South Africa were extracted from 

Schulze (1997). Monthly climatic variables selected were: means of daily minimum and 

maximum temperatures (T min and T max, QC), median rainfall (mm), and potential evaporation 

(A-pan equivalent, PEapan , mm). Data were not available for Namibian records. 

Discriminant analysis (DA) was used to evaluate whether the genera differ with respect to the 

climatic variables selected, and to identify which variables are associated with the geographic 

distributions of members of Tylecodon and Cotyledon. The DA was performed using the 48 

n,.., 
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climatic variables listed above for all 1652 localities (all 3 genera) and 938 localities 

(Tylecodon and Cotyledon only) using SPSS (1997). The efficacy of discriminant functions at 

predicting group membership was assessed by reclassifying records to a group according to 

their discriminant functions (Tabachnick & Fidell, 1996). The proportion of correct 

classifications was determined and a value greater than 33% (assuming equal probability of a 

record being classified into any group) was taken to indicate that discriminant functions 

satisfactorily predicted group membership. Cross-validation of the reclassification rates was 

performed by removing each record in turn. By convention, only loadings of variables ~ 0.33 

were interpreted as informative (Tabachnick & Fidell, 1996). 

Trait reconstruction 

Mean annual rainfall (MAP), calculated as the average value for all records of each species, 

was used in place of discriminant function (DF) scores for climate reconstructions, to avoid 

interpretation being confounded by the somewhat abstract nature of DF scores. In adopting 

such an approach aridity is used to represent the separation of Tylecodon from Cotyledon 

along an axis of rainfall amount and seasonality, and high potential evaporation. The 

appropriateness of using MAP for this purpose was assessed by linear regression-correlation 

analysis of discriminant function scores on MAP. 

In order to assess associations between levels of aridity, as explained above, range size and 

putative adaptations in Tylecodon, ancestral character states were reconstructed using Fitch 

(categorical characters: Fitch, 1971) or squared change parsimony (continuous characters: 

Huey & Bennett, 1987; Maddison, 1991) as implemented in Mesquite version 1.12 (Maddison 

& Maddison, 2006). Three categorical characters were scored as present (1) or absent (0) for 

all species of the four genera represented in the BEAST plastid topology (Chapter 3, Fig. 3.3), 

namely a) leaf deciduousness, b) plants predominantly restricted to growing in rock crevices, 

c) possession of subterranean storage organs, defined from a functional standpoint, as 

having roots or stems that store water, that are at least half buried below the substrate 

surface. Three continuous characters - mean annual rainfall (mm), range-size (km2
) and 

vegetative height (mm) - were reconstructed in the same way. 
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Associations of vegetative plant size, inflorescences and flowers 

Characteristics that may be linked to different pollination syndromes were tested using linear 

regression and correlation analysis (Microsoft ® Office Excel, 2003). Possible relationships of 

vegetative height with inflorescence length and floral tube length were tested to determine 

whether smaller plants produced shorter inflorescences and smaller flowers. 

Range sizes and measures of sympatry 

Age-range correlations (ARCs) were performed using the plastid topology and age estimates 

produced in Chapter 3 using BEAST. This topology provided the most complete taxon 

sampling and set of age estimates with which to analyse pattern. Tylecodon striatus 9177, 

representing a new undescribed species, was excluded from ARCs as distribution data were 

only available for the species, since found to be paraphyletic (Chapter 1). Distribution data 

were used for the species as is and only the phylogenetic position of T. striatus 7501 was 

included in analyses. Tylecodon, Cotyledon and Adromischus were represented by 40, 10 

and 26 species, respectively, together with the monotypic Toelkenocodon. 

Range area measurements were performed using ArcView GIS 3.2. Species range maps 

were produced from a total of 1048 geo-referenced records of Cotyledon and Tylecodon 

using two methods of reconstructing species' ranges. Minimum convex polygons were 

created around dot distribution data for each species using a convex hull extension (Arc View 

GIS 3.2) - this represents species 'extent of occurrence' (EOO: Gaston, 1994). Secondly, a 

10 km radius buffer was added to each locality point as a finer scale representation of range 

akin to the 'area of occupancy' (AOO: Gaston, 1994). Areas, overlaps and distances (m2 and 

km) were measured adopting the UTM (Universal Transverse Mercator) coordinate system 

and WGS84 (World Geodetic System 1984) map datum. The following measurements were 

recorded: a} range area, measured as (i) the total area of each species' polygon, and (ii) the 

total area of all buffered pOints of each species, measuring overlapping areas only once; b} 

the area of overlap, if any, for every pairwise comparison between species (within genera), for 

polygons and buffers. Range-size distributions were plotted for each genus. As range sizes of 

Cotyledon and Tylecodon are not normally distributed, differences between group medians 
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were tested using the Mann-Whitney U test executed in Statistica version 7.0 (Statsoft Inc., 

2004). The relationships of range size with species age and height of seed release 

(calculated as the sum of the vegetative height and inflorescence height) were tested using 

linear regression and correlation analysis (Microsoft ® Office Excel, 2003). 

The degree of sympatry between all pairwise species comparisons was calculated as the 

proportion of the smaller species' range that the overlap represented (Chesser & Zink, 1994; 

Barraclough and Vogler, 2000; Fitzpatrick & Turelli, 2006; Perret et al. 2007). This provides a 

sympatry index that ranges from 0 (allopatric) to 1 (completely sympatric). Estimates of the 

average overlap between species since time of speciation were calculated for each genus 

following the 'nested averages of pairwise overlaps' methods developed by Fitzpatrick & 

Turelli (2006: 603-4, equation 1). Alternative methods, such as those employed by 

Barraclough & Vogler (2000) and Perret et aI., (2007) have been strongly criticised as they 

use the union of clade-member ranges as a proxy for ancestral ranges that involve 

comparisons spanning ever-deeper nodes of a phylogeny (Chesser & Zink, 1994; Losos & 

Glor, 2003). Calculating nested averages of pairwise overlaps accounts for the phylogenetic 

nesting of species, does not attempt to reconstruct ancestral ranges, and overcomes the fact 

that re-using species in multiple pairwise comparisons violates the assumption of 

independence (Felsenstein, 1985, in Fitzpatrick & Turelli, 2006). In addition, the nested 

averages method is less affected by incomplete taxon sampling (Fitzpatrick & Turelli, 2006). 

The method is therefore better suited to the current study which utilises a topology that is 

resolved according to maximum clade credibilities (Chapter 3) several of which attain very low 

posterior probabilities, and must be interpreted with caution. 

Mean range overlaps were plotted against node age and linear regression lines were fitted. 

To test the null hypothesis that present-day ranges contain no information regarding the 

geography of speciation, null distributions of slope and intercept were simulated by 

randomising the degree of sympatry (Fitzpatrick & Turelli, 2006). Values in a degree of 

sympatry matrix were reshuffled 10,000 times and slope and intercept were calculated 

following each rearrangement. Departures from random were tested using a two-tailed 
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significance test. calculated as 2 x too poroportion 01 raooomisations that gave a value more 

extreme than that observed (Fitz.patrick & Turelli, 2006: Perret et al .. 2007). Plots ci symp;Jtry 

ag<linst node-age provide a summary 01 too geogaphic mode of speciation (Barraclough & 

Vogler, 2(00) , The most recently diverged taxa reflect the predominant mode of speciatiw 

slJCh that speciation in allopatry w,; give intercept values significantly closer to 0 than 

expected by chance , Vllh e.-e ufX)f1 Increasing sympatry with increasing nooe age is 

characteristic 01 post-spec'ationa l range shifts Higher incidence 01 speciation in sympatl)' will 

give intercepts closer to 1, 

RE5UL T5 

Climatic niche characterisation 

Tylecodon and Cotyledon showed significant separation along a discriminant looction aXIS 

defll,ed by d lmatl<: variables (Wilk~ ' Lambda 0452 p < 0001, df ~ 39) . The high 

discriminatory power of the fur>etion is illustrated 111 F'lgure 4,1 Loadings ci =relations 

tletween climate variables and the discriminant l unctlOIl (Appendix 2) suggest that T ylecodon 
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and Cotyledon occupy climatic n'tChes that are hig t'j y distirtCt from one another. TyllJCodon 

(group mean = 0.7) is strongly aS50(iJated with low rainfall arid high potential C'vaporat>on 

durlllg the summer months (November to Marchl, Cotyledon, althoug!1 oxhibiting greater 

spread along the discriminant axis. is associated with the occurrence of summer rainfall am 

lower potential evaporation during this poriod, Only loactlr;gs at > 0.50 were interpreted. A 

complete list of climatic variables and their IQadirlgs, together with details of cross-validation 

of the reclassification 01 cases based OIl the discrim nant /uoction is given in Appendix X. 

Trait reconstruction 

DF &COres and MAP are highly significantly correlated (Fig 4.2, R' = 0.5438: p = « 0001) 

thus MAP was substitutod for DF &cores in ordor to reconstruct ancestral climate niches. The 

MRCA of the southern African genera of Kalarochoidcae occupied environments receM rog 

234-300mm of MAP. A shi~ to more arid environments is evident in Tylecodon, with MAP < 

233 mm being ancestral (Fig. 4.3) The appearance of geophytism and leaf deciduousness is 

coincident with this sl1i~ to increased aridity. Leaf decidoousness has evor"ed independently 

in ToolkonooodOll, this al&o ooing cOl.Plod with a &hilt to very ard sites (40-105 mm rainfal l) . 

In contrast. Cotyleden shows a shift to more mesic conditions, with most extant spec;es 

associated with MAP ~ 3OOmm. Spocios of Adrornischus occur aCross the gamut of variation 

in rainfall levels observed across Cotyleden and Tylecodon 
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Aeconstrv:::tlon 01 "e{le!~twe helghl ,ndicates a sllin 1O' .... 'urds dimiouliva planls ,n Tylacfx/u" 

afler ~ ave'9IId hom Cury/9dHt Oroce ag.a,n, Ihl! aPPQurunce or Ihis morpholvg,eal adaptar,on 

in Ty/9CO<Jon COIneodes w~h the sh,h 10 ,ncm3",ng lever,; oj a"d,1y (Fig_ .\ 4)_ 

Rango sizes In Cotyledon and Tyhtcodon 

Range Slles in Tylerodon lire generally smllller lhan tn Cotyledon. The Maon-WMney U tesl 

rang" ... ere represented by poivgOI"l!; (2 '" 2.77; p '" 0,0(6) but not when buffefS were used 

(2", t 18, P '" 0,24). POlygoflll p,oduce a f''''Iuency disrnbt,tion di:;persed across si ~ orders ot 

magnitude .... 11ile II1is is narro • .,.-w 10 onl~ Ih'ee orders ugng bu ffers (F,g. 4 5), 
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The distribution of mrlge sims in COIy/eOOn and Tylccodoll overlap considerably, more so 

when represented by buffers. Tylocodon has the highest frequency of species in the smallest 

size class, while most species of COlylcdoi1 fa ll into the middle size class. When polygons are 

used TyleuxJon has a high j"'q\Jeocy of range SiZBS not fourld in Catyiedon 

Correlates of range size 

Plots of species' range sizes against species' ages are illustl~.ted in Figure 4.6. LinBar 

regresslOIl and correlation analysis for Cotyledon indicates a significant relation5~, ll>ith 

rar.ge Size tendi rlg to increasB wHh thB InferfBO age of the spe<;ies when buffer ranges are 

used lA' = 0.442, P = 0.04). This rBlationship is signilk:ant only at 0=0.1 when polygons are 

used (R' = 0.336, P = 0_(18). There is t){) fBlationship betwBen spee,es age aM range size in 

TyiccodO/l (Fig. 4.6) . 
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;.""'." .. ". 
In both genera range size Is correlated with heig,t of seed release (Fig. 4.7) 1 he aSSOCliltion 

is weak in Colylodon but high ly signlHc1tnt in Tylocodon, irrcspcclive of how ranges are 

represented Thc R' valuc lor Tylecodon under jXJlYQon range reconstruction is low (buffers 

R' _ 0.3147, P ~ 0.0001 polygons: R" _ 0.1812, P ~ 00(6) 

Age"range correlations 

Plots of degree of sympat ry against IlOde age are shown in Fi\1Jre 4,8. ObselVcd values of 

in tercept, slope, and p-values obta ined from comparison against null distribut ions 01 lhe 

same, are detailed on each graph Plots are largely consistent with phyiogcnct;c signal bcing 

retained in species' distributions Qualitatively, Catylsdoll shows a paltern consistent with 

predomll1antly allopatric spocration The observed intercept is signifkoantly smaller than 

expected from randomised ranges (at 0=0.1 only: p=0.09) USing polygons, bul r.ot at all 
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significanl using buffer ranges . Sympalry mGreas.cs with rlOde age. indicative of p"st-

speciatiorKIl range shilts and expans ion. and the slope is sigrdican tly greater than thHt 

expected at random (buffers' p=0.007). The notable levels of sympatry (:> 0,5) found in 

Cotyledon at coarse scafe (polygons) are restrKoted to older nodes, for example C. orbicuJala, 

that diverged:> 5 Mya. Tylecork>n soows a very ciflerenl pattern through time with many 

instaoces of sympatry at cOOrse sca le in recently diverged species « 2 Myr). The observed 

intercept ot 0.52 is significantly greater compared to random (p=O.OOOS). Equa ll y, there IS 

evidence for allopatric speciation over the same time period. with the pattern tending to blu r 
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with iocreasir>g oode age, poSSibly due to rar>ge movements, At fine-scale (buffers) however, 

there is no evidence for sympatric speciation in Tylecodon. This pattern remains consistent 

through time, with only very low levels of sympatry across SOme nOdes:> 2 Myr old 
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Associations of vegetative plant size, inflorescences and flowers 

In Tylecooon there is a significant relationship between vegetative plant size and 

infloresceloce length (Fig. 4.9. P = O.Otg) and in tum , flower s"Le (flo~al tube length) is very 

strong ly correlated wHh inf loresce loce height IF'>;]_ 4.10, P = 0.0009) In contrast. these 

vege latiye and floral characters show no association in Cotyledon (Figs 4,9 & 4.10) 
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DISCUSSION 

Based on climatic niche characterisation presented here Tylecodon is a specialist of 

extremely arid areas that experience severe summer-drought but reliable winter rainfall. 

Specialisation comes in the form of morphological adaptations that bestow increased water

use-efficiency and avoidance of overheating. Such adaptations include deciduous leaves, 

development of a geophytic habit, pachycauls, and reductions in plant size. Coupled with 

seed traits associated with passive dispersal, the adaptations present in species of Tylecodon 

have led to the strong association between range size and plant size, such that small plants 

are effectively trapped in microhabitats and rarely colonise new areas. When colonisation 

does occur it is followed by differentiation through highly restricted gene flow. Cotyledon on 

the other hand is not as constrained by its environment. Inflorescence height is uncoupled 

from vegetative height and so species can disperse more broadly and are able to colonise 

new areas. The relative mobility of propagules in members of Cotyledon results in gene flow 

which sustains genetic integrity of species. 

Thresholds of total annual rainfall, combined with its seasonality, demarcate the broad-scale 

distribution of Tylecodon and Cotyledon. Occupation of areas experiencing summer drought 

is derived in the group. The common ancestor of Cotyledon and Tylecodon is likely to have 

occurred in areas receiving between 230- and 300-mm of rainfall annually. Extant species of 

Tylecodon are tightly bound to areas experiencing summer drought and receiving less than 

230 mm of rainfall per year (Fig. 4.3 & 4.4). Conversely, Cotyledon is more or less absent 

from these areas and is generally found in localities receiving> 360 mm of rainfall per year. 

The absence of thorough representation of species of Kalanchoe and its omission from trait 

reconstructions make deeper level interpretations within the subfamily tentative. Species of 

Kalanchoe are found in summer rainfall areas and, given that the winter rainfall system has 

only come into being during the last 12-10 Myr, summer or aseasonal rainfall is likely to be 

the ancestral climate of Kalanchoideae. 
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The shift into arid environments in Tylecodon coincides with the evolution of leaf 

deciduousness and vegetative diminution in the genus. These morphological adaptations 

probably represent evolutionary novelties that enabled ancestral forms of Tylecodon to 

colonise new habitats created during the formation of the winter rainfall desert of the 

succulent karoo. Leaf deciduousness has arisen twice in members of Kalanchoideae 

examined here, both in Tylecodon and Toelkenocodon (Fig. 4.3). The 'all-cell succulent' type 

of leaves in these genera are cheap in terms of structural carbon inputs and can grow rapidly 

(Midgley & van der Heyden, 1999); they are, however, unable to withstand variations in turgor 

(von Willert et aI., 1992) and so are not adapted to tolerate drought. Species of Cotyledon 

have xeromorphic-type leaves with thickened epidermal cells and epicuticular waxes that 

protect against excessive water loss and insolation during the summer months. Leaves of this 

kind maintain their shape during shrinkage through water loss by means of a specialised 

internal structure and so avoid damage (von Willert et aI., 1992). Although it has been 

suggested that drought-deciduous species have temperature-sensitive leaves and respond to 

high temperatures by morphological changes such as abscission, rather than by physiological 

acclimation (e.g. Smith & Nobel, 1977), Wand et al. (2001) found no evidence for this in the 

succulent karoo species investigated. Unfortunately, plants were not subjected to water stress 

in her study and, given that high temperatures and water stress are rarely uncoupled in the 

succulent karoo, interpretation of the findings is limited. Leaf senescence in drought- versus 

seasonally-deciduous plants appears to have different triggers. In Tylecodon paniculatus leaf 

fall is controlled by photoperiod (Von Willert et aI., 1992). As day-length increases leaf-water 

is reabsorbed by the stem and the leaves wither and die. This strategy ensures that leaves 

are lost prior to the hottest periods, so avoiding heat damage to the plant and excessive water 

loss via transpiration. The production of new leaves in T. paniculatus occurs prior to the winter 

rains and the water necessary for this growth is relocated from stem reserves (Von Willert et 

aI., 1992). Storing water in the plant body in this way uncouples growth from extrinsic water 

availability enabling leaves to develop prior to the winter rains. Mild winter temperatures, 

unique to the succulent karoo winter rainfall desert, allow growth to continue during the wet 

season with very low risk of frost damage (Esler et aI., 1999). 
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Vegetative persistence appears to be favoured at the expense of dispersability in species of 

Tylecodon. Adaptations determining evolutionary processes in Tylecodon appear to mirror 

those hypothesised to have occurred in the geophytic clade of Pelargonium (Section Hoarea: 

Jones & Price, 1996, in Bakker et aI., 2005). Tuber-fattening, lack of internode elongation, 

limited branching, and the evolution of deciduous leaves was linked to increased levels of 

aridity, and the concomitant reduction in carbon gain, enforced by these morphological traits, 

was purported to have led to lower seed production and dispersal, and consequently, to 

restricted gene flow in the group (Bakker et aI., 2005). Minute seeds are common to both 

Cotyledon and Tylecodon (Van Jaarsveld & Koutnik, 2004) and so the strong positive 

correlations between height of reproductive and vegetative structures in the latter, that are not 

found in Cotyledon, suggest that allometric constraints may be limiting dispersal (Samson & 

Werk, 1986). In the absence of measures of relative allocation of biomass in species of the 

two genera, this interpretation is speculative. It has been demonstrated empirically however, 

that reproductive effort is often strongly correlated with plant size; a relationship which is 

linear to curvilinear, becoming asymptotic at group-dependent size thresholds (Reekie, 1999). 

That range size does not increase with increasing species age in Tylecodon is strong 

evidence for dispersal-restricted range expansion in the genus, while correlations between 

range size and the height of seed-release point to the mechanisms that determine this 

process. The frequent association of members of Tylecodon with rocky terrain is likely to 

exacerbate effects of constraints on reproductive effort, given that once seeds are released, 

the closer they are to the ground, the more likely they are to become trapped against nearby 

boulders and in crevices. Data relating species range sizes to the topography of their habitat 

would be a valuable component of comparative analyses that focussed on different range

size characteristics in closely related species. 

The over-arching pattern of speciation in Tylecodon and Cotyledon is one of allopatry. 

Allopatric speciation is cited as the null hypotheSiS against which all other modes of speciation 

must be tested (Futuyama & Mayer, 1980). The underlying process is one of random drift and 

mutation (Gavrilets, 2003). Mayr was one of the longest standing advocates of allopatric 

speciation. He believed that the initiation of the speciation process could always be explained 
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by geographic isolation, and ecological specialisation was only important in maintaining 

discontinuities that arose during physical separation of populations and incipient species 

(Mayr, 1942). A model of geographic isolation and the corollary of genetic processes are 

particularly germane to Tylecodon and Cotyledon. 

Geographic modes of speciation inferred in this study are clearly influenced by the scale at 

which species' ranges are represented. Given the large disparity between methods for 

Tylecodon this factor warrants further interpretation. There are notable levels of sympatry (> 

0.5) in recently diverged species of Tylecodon at coarse scale, but the pattern completely 

breaks down at a smaller scale. This may indicate finer partitioning of the landscape that is 

homogenised by polygons, or point to under-collecting in the genus. Species with low local 

abundances characteristic of many species of Tylecodon, tend to be recorded less frequently, 

irrespective of the number of sites in which they actually occur (Gaston, 1997). In addition to 

many of the species being small, plants are often tucked away in rock crevices, or 

camouflaged against a background of gravel and pebbles. Tylecodon pygmaeus and T. 

scandens are almost indistinguishable amongst the mosaic of quartz patches on the 

Knersvlakte in southern Namaqualand, South Africa. Their cryptic nature makes collecting a 

formidable task and it is likely that this results in their under-representation in distribution data. 

Differences can also be attributed to mapping compromises suggested by Lynch (1989). 

Shaded distribution maps and polygons that summarise distributions are the traditional 

methods used for investigating modes of speciation but may not reflect actual co-occurrence 

(Barraclough & Vogler, 2000). If for instance, ranges of species of Tylecodon interdigitate 

more than those of its sister due to features of the landscape in which they occur, sympatry 

will be greatly over-estimated when using polygons. Disparities found between ranges of 

Tylecodon that result from the methods of representation highlight the importance of 

considering fine-scale distribution patterns in addition to those generated using summary 

approaches (Barraclough and Vogler, 2000). 

The evolutionary trajectory of Tylecodon differs greatly from that of its sister Cotyledon. 

Evidence presented here points to species of Tylecodon being specialists of the succulent 
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karoo, adapted to survive harsh summer drought in microhabitats. The morphological 

adaptations that confer increased survival, indirectly constrain the movement of reproductive 

propagules. As seed dispersal is passive or via wind and raindrops, the effective distances of 

dispersal are a function of inflorescence height. Dispersal capacity may be further limited by 

the rocky terrain in which many of the plants occur. Seed mediated gene flow is therefore 

largely a local phenomenon, such that populations and incipient species are effectively caught 

in rarity 'traps' (Chown, 1997). Pollen movement is determined by the pollinating fauna which, 

based on inflorescence architecture, is limited to insects in all but the largest species of 

Tylecodon. This system of pollination is associated with shorter foraging distances (i.e. than 

vertebrate-effected pollination) which ensures that pollen transfer if effected over short 

distances. Populations of species of Tylecodon are then able to differentiate in allopatry, via 

drift and subsequent adaptation to microhabitats and competition for pollinators, ensuring 

morphological and phenological shifts between closely related taxa. Ultimately these 

mechanisms have led to the relatively high rates of speciation found in Tylecodon. 
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SUMMARY 

This study set out to produce a phylogenetic hypothesis for the southern African representatives 

of Kalanchoideae, and to test the current generic limits of Tylecodon, Cotyledon and 

Adromischus. Spatial and temporal aspects of diversification were explored in this phylogenetic 

context, and mechanisms by which the different patterns of diversity in the genera may have 

come into being were investigated. 

Parsimony and Bayesian analyses of plastid and nuclear DNA sequence data recovered a well

resolved and highly supported hypothesis of intergeneric relationships for the members of 

Kalanchoideae sampled here, however, whether or not Tylecodon, Cotyledon and Adromischus 

represent a southern African clade remains open. Nuclear ITS data support this relationship, 

whereas plastid data recover an alternative arrangement in which Adromischus is sister to a 

clade comprising Kalanchoe, Tylecodon and Cotyledon. Morphological divergence, biogeography 

and polyploidy documented in species of Kalanchoe suggest that the group is sufficiently different 

from Tylecodon, Cotyledon and Adromischus. Thus uncertainty regarding the affinities of 

Kalanchoe to the remaining genera of Kalanchoideae does not compromise the validity of the 

relationships resolved in the three genera that are the focus of this study. Further investigations 

aimed at sampling the full gamut of variation in Kalanchoe are required to resolve these conflicts. 

Understanding of the evolutionary history of this large and variable group would be enhanced by 

cytogenetic studies that may identify possible candidates of ancient hybridisation(s). Generic 

monophyly concordant with morphology-based studies was confirmed for Cotyledon and 

A dromisch us, however Tylecodon was found to be polyphyletic as molecular data recovered 

Tylecodon racemosus as sister to A dromisch us. As a result of the high levels of genetic and 

morphological divergence of this taxon from Adromischus, it was elevated to the rank of genus 

(Chapter 2). 
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Species-level relationships were only partially resolved in Tylecodon and Adromischus, while 

analyses recovered a fully resolved and well-supported phylogeny for Cotyledon. Further 

sampling within the varieties of C. orbiculata, together with additional DNA data is required to 

resolve conflicts between the findings of this study and that of Mort et al. (2005). Although some 

clades within Tylecodon and Adromischus were without structure, relationships across the 

phylogeny were sufficiently well resolved to identify geographically coherent clades in all three 

genera, together with interesting phenomena of flowering time shifts in Tylecodon and Cotyledon. 

Members of the most speciose clade of Tylecodon, found mainly in Namaqualand and the 

Richtersveld regions of South Africa, have apparently shifted flowering times from early to late 

summer: a possible strategy for reducing competition for pollinators. Flowering in Cotyledon 

occurs after the main rainfall season which varies across its range. In addition to broad patterns 

across genera, robust sister pairs were identified in all three genera and offer considerable 

opportunity for comparative analyses aimed at determining the relative importance of isolation 

and ecology in processes of divergence. 

The divergent nature of Toelkenocodon revealed by molecular data is not reflected in its 

morphology. The taxon is virtually indistinguishable from members of Tylecodon, yet it shared its 

most recent common ancestor with Adromischus. The strength of the molecular evidence was 

sufficient to warrant the taxon being given the rank of genus, and the name Toelkenocodon was 

proposed (Chapter 2). The cryptic nature of any morphological distinction from members of 

Tylecodon, and the lack of shared similarities with Adromischus, required that putative 

synapomorphies for genera of Kalanchoideae be re-evaluated in order to identify characters that 

might be unique to Toelkenocodon. It was found that Toelkenocodon exhibits a unique 

combination of characters that distinguish it from others members of Kalanchoideae: plants are 

synanthous, and have deciduous leaves and a glabrous inner corolla, with no tuft of hairs where 

the filaments are connate with the corolla tube. 
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A comparison of the effects of four dating techniques on branch length transformation formed a 

large component of Chapter 3. Nodes were dated using a global molecular clock and two 

methods that accommodate rate heterogeneity among branches by assuming autocorrelation of 

rates between ancestor and descendant branches: NPRS and Bayesian-based Multidivtime 

estimation. A relaxed phylogenetics approach, which simultaneously estimates phylogeny and 

divergence times, implemented in BEAST, was also applied to these data. Both methods that 

invoke autocorrelation estimated ages older than those of the clock and BEAST, with the effect 

being most pronounced towards the tips of chronograms. Clock-like behaviour was rejected for 

these data, and node ages estimated using BEAST were selected as the most meaningful for 

interpretation, primarily because the technique does not assume autocorrelation. 

The timing of diversification in Tylecodon, Cotyledon and Adromischus was found to be 

coincident with major climatic shifts known to have affected the south-west of southern Africa 

during the late Miocene and Pliocene. Genera diverged around 12 - 10 Mya, coincident with the 

Benguela upwelling and initiation of a period of marked aridity. Toelkenocodon diverged 

somewhat earlier at around 14.8 Mya. The majority of lineage-splitting within genera occurred 

after the true Mediterranean climate was established in the region, with most species being less 

than 5 Myr old. Lineages-through-time plots illustrated a more or less linear process throughout 

the history of Tylecodon, Cotyledon and Adromischus. However, Tylecodon has diversified at a 

higher rate than the other two genera. A shift to succulent karoo vegetation occurred in Tylecodon 

between 5.5 and 3.2 Mya in what is currently the most species rich clade in the genus. The 

consensus from other groups is largely concordant with the findings in Kalanchoideae. Most 

species or clades entered the succulent karoo during the last 5 Myr, suggesting that this 

vegetation-type is considerably more recent than the neighbouring fynbos vegetation. Some 

groups exhibited a shift to succulent karoo as early as 17 Mya. The antiquity of these shifts may 

result from the use of stem node ages, or the possible inaccuracy of available calibration dates. 
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The final component of this thesis explored the spatial dynamics of diversification in Cotyledon 

and Tylecodon and their relationship to traits associated with adaptation to an extremely arid 

environment. Mechanisms by which Tylecodon might have diversified substantially faster than its 

sister, Cotyledon were investigated. Analyses of range size characteristics of Tylecodon and 

Cotyledon demonstrated that Tylecodon has significantly smaller ranges than Cotyledon. The 

hypothesis that range size is determined primarily by plant size and the height at which seeds are 

released (calculated as the sum of vegetative height and inflorescence height) was tested. These 

variables were found to be positively correlated in Tylecodon, but not in Cotyledon. Additional 

correlation-regression analyses revealed significant associations between the height of vegetative 

organs, inflorescences and the size of flowers in Tylecodon. Such associations were not found in 

Cotyledon. Thus it was proposed that the proclivity of species with small ranges in Tylecodon is 

the result of limited dispersal. Age-range correlations revealed that the predominant mode of 

speciation in both Tylecodon and Cotyledon is allopatric. 

The hypothesis that Cotyledon and Tylecodon occupy different climatic niches was tested using 

discriminant function analysis. The genera differ in their tolerances of summer drought and 

potential evaporation. Species of Tylecodon occupy niches concentrated at the arid extremes that 

experience summer drought, whereas Cotyledon is largely absent from these areas. The shift into 

more extreme arid environments in Tylecodon coincides with the emergence of morphological 

characters such as leaf deciduousness, development of a pachycaulous habit, subterranean 

storage organs and reduced vegetative plant size - characters that may represent evolutionary 

novelties that enabled ancestral forms of Tylecodon to colonise new habitats created during the 

formation of the winter rainfall desert of the succulent karoo, approximately 5 Mya. Short 

dispersal distances coupled with the morphological adaptations exhibited by species of 

Tylecodon are hypothesised to have resulted in the strong association between range size and 

plant height, with smaller plants having smaller ranges, such that they are confined to 

microhabitats. Effective isolation of populations enables differentiation to occur as gene flow is 

highly restricted. The increased stature of plants of Cotyledon and the fact that inflorescence 
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height is uncoupled from vegetative height, results in the relative mobility of propagules of 

members of the genus. Species can disperse more broadly with gene flow sustaining the genetic 

integrity of species. The effects of pollinator-mediated gene flow are likely to reinforce dispersal

mediated gene flow, given that genera exhibit divergence in pollination syndromes. 
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APPENDIX 1 

N.B. This manuscript, submitted to Molecular Phylogenetics and Evolution, is an extension of 

the ideas and work presented in Chapter 3 of this thesis. T.L. Nowell and GA Verboom are 

joint-principal authors. 

Univ
ers

ity
 of

 C
ap

e T
ow

n



4 

6 

8 Q2 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
!~ 

24 

H 
~i! 

3§ 
~8 

U 
U 
1~ 
1§ 
1~ 
48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

Molecular Phylogenetics and EvolutIOn xxx (2008) xxx-xxx 

Contents lists available at ScienceDirect 

Molecular Phylogenetics and Evolution 

journal homepage: www.elsevier.com/locate/ympev 

Origin and diversification of the Greater Cape flora: Ancient species repository, 
hot-bed of recent radiation, or both? 

G. Anthony Verboorn a .•. \ Jenny K. Archibald b, Freek T. Bakker c, Dirk U. Bellstedt d, Ferozah Conrad e, 

Leanne L. Dreyer f, Felix Forest g, Chloe Galley h, Peter Goldblatt i, Jack F. Henning j
, Klaus Murnrnenhoff k, 

H. Peter Linder h, A. Mutharna Muasya a, Kenneth C. Oberlander f, Vincent Savolainen I, Deidre A. Snijrnan m, 

Tirnotheils van der Niet n, Tracey L. Nowell a.e.l 

'Department of Botany. University of Cape Town. Bolus Herbarium. Private Bag. Western Cape. Rondebosch 7701. South Africa 
b Department of Ecology and Evolutionary Biology and the Natural History Museum and Biodiversity Research Center. University of Kansas. l.awrence. KS 66045. USA 
'Nationol Herbarium Nederland. Wageningen Branch [r Biosystematics Group, University of Wageningen. Building 351. Generoal Foulkesweg 37. 
6703 BL Wageningen. The Netherlands 
d Department of Biochemistry. Stellenbosch University. Private Bag Xl, Matieland 7602. South Africa 
, Molecular Ecology and Evolution Program, Kirstenbosch Research Centre. South African National Biodiversity Institute. Claremont 7735. South Africa 
f Department of Botany and Zoology. Stellenbosch University. Private Bag XI, Matieland 7602. South Africa 
g jodrell Laboratory. Royal Botanic Gardens, Kew. Richmond. Surrey TW9 305, UK 
h Institute of Systematic Botany. University of Zurich, Zollikerstrasse 107, CH-8008 Zurich. Switzerland 
'Missouri Botanical Garden. P.O. Box 299. St. Louis. MO 63166-0299, USA 
lGraduate Center. City University of New York. 365 Fifth Avenue, New York. NY 10016-4309. USA 
k Department of Botany. Faculty of Biology/Chemistry. University of Osnabrilck. Barbarastrasse 11. 49069 Osnabrilck. Germany 
'/mpenal College, London. Silwood Park Campus. Buckhurst Road. Ascot, Berks/lire SL5 7PY. UK 
m Compton Herbarium. Kirstenbosch Research Centre. South African National Biodiversity Institllte. Claremont 7735. South Africa 
"School of Biological and Conservation Science. University of KwaZulu-Natal. Private Bag XOI. Scottsville 3209. Pietermaritzburg. Sam" Africa 

ARTICLE INFO 

Article history: 
Received 7 January 2008 
Accepted 17 January 2008 
Available online xxxx 

Keywords: 
Greater Cape Floristic Region 
Mediterranean climate 
Summer-aridity 

1. Introduction 

ABSTRACT 

Like island-endemic taxa. whose origins are expected to antedate the appearance of the islands on which 
they occur. biome-endemic taxa should be younger than the biomes to which they are endemic. Accord
ingly. the ages of biome-endemic lineages may offer insights into biome history. In this study. we used 
the ages of multiple lineages to explore the origin and diversification of two southern African biomes 
whose remarkable floristic richness and endemism has identified them as global biodiversity hotspots 
(succulent karoo and fynbos). We used parsimony optimization to identify succulent karoo- and fyn
bos-endemic lineages across 17 groups of plants. for which dated phylogenies had been inferred using 
a relaxed Bayesian (BEAST) approach. All succulent karoo-endemic lineages were less than 17.5 My 
old. the majority being younger than 10 My. This is largely consistent with suggestions that this biome 
is the product of recent radiation. probably triggered by climatic deterioration since the late Miocene. 
In contrast. fynbos-endemic lineages showed a broader age distribution. with some lineages originating 
in the Oligocene. but most being more recent. Also. in groups having both succulent karoo- and fynbos
endemic lineages. there was a tendency for the latter to be older. These patterns reflect the greater antiq
uity of fynbos. but also indicate considerable recent speciation. probably through a combination of cli
matically-induced refugium fragmentation and adaptive radiation. 

og 2008 Elsevier Inc. All rights reserved. 

The high species richness and specific and generic endemism of 
the Cape flora have been well documented (Goldblatt and Man
ning. 2000). the area being identified as a global biodiversity hot-

spot (Myers et al.. 2000). The historical events underlying the 
genesis of this diversity. as well as the time frame over which it oc
curred. have been the subject of considerable discussion in the lit
erature (e.g. Adamson. 1958; Levyns. 1964; Axelrod and Raven. 
1978; Linder et al.. 1992; Linder. 2003. 2005; Cowling et al.. this 
volume). Margaret Levyns (1964) was the first to suggest that 
the remarkable plant species diversity of the western half of the 
Cape Floristic Region (CFR. Goldblatt and Manning. 2000) was the 
result of elevated speciation following the onset of arid climates 

• Corresponding author. Fax: +27 (0)21 6504041. 
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in the area. The strongly winter-rainfall. summer-arid climate that 
characterises much of the region today, is thought to have been ini
tiated around the end of the Miocene, as a consequence of changes 
in the extent of Antarctic glaciation (Zachos et aI., 2001), sea sur
face temperatures (Siesser, 1980; Zachos et aI., 2001) and the 
strength and position of high-pressure cells over the southern 
oceans (Siesser, 1980; Dieckmann et aI., 2003; Linder, 2003). This 
may have led to widespread extinction in the flora at the time, 
opening an array of empty niches into which lineages that were 
pre-adapted to survive summer aridity were able to diversify. 
Whilst this version of events has been reiterated by several subse
quent workers (e.g. Linder et aI., 1992; Goldblatt and Manning, 
2000) and supported by molecular dating studies demonstrating 
end-Miocene radiations in certain lineages (Richardson et aI., 
2001; Verboom et aI., 2003), there are indications that the full pic
ture is more complex. First, new molecular dating studies suggest 
that several Cape lineages originated and started to diversify well 
before the end-Miocene (Linder and Hardy, 2004; Bakker et aI., 
2005; Linder, 2005), when climates were presumably moister 
and more aseasonal than they are at present. Second, whilst the 
western-CFR undoubtedly receives most of its rain during winter, 
the intensity of summer drought varies substantially in space, sug
gesting differential selection for an arid-adapted flora. For exam
ple, moisture carried by the summer south-easterlies ensures 
that high-altitude environments throughout the CFR experience 
reduced summer moisture deficits (Deacon et aI., 1992), and the 
latter may consequently act as refugia for moisture-loving species. 
It is precisely these environments that support the greatest fynbos 
plant species richness as well as the highest concentrations of local 
endemics, a pattern that may partly be a result of reduced extinc
tion in the past (Cowling and Lombard, 2002). It is also in these 
environments that most of the region's palaeoendemic taxa occur 
(Linder et al. 1992). 

Elucidating the origins and diversification of the Cape flora has 
not been helped by a failure to distinguish it from the adjacent suc
culent karoo flora. Linder (2003) pointed out that several of the 
"Cape floral clades", lineages which originated in the CFR and have 
experienced most of their evolution there, are most difficult to sep
arate from the lineages that occur along the arid west coast and in 
the succulent karoo. Indeed, many of the Cape clades (e.g. Ehrharta, 
Relhaniinae, Arctoteae, Heliophileae, Pelargonium, Lampranthus) 
contain large numbers of species which are native and, in some 
cases endemic, to the succulent karoo. Consequently, some authors 
have advocated a broader concept of the Cape flora (Greater Cape 
Floristic Region, GCFR: Jurgens, 1991; Born et aI., 2006) embracing 
both fynbos and succulent karoo biomes. The floristic affinity be
tween the fynbos and succulent karoo is perhaps unsurprising 
since these biomes share a predominantly winter-rainfall regime. 
Nonetheless, the physiognomies and ecologies of their floras reflect 
contrasting climatic experiences, the succulent karoo being drier 
overall and experiencing more acute summer aridity (Milton 
et al.. 1997; Cowling, 1998; Mucina and Rutherford, 2006). Conse
quently, whereas the fynbos biome is dominated by heathy, ever
green shrubs, the succulent karoo flora reflects a diversity of 
adaptations for surviving extreme seasonal drought. Dominant life 
forms include annuals, geophytes and succulents (Milton et aI., 
1997; Cowling, 1998). In contrast to the fynbos biome which com
prises a mixture of young and ancient lineages (Linder, 2005), pos
sibly due to the presence of long-term climatic refugia, the 
succulent karoo biome is probably of recent origin (Scott et aI., 
1997), its appearance being tied to the appearance of acutely sum
mer-arid climates in the late Miocene. Accordingly, we predict that 
the age distributions of fynbos- and succulent karoo-endemic lin
eages should differ, with succulent karoo specialists consistently 
being of late Miocene age or younger, and fynbos lineages showing 
a broader range of ages, Also, excepting plant groups which en-

tered the GCFR recently, lineages having both fynbos and succulent 
karoo specialists should show a tendency for their fynbos elements 
to be older. Existing studies provide some support for these predic
tions. For example, the ruschioid Aizoaceae, the dominant succu
lent component of the succulent karoo flora, originated ca. 3.8-
8.7 Mya, whence it has given rise to over 1500 species (Klak 
et aI., 2004). In Pelargonium, the age of the succulent-karoo centred 
"xerophytic clade" is inferred to be somewhat older (18 My), but it 
is nested within a broader, fynbos-centred winter-rainfall clade da
ted at about 22 My (Bakker et aI., 2005). A similar pattern is appar
ent in EIJr/lQrta, whose late-Miocene radiation in the succulent 
karoo appears to have emerged from within an older fynbos clade 
(Verboom et aI., 2003). 

In this paper, we test the predictions set out above by compar
ing the ages of fynbos- and succulent karoo-endemic lineages 
across 17 groups of plants for which molecular sequence data were 
available. Our general approach involves: (i) inferring a topology 
and dating all the nodes using a single analytical method, (ii) using 
ancestral character state reconstruction to infer which lineages are 
endemic to either biome, and (iii) to determine and compare the 
ages of these lineages. The logic underlying the use of biome-ende
mic lineages as proxies for estimating the ages of the biomes them
selves is straightforward: presumably, a lineage endemic to a 
particular biome did not exist prior to the appearance of that 
biome. 

2. Materials and methods 

2.1. Taxon sampling 

The 17 plant groups included in this study (Table 1) were se
lected on the basis of (i) the availability of appropriate DNA se
quence alignments, (ii) reasonably dense species sampling, and 
(iii) the inclusion of one or more species endemic to the succulent 
karoo or fynbos biomes sensu Mucina and Rutherford (2006). 
Twelve of the data sets have already been published or are cur
rently in press, whilst the remainder are close to publication. The 
lineages sampled are evenly balanced between monocots (n = 9) 
and eudicots (n = 8), the latter comprising mostly rosids (n = 6). 

2.2. Phylogeny inference and molecular dating 

Prior to dating analysis, taxa reflecting conflict amongst mark
ers were pared from each data set. Overall, there were three such 
cases: (i) Tribolium pusillum was removed from the Tribolium data 
set (nuclear ribosomal ITS vs trnL-trnF conflict: Verboom et al.. 
2006), (ii) Zaluzianskya mirabilis was removed from the Zaluzian
skya data set (nuclear ribosomal ITS vs plastid conflict: Archibald 
et aI., 2005), and (iii) a clade of seven species Uamesbrittenia burke
ana, jamesbrittenia crassicaulis, jamesblittenia jurassica, jamesbritte
nia pristisepala, jamesbrittenia silenoides, and jamesbrittenia stricta) 
was removed from the jamesbrittenia data set (nuclear GScp vs 
plastid conflict: G.A. Verboom, unpublished data). 

In order to ensure that node ages obtained from analyses of the 
various data sets were maximally comparable, an identical analyt
ical procedure was applied throughout. All data sets were ana
lysed using a relaxed Bayesian approach as implemented in 
BEAST version 1.4.6 (Drummond and Rambaut, 2007). We fa
voured BEAST over nonparametric rate smoothing (NPRS, Sander
son, 1997), penalised likelihood (PL, Sanderson, 2002) or the 
relaxed Bayesian approach as implemented in Multidivtime 
(Thorne and Kishino, 2002) because, unlike these other methods, 
BEAST does not assume rate autocorrelation which may systemat
ically distort branch lengths, reducing the ratio of deep to shallow 
nodes (Hugall and Lee, 2004; Martin et aI., 2004). Instead, BEAST 
accommodates among-branch rate variation by allowing each 
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Table 1 
Phylogenelic dala sels included in lhis sludy, indicaling source publica lions and DNA loci used 

Lineage Data source DNA loci Calibration node Age prior (mean) Calibration reference Age posterior (mean) 
(My) (My) 

fhrharta Verboom et al. (2003) tmL-tmF, ITS Divergence between Micro/aena stipoides-Tetrarrhena and Zotovia- 40 Bouchenak-Khelladi 41.9 
fhrharta clades (2007) 

Haemantheae F. Conrad (unpublished tmL-IrnF, rpsl6, psbA-tmH Crown node of Haemantheae 6 Forest et al. (2007b) 5.9 
data) 

Heliophileae Mummenhoff et al. (2005) tmL-tmF, ITS Divergence between Cleome and rest of Brassicaceae 21 Wikstrom et al. 22.6 
(2001) 

Iso/epis- M. Muasya (unpublished rps16, ITS Divergence between Hypolytreae and rest of Cyperaceae 44 Bremer, 2002 39.4 
Fidnia data) 

jamesbrittenia GA Verboom rps16, psbA-tmH, GScp Crown node of Manuleeae 10 Forest et al. (2007b) 10.2 
(unpublished data) 

Melianthus Linder et al. (2006) tmL-tmF, psbA-tmH, ITS Divergence between Greyiaceae and Melianthaceae 63 Wikstrom et al. 60.3 
(2001) 

Moraea Goldblatt et al. (2002) rbeL. tmL-tmF, rps16 Divergence between Ferrario and Moraea-Homeria clade 25.5 Goldblatt et al. (2002) 26.3 
Muraltia Forest et al. (in press) tmL-tmF, atpB-rbcL. ITS Divergence between Muraltia and Poryga/a 18 Forest et al. (2oo7b) 18.5 
Oxalis K. Oberlander ITS,tmL-tmF,tmS-tmG Divergence between Oxalis and Averrhoa 47 Wikstrom et al. 47 

(unpublished data) (2001) 
Pt>/argonium Bakker et al. (2004, 2005) tmL-tmF, ITS Divergence between Geranium and Pt>largonium 42.5 Wikstrom et al. 43 

(2001) 
Pt>ntosehistis Galley and Linder, 2007 tmL-tmF, tmT-tmL. atpB-rbeL, rpllfi, Crown node of Danthonieae 14 Bouchenak-Khelladi 13.9 

tmD-psbA (2007) 
Restionaceae Linder et al. (2003) rbcL. tmL-tmF Divergence between Anarthriaceae and Restionaceae 91 Bremer, 2002 91.5 
Salyrium Van der Niet et al. (in matK, tmK intron, tmS-tmG, tmL-tmF Divergence between Disperis and Satyrium 27.8 This study' 31.2 

press) 
Schoeneae Verboom (2006) rbeL. tmL-tmF, rps16 Divergence between Hypolytreae and rest of Cyper aceae 44 Bremer, 2002 46 
Tribo/ium Verboom et al. (2006) tmL-tmF, ITS Crown node of Danthonieae 14 Bouchenak-Khelladi 14.3 

(2007) 
Za/uzianskya Archibald el al. (2005) rp/l 6, tmL-tmF, ITS Stem node of Manuleae 10 Forest et al. (2007b) 9.56 
Zygophy/lum D. Bellstedt (unpublished rbeL. tmL-tmF Divergence between Zygophylloideae and Larrioideae 38.2 This study" 38.2 

data) 

Details pertaining to calibration of the BEAST analyses are also provided . 
.• Calibration of the Satyrium phylogeny necessitated that the crown node of Satyriulll hrst be dated via a higher-level (Orchidaceae-wide) dating analySIS. For this purpose, we conducted a BEAST analysis on the combined 

rbel + matI{ data set used by Rimlirez et al. (2otl7), to which we added seven species of Satyrium, thereby ensuring that the crown node of the Satyrium was sampled. This analysis was set up in an identicallllanner to other BEAST 
analyses run for this paper (see Section 2) except that calibration priors were applied to two nodes, using fossil data described by Ramirez et al. (2007): (i) a lognormal prior, with offset ~ 93.0 My, mean ~ 2.60 My and standard 
deviation ~ 1.0 My, was applied to the crown node of Orchidaceae. (ii) A lognormal prior, with offset ~ 15.0 My, mean ~ 0.96 My and standard deviation ~ 1.0 My, was applied to the crown node of Goodyerinae. lognormal priors 
were used to renect the fact that fossils indicate minimum ages of the lineages they represent. 

" Calibration of the Lygophyllum phylogeny necessitated that the stem node of Zygophylloideae first be dated via a higher-level dating analysis. For this purpose, a parsimony search, done using PAUP version 4.0b 10 (Swofford, 
2002), was used to produce an rbel phylogeny for 103 species comprising (for source sequence data, see Electronic supplementary material, Appendix A): Gingko bi/obu. 97 species representing all angiosperm families found in the 
GCFR, one species from Krameriaceae, two representatives of Zygophyllaceae subfamily Larrioideae (sister to Zygophylloideae), and two Zygophyllum species. Branch lengths on this lree were then estimated using maximum 
likelihood (PAUP), under an appropriate sequence evolution model (selected using Modeltest version 3.06: Posada and Crandall, 1998). Following rejection of a clock (df ~ 99, P < 0.01), a chronogram was produced using penalized 
likelihood (Sanderson. 2002), as implemented in r8s version 1.71 (Sanderson. 2006), with a smoothing parameter (;) of 316.22 (determined by cross validation). The following references were used to calibrate the tree: the first 
occurrence of trieolpate pollen at 125 Mya (Anderson et aI., 2005), set as a fixed age; the occurrence of African Restionaceae at 61 Mya (linder et aI., 2003). set as a minimum age constraint; the occurrence of genistoid legumes at 
56 Mya (lavin et al., 2006), set as a minimum age constraint; and the inferred age of Phylica 12 Mya (Richardson et aI., 2001), set as a maximum age constraint. 
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branch to draw its rate from a discretized lognormal distribution, 
whose shape is estimated as part of the analysis (Drummond 
et aI., 2006). 

In contrast to other dating methods, BEAST simultaneously esti
mates topology along with the node ages, allowing sequence diver
gences to inform topology estimation (Drummond et aI., 2006). All 
BEAST analyses were run in the absence of topological constraints 
except where these were necessary to ensure resolution of the cal
ibration node. Since most data sets comprised mUltiple loci (Table 
1 ), mixed models were used, with a separate model applied to each 
locus. Molecular evolution model parameters used flat priors, 
whilst tree priors were modeled according to a Yule speCiation pro
cess. All analyses were calibrated by setting an age prior on a single 
node for which an age estimate was available from a higher-level 
dating analysis (Table 1). Whilst indirect calibrations of this type 
have been vigorously criticised because they compound error 
(Graur and Martin, 2004; Hedges and Kumar, 2004), they usually 
represent the only point of reference where appropriate fossils 
do not exist. Since this was true for most of the groups included 
in this study, we decided to employ indirect calibrations through
out. in order to ensure that the error associated with each of our 
node age estimates was of a uniform nature. In all cases. node 
age priors were modeled as a normal distribution having its mean 
equal to the node age suggested by the higher-level dating analysis 
and a 95% confidence interval arbitrarily defined as (mean age -
[0.2 x mean age], mean age+[0.2 x mean age]). 

Posterior distributions for each parameter were obtaining using 
a Monte Carlo Markov Chain (MCMC) which was run for 10-20 
million generations, and sampled every 1 OOOth generation. Inspec
tion of the results using Tracer version 1.3 (Rambaut and Drum
mond. 2006) confirmed that stationarity was achieved in all 
cases and that sample sizes were adequate. Trees were summa
rized as maximum clade credibility trees using the TreeAnnotator 
program which forms part of the BEAST package, and visualized 
using FigTree version 1.0 (Rambaut, 2006). In each case, the first 
30% of samples was discarded to avoid sampling the burn-in phase. 

2.3. Reconstruction oj biome endemism 

In order to identify which lineages were ancestrally endemic to 
the succulent karoo or fynbos biomes (hereafter termed succulent 
karoo- and fynbos-endemic lineages). each species placed within 
the ingroup in each tree was scored for three characters: (i) species 
present (1) or absent (0) in the succulent karoo biome. (ii) species 
present (1) or absent (0) in the fynbos biome, and (iii) species pres
ent (1) or absent (0) elsewhere (i.e. outside the fynbos or succulent 
karoo). Biome definitions followed Mucina and Rutherford (2006), 
and scoring was based on field observations as well as habitat and 
distribution descriptions reported in the literature (Marais. 1970; 
Goldblatt, 1977, 1979. 1981. 1986. 1987; Van der Walt 1981; 
Van der Walt and Vorster. 1981. 1988; Snijman. 1984; Gibbs-Rus
sell et al.. 1990; Hilliard 1994; Linder and Ellis, 1990; Dlamini. 
1999; Linder and Davidse 1997; Linder and Kurzweil. 1999; Rou
rke. 2002; Germishuizen and Meyer. 2003; Galley and Linder. 
2006). Based on this scoring system, each species had one of seven 
possible states for the three-character combination (100, 01 O. 001, 
11 O. 101, 011. 111), with succulent karoo- and fynbos-endemics 
being represented as "100" and "010", respectively. In order to al
low for polymorphisms at ancestral nodes and to avoid all-zero 
reconstructions. these combinations were then converted to a sin
gle seven-state "polymorphism" character and reconstructed in 
Mesquite version 2.0 (Maddison and Maddison. 2007) using parsi
mony-based Sankoff optimization as recommended by Hardy and 
Linder (2005). The state transition costs were defined by a step
wise matrix identical to that shown in Hardy and Linder's (2005) 
Fig. 2. 

2.4. Age comparison oj succulent karoo- and Jynbos-endemic lineages 

Frequency distributions of stem node ages were generated for 
the full sets of succulent karoo- and fynbos-endemic lineages 
across all 17 data sets. We did not consider crown node ages as 
many of the biome-endemic lineages were single species and so 
lacked meaningful crown nodes. Since the resulting lineage age 
distributions deviated substantially from normality. comparison 
of the ages of succulent karoo- and fynbos-endemic lineages was 
done using Mann-Whitney's U test. To test whether trees contain
ing both succulent karoo- and fynbos-endemic lineages consis
tently revealed the fynbos-endemic lineages to be older, the 
oldest succulent karoo- and fynbos-endemic lineages from each 
data set were compared in a pairwise manner. using Wilcoxon 
matched pairs test. This test has the strength that, because com
parisons are drawn within each individual tree, it is partly robust 
to calibration error. Finally, although we had expected the oldest 
fynbos-endemic lineage in any given tree generally to antedate 
the oldest succulent karoo-endemic lineage, this expectation really 
only applies to groups that entered the GCFR (i.e. fynbos plus suc
culent karoo biomes) prior to the genesis of the succulent karoo. 
Therefore. for all trees containing both succulent karoo- and fyn
bos-endemic lineages, we subtracted the age of the oldest succu
lent karoo-endemic lineage from that of the oldest fynbos
endemic lineage. and plotted this difference against the age of 
the oldest GCFR-endemic lineage in that tree. The resulting rela
tionship was evaluated using linear correlation. All statistical tests 
described in this section were conducted in STATlSTICA version 7.0 
(Statsoft Inc., 2004). 

3. Results 

All of the phylogenetic trees obtained using BEAST were topo
logically similar to those previously produced using other analyti
cal methods and reported in the literature. Also, in all cases the 
posterior age estimate on the calibration node closely matched 
the age prior (Table 1). Amongst the various data sets, the ingroup 
stem node ages varied considerably. ranging from 1.6 My in Helio
phileae to 91.5 My in Restionaceae + Anarthriaceae (Figs. 1 and 2). 

All of the groups surveyed contained at least one fynbos-ende
mic lineage, whereas four (Restionaceae, Satyrium. Schoeneae, 
Zygophyl/um) did not contain any succulent karoo-endemic lin
eages. Reconstructions on some nodes were equivocal and in some 
cases the way these were resolved dictated the number of succu
lent karoo- and/or fynbos-endemic lineages present. as well as 
their ages. For the purpose of this paper, we treated these nodes 
as uncertain and thus not indicative of biome-endemism. This 
had the effect of favouring multiple. younger, biome-endemic lin
eages over somewhat fewer. older such lineages (DELTRAN-like). 
We recognise that where an interpretation of "succulent karoo-en
demic" or "fynbos-endemic" was possible on a set of equivocally 
resolved branches. this often meant that such endemism could 
be interpreted as arising further back in time. Generally, however. 
the temporal discrepancy was small. usually being less than 2 My 
and in one case 3.2 My. Larger discrepancies were evident in three 
instances. First. the branch (Fig. 1. node marked X) subtending the 
winter rainfall Pelargonium clade (sensu Bakker et al.. 2005) was re
solved as either fynbos- or succulent karoo-endemic. Depending on 
how this is resolved. the age of the oldest fynbos- or succulent kar
oo-endemic lineage in Pelargonium can be pushed back to 26.2 My. 
Second, several of the deeper nodes in Satyrium were resolved as 
either fynbos-endemic or as occurring outside the GCFR (Fig. 1. 
node marked Y). Under the first interpretation, the age ofthe oldest 
fynbos-endemic lineage in Satyrium is pushed back to 25.8 My. 
Finally, in Ehrharta an equivocal reconstruction (succulent karoo-
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Fig. 2. Stem node age distributions of succulent karoo- (open bars) and fynbos
endemlc (solid bars) lineages. obtained when equivocal reconstructions are treated 
as nor indicative of biome-endemism. For each lineage type, the mean stem node 
age±standard error is indicated. 

older than 10 My, the oldest of these being dated at 17.36 My. On 
average, the succulent karoo-endemic lineages were younger 
(Fig. 2), although the difference was not significant (Z = 0.755, 
P = 0.45). Eight of the 13 groups that contained both succulent kar-
00- and fynbos-endemic lineages (Ehrharta, Isolepis-Ficinia, Melian
thus, Moraea, Muraltia, Pentaschistis, Oxalis, and Tribolium), had a 
single fynbos-endemic lineage which was older than all of the suc
culent karoo lineages included (Fig. 3), the latter commonly being 
nested within the former. These patterns were robust to alterna
tive resolutions at equivocal nodes. The remaining groups 
(Haemantheae. Heliophileae. jamesbrittenia. Pelargonium. 2aluzian
skya) had an older succulent karoo-endemic lineage. although in 
Pelargonium an older fynbos lineage was possible if the branch sub
tending the winter-rainfall clade was (Fig. 1. node marked X) inter
preted as fynbos-endemic, as suggested by Bakker et al. (2005). 
Considered over all 13 groups, therefore. there was a tendency 
for the fynbos-endemic lineages to be older than the oldest succu
lent karoo-endemic lineages. although this was significant only at 
the CJ. = 0.1 level (2 = 1.852. P = 0.06). This trend was strengthened 
when the winter-rainfall Pelargonium clade was assumed to have 
a fynbos origin (2 = 2.341. P = 0.019). Interestingly. with the excep
tion of Pelargonium, all the groups that countered this trend lacked 
evidence of a deep evolutionary history in the GCFR. the ages of 
their oldest GCFR-endemic clades being 5.22 My or less. Thus. 
the difference between the age of oldest fynbos-endemic lineage 
and that of the oldest succulent karoo-endemic lineage showed a 
tight. positive relationship with the first time of appearance of a 
lineage endemic to the GCFR (Fig. 4). Again. this relationship is 
strengthened if a fynbos origin is assumed for the winter-rainfall 
Pelargonium clade (R2 = 0.814. P < 0.0001). 

4. Discussion 

The patterns presented in this paper suggest that age estimates 
of biome-endemic lineages can provide useful insights into biome 
history. All lineages identified as ancestrally endemic to the succu
lent karoo were younger than 17.5 My, the vast majority being less 
than 10 MyoId. This is consistent with a mid- to late-Miocene ori
gin for this biome. In contrast. at least a few fynbos-endemic lin
eages extend much further back in time. suggesting a much 
deeper history for the fynbos. This is corroborated by a consistent 
tendency for groups with a deep history in the GCFR to produce 

fynbos-endemic lineages before they give rise to succulent karoo 372 

specialists. We argue that the fynbos and succulent karoo floras 373 

have rather different diversificational histories. and that this dis- 374 

tinction is important when exploring the origins of the Greater 375 

Cape flora. 376 

Our failure to identify any succulent karoo-endemic lineages 377 

older than 17.5 My supports Levyns (1964) interpretation of the 378 

succulent karoo as a comparatively young biome. Most likely, 379 

the appearance of the succulent karoo was associated with in- 380 

creased aridification and the establishment of a pronouncedly 381 

summer-arid climate along the west coast of southern Africa. 382 

Since this is thought to have started about 14 to 10 Mya (Siesser. 383 

1980; Dieckmann et aI., 2003; Linder 2003). however. our identi- 384 

fication of a few succulent karoo-endemic lineages dating back to 385 

the early- or mid-Miocene is at odds with current palaeoclimatic 386 

reconstructions. Prior to this time. climates are thought to have 387 

been warmer and moister. supporting a dry. subtropical. wood- 388 

land flora (Coetzee. 1978. 1983). Besides possible errors associ- 389 

ated with chronology and interpretation of palaeoenvironmental 390 

records. we can think of at least three factors that may explain 391 

this inconsistency: (i) error associated with chronogram calibra- 392 

tion and branch length estimation. (ii) our use of stem node 393 

rather than crown node ages. and (iii) the possibility that appar- 394 

ent succulent karoo-endemic lineages initially inhabited nonsuc- 395 

culent karoo vegetation. 396 

In running the dating analyses for this paper. we purposefully 397 

employed a single calibration and branch length estimation proce- 398 

dure in order to ensure that the results were maximally com para- 399 

ble across lineages. Whilst this approach may minimize systematic 400 

biases. we readily acknowledge that there remains substantial 401 

scope for error. For example. in the case of all succulent karoo-en- 402 

demic nodes having a mean age greater than 10 My. the 95% con- 403 

fidence intervals were broad enough to allow for the possibility 404 

that these nodes were less than 10 MyoId (Appendix A). in many 405 

cases substantially so. Thus we cannot exclude the possibility that 406 

these lineages are actually much younger than our analyses sug- 407 

gest. There is also considerable room for error in the inference of 408 

ancestral habitats, as well as our interpretation of precisely at 409 

which node habitat switches occurred. As noted by Frumhoff and 410 

Reeves (1994). we can never be entirely certain that the progeni- 411 

tors of an apparently succulent karoo-endemic lineage did not 412 

evolve in a different habitat. our inference of a succulent karoo-en- 413 

demic ancestor being an artefact of the reconstruction method. 414 

Also, since we consistently associated habitat shifts with stem 415 

rather than crown nodes. the timing of such shifts would be 416 

pushed backwards. potentially making them appear older than 417 

they really are. 418 

Notwithstanding the slight mismatch between palaeoclimatic 419 

reconstructions and the inferred ages of the oldest succulent kar- 420 

oo-endemic lineages, a total absence of succulent karoo-endemic 421 

lineages older than 17.5 My identifies this flora as being relatively 422 

young. its appearance and diversification probably being stimu- 423 

lated by adaptation to the summer-arid "adaptive zone" sensu 424 

Simpson (1953) that appeared in the late Miocene. The high rich- 425 

ness and endemism of the succulent karoo flora (Cowling, 1998). 426 

then, identifies this biome as an arena or hot-bed of recent and rel- 427 

atively rapid radiation. probably following a classic Simpson 428 

(1953) adaptive radiation model. This is most spectacularly illus- 429 

trated by the ruschioid Aizoaceae (not included in this study) 430 

which are suggested to have given rise to more than 1500 species 431 

inside the last 3.8-8.7 My (Klak et al.. 2004). at least some of this 432 

speciation being the result of adaptation along habitat gradients 433 

(Ellis and Weis. 2005; Ellis et al.. 2006). 434 

The consistent youth of succulent karoo-endemic lineages con- 435 

trasts with the pattern in fynbos. for which we identified five 436 

ancestrally-endemic lineages older than 17 My. three of these 437 
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Fig. 3. Comparison of estimated mean stem node ages of succulent karoo- (SK) and fynbos-endemic (F) lineages in each of the trees in which both types of endemism occur. 
Equivocal reconstructions have been treated as not indicative of biome-endemism. 

being substantially older. Included amongst these is the African 
Restionaceae clade (61.3 My), whose members constitute the dom
inant element of fynbos vegetation, and have been used to charac
terize it (Campbell. 1985). Although these age estimates again 
reflect considerable error, the 95% confidence intervals on most 
of these estimates reject the possibility that they arose after the 
mid-Miocene (Appendix A). Indeed, in the case of EhrllQrta and Res
tionaceae, an origin after the Oligocene seems very unlikely. The 
same is probably true for the fynbos-endemic family Bruniaceae 
for which Quint and C1assen-Bockhoff (2004) inferred a stem node 
age of 59.7-99.5 My. Further support for the relative antiquity of 
fynbos (compared to succulent karoo) is provided by a group-spe
cific comparison of fynbos- and succulent karoo-endemic lineages. 
In groups having both fynbos- and succulent karoo-endemic lin
eages, we identified a consistent tendency for fynbos-endemic lin
eages to be the older, except in groups whose first appearance in 
the GCFR post-dated the end-Miocene origin of the succulent karoo 
(Haemantheae, Jamesbrittenia, Zaluzianskya). In these younger 
groups there is obviously no basis for expecting a bias in either 
direction. 

The antiquity of some key fynbos lineages has been interpreted 
as evidence for the antiquity of the biome itself (e.g. Bakker et aI., 
2005: Linder 2005). This in turn implies the existence of long-term 
stable refugia in which fynbos vegetation has been able to persist 
not only through the Quaternary (Dynesius and Jansson, 2000: 
Jansson and Dynesius, 2002) but possibly the entire Cainozoic. 
The older elements in fynbos (e.g. Restionaceae, Bruniaceae, basal 
nodes in Ehrharta) are largely endemic to the sandstones of the 
Cape Fold Mountains, identifying the latter as potential refugia. 
Consistent with this, plant species richness (as well as rare species 
richness) in the western CFR is positively correlated with altitude, 
possibly due to reduced extinction in montane sites (Cowling and 
Lombard 2002). It is also in moist environments within the Cape 
Fold mountains that most of the region's palaeoendemics occur 
(Linder et aI., 1992). Thus, we suggest that it is the moister, cooler, 
and less seasonal environments of the Cape Fold mountains that 
have acted as long-term refugia for the long-term persistence of 
fynbos. 

Paired with evidence showing more-or-Iess linear species accu
mulation through time (Linder and Hardy, 2004), the potential 
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Fig. 4. Plot of the stem node age difference between the oldest fynbos-endemic 
lineage and the oldest succulent karoo-endemic lineage. against the age of the 
oldest GCFR-endemic clade present in each of the trees in which both sucrulent 
karoo- and fynbos-endemic lineages occur. Points above the stippled horizontal line 
represent groups in which fynbos-endemism is older. and points below the line 
groups in which succulent karoo-endemism is older. The point representing Pela
rgonillm is Indicated by the letter "P". Equivocal reconstructions have been treated 
as not indicative of biome-endemism. 

antiquity of fynbos partly supports the view that its high species 
richness is the product of a long history of speciation (Adamson. 
1958). Whilst the antiquity of certain key fynbos elements may 
identify this biome as ancient, however, it does not imply that all 
of its constituent lineages are ancient. nor does it preclude the pos
sibility that some of its current species diversity is the product of 
recent radiation. Indeed, our data reveal the existence of large 
numbers of comparatively young fynbos-endemic lineages, some 
of which (e.g. Pentaschistis, Muraltia) diversified inside the last 
15 My, possibly in response to Miocene-Pliocene climate change. 
In contrast to the succulent karoo, whose diversification may fit a 
simple Simpsonian radiation model. climate change may have af
fected fynbos speciation in two distinct ways. First, the pro
nounced seasonality of lowland environments in the CFR 
suggests that, like the succulent karoo, these environments may 
have experienced high end-Miocene extinction followed by adap
tive radiation, possibly in response to their high substrate diversity 
and landscape evolution (Verboom et aI., 2004; Cowling et aI., this 
volume). Second, climatically-induced fragmentation of montane 
refugia, both at the end of the Miocene and later, may have pro
moted speciation in allopatry, in a similar manner to that described 
for other systems (e.g. Roy. 1997; Knowles, 2001). Unfortunately, 
whilst expedient, our use of Mucina and Rutherford's (2006) fyn
bos definition (which encompasses mountain and lowland fynbos, 
as well as lowland renosterveld) does not offer the resolution nec
essary to test these ideas. 

The Greater Cape flora displays a diversity of speciational histo
ries which need to be teased-apart if the origins of this flora are to 
be fully understood. Whereas we view the succulent karoo flora as 
a relatively recent phenomenon, the product of perhaps 10 My of 
evolution, our data support Linder's (2005) deduction that the fyn
bos flora comprises a mix of ancient and recently radiated groups, 
indicating a somewhat more complex diversification history. Con
sequently, the processes underlying the diversities of these two 
biomes may differ slightly, a point which we believe has been inad
equately acknowledged in the past. We suggest that, within the 
CFR, there is a need to distinguish amongst the lowland and mon
tane communities as these may have experienced different diver
sification histories. 

S. Uncited references 

Forest et a l. (2007 a). 

Appendix A 

Stem node ages of lineages identified by parsimony optimization 
as fynbos- and succulent karoo-endemic 

Group 

Ehrharta 

Biome 
endemism 

Fynbos 
Succulent 
karoo 

Haemantheae Fynbos 

Succulent 
karoo 

Heliophileae Fynbos 

lsolepis 

Succulent 
karoo 

Fynbos 

Succulent 
karoo 

jamesbrittenia Fynbos 

Melianthus 

Moraea 

Muraltia 

Succulent 
karoo 

Fynbos 
Succulent 
karoo 

Fynbos 
Succulent 
karoo 

Fynbos 

Stem node 
age (My) 

40.89 
10 

0.20 (6.38) 
1.66 
1.1 

2.05 
0.54 
1.03 
3.15 
5.22 

1.25 

1.29 (2.60) 

0.62' 
1.55 (2.60) 

0.71 

17.07 (18.63) 

5.16 

4.4 
1.78 

0.58 (0.78) 

0.56' 
0.48 
2.81 

0.26 
0.59 
0.24 

17.26 
13.4 

26.33 
13.91 (15.41) 

5.47' 
3.8 
12.93 (14.26) 

10.40' 
7.96' 
8.96' 
1.93' 

18.49 

95% Confidence 
interval (My) 

31.58, 41.25 
5.16,11.27 

0.01,1.71 (2.9,8.32) 
0.46,4.31 
Not estimated 

0.72,2.86 
0.11,1.36 
0.46,2.21 
Not estimated 
3.81,6.19 

0.55, 1.81 

Not estimated (0.93, 
3.68) 
0.26, 1.07 
0.71,2.51 (0.93, 
3.68) 
0.29,1.20 

12.45,26.57 (14.84, 
30.97) 
2.40,13.80 

2.69,8.61 
1.00, 5.40 

0.20, 1.11 (0.50, 
1.75) 
Not estimated 
Not estimated 
2.42,5.81 

0.07,1.47 
0.37, 1.34 
Not estimated 

5.71,26.78 
3.57, 15.27 

19.10,30.24 
Not estimated 
(11.67,21.01 ) 
2.48, 10.44 
1.56,6.65 
Not estimated 
(9.24,17.37) 
7.61, 14.49 
4.00,9.27 
Not estimated 
0.39,3.02 

14.15,21.35 
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Appendix A (continued) 

Group 

Oxalis 

Pelargonium 

Pentaschistis 

Restionaceae 

Satyrium 

Schoeneae 

Tribolium 

Biome 
endemism 

Succulent 
karoo 

Fynbos 
Succulent 
karoo 

Fynbos 

Succulent 
karoo 

Fynbos 
Succulent 
karoo 

Fynbos 

Fynbos 

Fynbos 

Fynbos 

G.A. Verboom et al./Molecular Phylogenetics and Evolution xxx (2008) xxx-xxx 9 

Stem node 
age (My) 

1.08 

2.51 

15.75 
5.45 

9.81 (11.25) 

8.34' 
6.60' 
9.33' 
9.81' 
2.71 
4.97 
5.12 
1.81 
1.31 
0.7 
1.93 
1.3 
3.78 
3.57 
3.24 

10.64 
2.83 
5.47 
12.23 (26.20) 

0.98 
5.79 
6.96 
4.12 
4.29 
3.45 
17.36 (18.15) 

14.67' 
13.12 
9.25 
17.09 (26.2) 

9.91 
1.56 

0.5 

61.31 

14.38 (25.78) 

9.62' 
2.24' 
2.97' 
2.24' 

8.89 
12.76 
10.22 
1.13 

6.39 

95% Confidence 
interval (My) 

1.06,2.80 

1.30,3.97 

14.50,30.88 
4.89, 12.51 

9.77,20.02 (10.90, 
22.42) 
7.58,15.97 
5.00, 11.17 
8.63,18.26 
9.77,20.02 
2.58,8.17 
Not estimated 
3.97,8.88 
1.15,4.04 
1.16,3.81 
0.68,2.96 
1.16,3.53 
0.97,3.12 
1.20, 5.55 
2.53,8.09 
2.22,6.76 

3.72. 13.63 
Not estimated 
0.41,5.54 
5.41,16.48 (10.63, 
28.50) 
0.19,3.15 
Not estimated 
1.89, 7.04 
Not estimated 
Not estimated 
1.00,4.30 
Not estimated (7.82, 
22.4) 
4.76,15.29 
3.81,14.37 
3.41,11.88 
7.02, 19.99 (10.63, 
28.5) 

9.82,15.76 
0.83,3.15 

0.3, 1.42 

31.69,65.44 

8.30, 18.4 (13.47, 
26.26) 
Not estimated 
0.24,2.56 
1.39,4.79 
Not estimated 

4.25,13.63 
6.20,20.92 
3.83,15.91 
0.61,3.58 

4.41,10.14 

Appendix A (continued) 

Group 

Zaluzianskya 

Zygophyllum 

Biome 
endemism 

Succulent 
karoo 

Fynbos 

Succulent 
karoo 

Fynbos 

Stem node 
age (My) 

3.79 (5.41) 

1.44' 
0.36 
1.8 

0.27 
0.56 
0.41 
4.45 

2.18 (5.34) 

95% Confidence 
interval (My) 

1.08, 4.95 (3.34, 
8.14) 
0.20,2.21 
0.08,1.22 
0.79,3.03 

0.19,0.87 
0.13,0.74 
Not estimated 
2.82,5.93 

Not estimated 
(Not estimated) 

In some cases. biome-endemism may be interpreted as older (indicated in paren
theses) depending on how equivocally reconstructed nodes are resolved. Asterisks 
indicate biome-endemic lineages that Fuse with other biome-endemic lineages 
when equivocal branches are resolved in favour of earlier biome-endemism. 

Appendix B, Supplementary data 

Supplementary data associated with this article can be found, in 
the online version, at 10.1016/j.ympev.2008.01.037. 
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APPENDIX 2 

Tables 1 and 2 provide details of the discriminant function analysis used for climatic niche 
characterisation in Chapter 4. 

Table 1. Predicted group membership following cross
validation of groups based on the discriminant functions. 
Percentages of correctly reclassified cases are shown in 
bold type. 

Predicted group Total 

Group 
membership - % 

cases 
(number of cases) 

Tylecodon Cotyledon 

Tylecodon 
95.2 4.8 665 
(633) (32) 

Cotyledon 
30.0 70.0 

273 
(82) (191) 
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n



Table 2. Loading matrix of correlations between predictors and the discriminant function. Abbreviations 
describe variables per month, either as numerals following the variable, or a three letter abbreviation 
preceding the variable: Potential evaporation(A pan) (e.g. APAN 03G, for March); Average precipitation (e.g. 
novavgprecip, for November); Average minimum and maximum monthly temperature (e.g. TMIN04 and 
TMAX04, for April). Variables followed by (a)' were not used in analysis. 

Predictor variable Correlation 
maravgprecip -0.837 
febavqprecip -0.816 
APAN03G 0.766 
novavqprecip -0.747 

APAN02G 0.746 
janavqprecip -0.726 
decavqprecip -0.722 

APAN12G 0.701 
APAN01G 0.683 
octav~JPrecip -0.642 
APAN11G 0.572 
apravgprecip -0.545 
APAN04G 0.481 
TMAX03 0.412 
TMAX02 0.407 
TMAX04 0.316 
TMAX01 0.303 
TMIN06(a) 0.299 
TMAX11 0.279 
APAN10G 0.266 
TMIN07(a) 0.246 
TMAX12 0.237 
sepavgprecip -0.221 
TMIN05(a) 0.216 
APAN07G -0.209 
iunavqprecip 0.196 
julavqprecip 0.180 
TMAX05 0.172 
APAN06G -0.169 
APAN08G -0.159 
TMIN10 -0.150 
TMIN04(a) 0.139 
auqavqprecip 0.131 
TMIN08(a) 0.117 
TMAX10 0.116 
TMAX06 0.116 
TMIN12(a) -0.115 
TMIN01 -0.106 
TMIN11 (a) -0.094 
TMAX08 -0.071 
TMIN09(a) -0.060 
APAN05G 0.050 
TMAX09 -0.047 
TMIN03(a) 0.033 
TMAX07 0.031 
APAN09G 0.022 
mayavqprecip 0.015 
TMIN02 0.010 
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