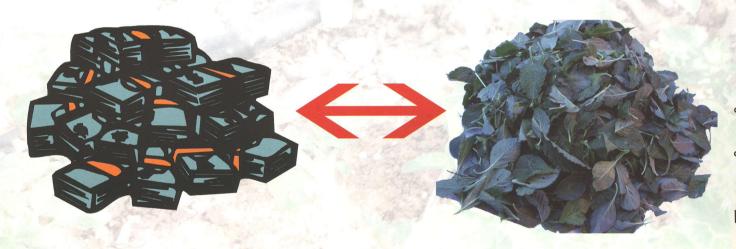
Spoilight on Agriculture

Ministry of Agriculture, Water and Forestry, Directorate of Agricultural Research and Training, Private Bag 13184, Windhoek

No 96 October 2005


THE POTENTIAL OF TRADITIONAL GREEN LEAFY VEGETABLES – ECONOMIC OPTIONS

INTRODUCTION

Glossary of abbreviations: EU: European Union, IGLV: Indigenous Green Leafy Vegetables, IPTT: Indigenous Plant Task Team, NASSP: National Agricultural Support Services Programme, NBRI: National Botanical Research Institute, SME: Small and Medium Enterprise, TGLV: Traditional Green Leafy Vegetables, UPDP: Useful Plant Development Programme, VIVA: Vigorous Indigenous Vegetables from Africa.

Many of Africa's traditional vegetables, particularly the green leafy vegetables, are weedy, semi-cultivated species that have received very little attention in the way of research, management and inputs. Having reviewed the cultivation and processing trials in the previous two issues of *Spotlight on Agriculture*, we will now discuss the economic value of these traditional leafy vegetables.

As a reminder, the leafy vegetables mentioned in the previous two issues are known under different local names, such as *ekwaka* (Oshiwambo), *mboga* (Rukwangali), *tepe* (Silozi) for *Amaranthus thunbergii*; *ombidi* (Oshikwanyama), *mpungu* (Rukwangali), *shishungwa* (Silozi) for *Cleome gynandra*; and *omutete* (Oshiwambo), *mutete* (Rukwangali), *mundambi* (Silozi) for *Hibiscus sabdariffa*.

Selling price for fresh cleaned leaves	At N\$7/kg	At N\$8/kg	At N\$12/kg (incl. processing)	
	Gross margins	Gross margins	Gross margins	
Rain-fed	887.5	1862	2987.5	
Irrigated (electric)	627.5	1602.5	2727.5	
Irrigated (solar)	277.5	1252.5	2377.5	
Urban area	-234.5	740.5	< 600*	

Comparison of different gross margins for cultivation on ¼ ha.

* Including water consumption for washing and sorting.

These margins are for one income cycle of approximately two months. The rain-fed cultivation would be limited to two cycles, while the drip irrigation could expect **as many as** three cycles (cold weather would reduce production beyond this period). Furthermore, a four-day drought might cause failure of a crop cultivated under rain-fed conditions only.

In accordance with the prior findings of the final Marketing and Processing report, as well as the cultivation trials, *Amaranthus thunbergii* seems to be the favourite candidate for making a profitable venture for an SME.

Processing/preservation trials should be conducted close to the cultivation and harvesting areas, to minimize the problems of quality deterioration during handling, packaging and transport.

- Cleaned and processed traditional vegetables have good consumer acceptance and can attain margins much higher (up to double) than those sold on the informal markets.
- Simple processing methods, such as blanching and deep-freezing, will give the best margins and keep most of the texture, appearance, organoleptic characteristics and nutrients, and these will last for at least three to four months.

However, neither *Hibiscus sabdariffa*, (which is the easiest to cultivate) nor *Cleome gynandra* (which is still preferred as an additive to an *Amaranthus thunbergii* processed mix) will be neglected in any forthcoming programme. The scenario below will be applicable to all three indigenous/traditional leafy vegetables.

The following viable options are possible for traditional green leafy vegetables:

Option 1: See the TGLV (Traditional Green Leafy Vegetables) as a catch crop only, and base the processing on this supply; Option 2: See TGLV as a crop to cultivate under rain-fed conditions;

Option 3: See TGLV as a crop to cultivate under drip irrigation.

GENERAL RECOMMENDATIONS

Potential strengths and weaknesses of TGLV as a "c	eatch crop"
(Potential) strengths Sole input would be the payment for delivery at approximately N\$20/4 kg/day/adult.	 (Potential) weaknesses. Limited quality control Limited control of assured quantity to be expected per cycle (risk of over- and under-supply) Additional work to select, clean and trim during processing Limited durability (need for deep-freezing and/or advanced processing, blanching, etc, in order to be able to supply all year round and secure a higher price).

Potential strengths and weaknesses of TGLV cultivated as a rain-fed crop

(Potential) strengths	(Potential) weaknesses	
Lower inputs and highest gross margin per cycle	· Vulnerable to drought spell, which might cause	
the second s	complete crop failure	
A Start Start Start	· Limited to 3 months	

Potential strengths and weaknesses of TGLV cu	ltivated under drip irrigation (electrical pump)
(Potential) strengths · Good gross margins per cycle	 (Potential) weaknesses Higher start-up capital needed
· Can produce for 6 months	 Existing power supply required More trained labour needed

Potential strengths and weaknesses of TGLV cultivated under drip irrigation (solar pump)			
	(Potential) strengths	(Potential) weaknesses	
	· Good gross margins per cycle	· Very high start-up capital	
	· Can produce for 6 months	More trained labour needed	
1	· No need for power supply		
	• Running costs lower than for above		Topological State

Potential strengths and weaknesses of To	GLV cultivated under drip irrigation (urban area)
(Potential) strengths	(Potential) weaknesses
· Can produce for 6 months	· Low gross margins
· Close to the market	· High water costs
	· More trained labour needed
	· High town council fees for setting up business

Author: Photographs: Content Editor:

ilbe potential of green leafs vegetables - Beonomic opt

Patrick Hilger, Programme coordinator IPTT, IGLV-VIVA programme hilgerp@iway.na

Patrick Hilger (as above)

r: Paul van der Merwe, Directorate of Agricultural Research and Training, Ministry of Agriculture, Water and Forestry, Private Bag 13184, Windhoek, Namibia

Language Editor:

tor: Pauline McGladdery/Maré, P.O. Box 557, Walvis Bay, Namibia pmmcg@iway.na