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Abstract
Welwitschia mirabilis is an ancient and rare plant distributed along the western coast of

Namibia and Angola. Several aspects ofWelwitschia biology and ecology have been inves-

tigated, but very little is known about the microbial communities associated with this plant.

This study reports on the bacterial and fungal communities inhabiting the rhizosphere ofW.

mirabilis and the surrounding bulk soil. Rhizosphere communities were dominated by

sequences of Alphaproteobacteria and Euromycetes, while Actinobacteria, Alphaproteo-

bacteria, and fungi of the class Dothideomycetes jointly dominated bulk soil communities.

Although microbial communities within the rhizosphere and soil samples were highly vari-

able, very few “species” (OTUs defined at a 97% identity cut-off) were shared between

these two environments. There was a small ‘core’ rhizosphere bacterial community (formed

by Nitratireductor, Steroidobacter, Pseudonocardia and three Phylobacteriaceae) that
together with Rhizophagus, an arbuscular mycorrhizal fungus, and other putative plant

growth-promoting microbes may interact synergistically to promoteWelwitschia growth.

Introduction
Plants live in association with a great number of microorganisms [1], the so-called plant micro-
biome. The plant microbiome can have profound effects on seed germination, seedling vigour,
plant growth and development, nutrition, diseases and productivity [2]. In return, plants
secrete a wide range of compounds, including sugars, vitamins, amino acids, purines and
nucleosides [3] that support microbial communities and influence their composition and activ-
ities [4]. The rhizosphere, the narrow zone of soil that surrounds and is influenced by plant
roots, is a microbial diversity hotspot [2, 5]. Recent studies have shown that, in natural ecosys-
tems, plant diversity [6] and the genotypes of individual plants [7] can influence the
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composition of their root-associated microbes. Yet, more research is still needed to better
understand the plant microbiome.

Welwitschia mirabilis is an uncommon plant found in the western hyper-arid desert regions
of Namibia and southern Angola, where it occurs in isolated populations ranging from 2 to
more than 1000 long-living individuals [8]. It is thought that the older specimens may be more
than 1500 years old [9]. The plant, which was first discovered in 1859 by the Austrian botanist
Friedrich Welwitsch, has always fascinated scientists because of its primitive nature.W.mirabi-
lis is a monogeneric and monospecific member of the familyWelwitschiaceae that is grouped
with the genus Ephedra and Gnetum under the plant Division Gnetophyta [10], a small group
of seed plants that has intermediate characteristics between Angiosperms and Gymnosperms.
In addition to its scientific significance,Welwitschia is of considerable importance to the local
ecosystem because it provides refuge, shade, food, and water to many species of animals that
inhabit the Namib [8]. As a result researchers have extensively studied the botany, physiology
and ecology ofWelwitschia plants [11]. However, very little is known about the microbial com-
munities associated withWelwitschia (but see [12]).

In this study, we used 454 amplicon pyrosequencing to analyse the bacterial and fungal
communities inhabiting theWelwitschia rhizosphere and compared them with those from the
bulk soil. We asked: AreWelwitschia rhizosphere and bulk soil communities phylogenetically
distinct, doesW.mirabilis present a core community of rhizosphere microbes?

Given the fact thatWelwitschia have co-evolved with other organisms for more than 110
million years [13], we would expectWelwitschia to have selected for a specific cohort of rhizo-
sphere microbes.

Materials and Methods

Sample collection
Sampling ofWelwitschia mirabilis (S1 Fig), a unique and protected plant (CITES Appendix II),
was undertaken in September 2012 at a single location (S22°40’18.84”, E14°51’35.69”) in the
Namib Desert, under the auspices of the permission granted to Swakop Uranium to transplant
threeWelwitschia plants, located 5–7 m apart, as part of the construction of a road system to
support their mining operation. BecauseWelwitschia roots were found to be embedded in a
matrix of calcrete, only 5 rhizosphere soil samples (i.e. soil closely adhering to the root systems,
depth 20–30 cm) were obtained from the three plants (approx. 150–300 year old, visual estima-
tion). Five bulk soil samples (i.e. unvegetated soil 10–20 cm distant from the root system, depth
20–30 cm) were also collected. Samples, consisting of ca. 20 g of soil, were stored in 50-ml Fal-
con tubes containing RNALater solution (Sigma-Aldrich, USA) and shipped at room tempera-
ture to the Namibian Ministry of Environment and Tourism for delivery to South Africa. All
samples were processed within two weeks of collection. Samples were collected under sampling
permit number 1653/2011 issued by the Namibian Ministry of Environment and Tourism.

Soil DNA extraction, fragment amplification and high-throughput
sequencing
Total soil DNA was extracted using the MoBio PowerSoil DNA isolation kit (MoBIO, USA)
following the manufacturer’s instructions. Partial bacterial 16S rRNA gene amplicons were
produced using the primers 27F (5’-AGRGTTTGATCMTGGCTCAG-3’) and 519R (5’-
GTNTTACNGCGGCKGCTG-3’), targeting the V1-V3 hypervariable region, as in [14]. Partial
fungal ITS amplicons were produced using the primer set ITS1F (5’-CTTGGTCATTTAGAG
GAAGTAA-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC-3’), targeting the hypervariable
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ITS2 region, as in [15]. PCR was performed using 50 ng soil DNA and the HotStarTaq Plus
Master Mix Kit (Qiagen, USA). Amplicon products from different samples were mixed in
equal concentrations and purified using Agencourt Ampure beads (Agencourt Bioscience Cor-
poration, USA). Samples were sequenced at the Molecular Research LP next generation
sequencing service (http://www.mrdnalab.com) using Roche 454 FLX titanium instruments
and reagents and following manufacturer’s guidelines.

Sequence processing
Quality processing of 16S rRNA gene sequences was performed in Mothur (v.1.35.0) [16] fol-
lowing a previously described pipeline [17]. Briefly, the FASTA quality and flow data were
extracted using the sffinfo command. Low-quality sequences were removed using trim.flows and
shhh.flows, which is an implementation of the PyroNoise component of the AmpliconNoise
suite of programs [18]. The data set was reduced to only unique sequences using unique.seqs.
An alignment was generated using the align.seqs command by aligning the data to the SILVA
bacterial database. The screen.seqs command was used to reduce the data to the overlapping
region of the sequences. Chimeric sequences were removed through chimera.uchime. After qual-
ity filtering, sequences were used to construct a distance matrix and grouped into OTUs (cut-off
level of 97%, species level [19]). The taxonomic affiliations of the OTUs were determined using
the naive Bayesian rRNA classifier [20], at an 80% confidence level. Sequences that had the
highest similarity to chloroplast sequences were removed prior to further analysis.

Pre-alignment steps for fungal ITS sequences were as described above, but we trimmed
reads to a maximum length of 300 bases. Chimeras were eliminated using chimera.uchime. To
cluster unaligned sequences into OTUs, we created a pairwise distance matrix using pairwise.
seqs and then created clusters sharing 97% or greater sequence identity using the cluster com-
mand. Classification of sequences was performed with classify.otu using the UNITE ITS refer-
ence database (http://unite.ut.ee/repository.php).

The sequence data generated in this study were deposited in the NCBI Sequence Read
Archive and are available under the project number SRP061179.

Statistical analysis
All statistical analyses were conducted in Mothur v.1.35.0 and R v.3.2.0 (R Foundation for Sta-
tistical Computing; http://www.R-project.org). Singleton sequences were removed, and each
sample was subsampled with the Mothur command sub.sample to 449 reads for bacterial and
2787 for fungal OTUs, which was the minimum number of sequences remaining in a single
sample. Sample rarefaction, as in [14], ensures equal sampling effort across samples. We visual-
ised similarities in community composition using non-metric multidimensional scaling
(nMDS) with weighted UniFrac distances. Differences in community structure were assessed
by ANOSIM analysis using the anosim function in vegan (cran.r-project.org/package = vegan).
The number of shared OTUs between communities/samples was visualized using the venn
function in gplots (cran.r-project.org/package = gplots). The mean fungal and bacterial diversi-
ties were compared using paired two-tailed Student’s t-tests. The compositions of major fungal
and bacterial genera were compared using UPGMA clustering on Hellinger-transformed Bray-
Curtis distances together with a heatmap of abundance data created with heatmap.2 in gplots.

Results and Discussion
Here we report on the microbial community associated withWelwitschia mirabilis roots using
metagenomic DNA from rhizosphere (n = 5) and bulk (n = 5) soil. The analysis, after quality
filtering and removal of singletons, included a total of 31522 amplicon sequences with an
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average sequence length of 241 bp for the 16S rRNA gene and 283 bp for the ITS. The number
of sequences was lower for the 16S rRNA gene assays (3712 sequences) than for the ITS assays
(27810 sequences). 407 bacterial 16S rRNA gene OTUs and 139 ITS OTUs, both at 97%
sequence identity, were included in the analysis.

Bacterial richness was significantly greater than fungal richness in both rhizosphere and
bulk soil communities (S1 Table), although the number of sequences was 7-fold higher for
fungi (S2 Table). A similar result was found in a recent study carried out in the rhizosphere of
invasive Berberis thungerbii [7]. In general, bulk soil bacterial communities were more diverse
than rhizosphere bacterial communities (S1 Table), probably due to the selection process that
gradually differentiates the root microbiome from the surrounding soil biome [3]. No differ-
ences in diversity were detected between the fungal communities in the two ecosystems (S2
Table), corroborating recent findings suggesting that plant-soil feedbacks do not influence the
diversity of soil fungi [21]. These results should be interpreted with caution, as rarefaction
curves and Good’s coverage values indicate that we did not sample all members of the bacterial
and fungal communities (S2 Table, S2 Fig). However, the goal of this study was not to obtain a
full coverage of the diversity in the samples, but rather to use 454-sequencing as a tool to gain
taxonomic information and assess beta-diversity patterns.

The rhizosphere bacterial communities ofW.mirabilis predominantly consisted of
sequences from the Proteobacteria (66%, mostly Alphaproteobacteria (53%) and Gammapro-
teobacteria (12%)), Actinobacteria (26%), Bacteroidetes (6%) and Acidobacteria (2%) (Figs 1a
and S3a); these numbers represent the average percentage of sequences across the five samples.
Bulk soil bacterial communities were jointly dominated by sequences from the Actinobacteria
(31%) and Proteobacteria (28%, Alphaproteobacteria (24%), Betaproteobacteria (3%), Delta-
proteobacteria (1%)). Bacteroidetes, Acidobacteria and Nitrospirae each contributed 1%. These
phyla have been shown to be widely represented in rhizosphere and soil bacterial communities
[7, 22–25], although their relative abundance vary in the different studies. At the genus level,
Nitroreductor (20%), Steroidobacter (12%), Pseudonocardia (9%), Devosia (4%) and Glyco-
myces (2%) were prevalent in the rhizosphere (Fig 2); whereas Rubellimicrobium (9%), Kocuria
(5%), Geodermatophilus (5%) andMicrovirga (4%) were the genera most frequently found in
the bulk soil. Interestingly most genera found in the rhizosphere contain isolates with plant
growth-promoting activities (discussed below).

Rhizosphere fungal communities consisted mainly of Ascomycota (98%, Eurotiomycetes
(35%), Sordariomycetes (13%), Dothideomycetes (11%)) (Figs 1b and S3b). Basidiomycota,
Glomeromycota and Chytridiomycota contributed 1%, 0.3% and 0.1%, respectively. Bulk soil
fungi were also dominated by sequences from the Ascomycota (96.6%), but primarily com-
posed by Dothideomycetes (79%) and Sordariomycetes (14%). Basidiomycota represented a
discrete 0.4%. This is in contrast to what has been reported in a global study, where Basidiomy-
cota encompassed the largest proportion of sequences [21]. However, to the best of our knowl-
edge, desert soils were not sampled in the later study. At the genus level, Aspergillus (19%),
Spiromastix (16%), Phoma (6%) and Aternaria (3%) dominated rhizosphere fungal communi-
ties (Fig 2); whereas Alternaria (28%) and Lecythophora (4%) were prevalent in soil fungal
communities. Alternaria and Phoma are plant pathogens, while Aspergillus, Spiromastix and
Lecythophora can be classified as saprotrophs (Data file S2 in [21]).

Strikingly, an average of 7% and 39% of the bacterial sequences, for rhizosphere and bulk
soil respectively, remained unclassified at the phylum level with the RDP classifier tool (Figs 1a
and S3a). For fungi, using the UNITE database, unclassified sequences represented only 0.4%
and 3% of the total, for rhizosphere and bulk soil samples respectively (Figs 1b and S3b). The
fact that most unclassified sequences were retrieved from bulk soil samples suggests that this
ecosystem remains substantially understudied.
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An nMDS plot showed that bacterial and fungal communities were significantly different
between bulk and rhizosphere soil samples (ANOSIM: Rbacteria = 0.8, Rfungi = 0.4; both
P< 0.05), as measured by weighted UniFrac dissimilarities (Fig 3). This was supported using a
Venn diagram (Fig 4a and 4b), as only 1% of the bacterial OTUs and 11% of the fungal OTUs,
respectively, were shared between the bulk and the rhizosphere soil. On the basis of previous
studies [7, 25–27] and the data presented above this is not an unexpected result. Differences in

Fig 1. Relative proportions of the (a) bacteria and (b) fungi associated with theWelwitschia
rhizosphere and bulk soil. Error bars indicate mean ± SE.

doi:10.1371/journal.pone.0153353.g001

Rhizospheric Microbial Communities ofWelwitschia mirabilis

PLOSONE | DOI:10.1371/journal.pone.0153353 April 11, 2016 5 / 11



community composition are probably due to chemical differences between the two environ-
ments. Bulk soil has relatively low nutrient concentrations, whereas roots exude organic carbon
and other nutrients [28]. This could explain, for example, why Protobacteria are more abun-
dant in the rhizosphere, as many members of this phylum tend to dominate in environments

Fig 2. Heatmap displaying the most abundant genera for rhizosphere and bulk soil samples. Samples are clustered based on the percent relative
abundance of the forty dominant genera (twenty bacteria and twenty fungal genera) shown as rows in this figure. Taxonomy for each genus is presented in
the order: phylum, class, order, family, genus. Sample nomenclature indicates the sample type (S = bulk soil; R = rhizosphere), replicate (S = 1 to 5, R = 1 to
3) and pseudoreplicate (a, b).

doi:10.1371/journal.pone.0153353.g002
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where organic resources are more available [29]. Overall, these results suggest thatWelwitschia
strongly selects its rhizosphere microbiota.

Closer analysis of the rhizosphere samples showed that an average of 16.8% and 2.5% of the
bacterial and fungal OTUs, respectively, were shared between any two of these communities.
Furthermore, no fungal and only 6 bacterial OTUs (representing 38% of the reads) were consis-
tently present across the samples (S4 Fig). These included Nitratireductor, Steroidobacter, Pseu-
donocardia and three Phylobacteriaceae OTUs. Overall, this indicates a larger degree of
variability between theWelwitschia rhizosphere communities. This appears to be a common
feature of host-associated microbial communities (see [30] and references therein) and appears

Fig 3. nMDS ordination plot (UniFrac dissimilarity matrix). Each point represents the bacterial or fungal
community of an individual sample. Rhizosphere communities are indicated by red diamonds, while bulk soil
communities are denoted by blue diamonds.

doi:10.1371/journal.pone.0153353.g003

Fig 4. Venn diagram showing the number of shared phylotypes of (a) bacteria and (b) fungi between
the rhizosphere and bulk soil communities.

doi:10.1371/journal.pone.0153353.g004
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to contradict the evidence for selectivity presented above. However, this apparent contradiction
can be resolved assuming a competitive lottery model, applied to explain the variability of epi-
phytic bacterial community of the green alga Ulva australis [30, 31]. In this model microbial
communities are hypothesized to occupy a certain niche (e.g. the rhizsosphere) based on the
functions they perform; that is, microbial assemblages are based on functional guilds rather
than species. Consequently, the set of species present in any rhizosphere community would be
determined by which members of the guild, available in the surrounding soil, colonise the
space available first. Future work with a larger number of samples, deeper sequencing and
including functional attributes (genes) is needed to resolve whether microorganisms present in
theWelwitschia root microbiome are recruited stochastically from the local soil community or
actively based on the functions they perform.

It has been postulated that the ability of some desert plant species to survive under extreme
conditions is linked to the fact that they associate with plant growth-promoting microbes [32,
33]. Several bacterial and fungal OTUs classified as belonging to plant-beneficial microbes
were unique to or overrepresented in the rhizosphere of Welwitschia. These included, for
instance, three different genera (i.e. Bradyrhizobium, Ensifer andMesorhizobium) and three
OTUs (family Phylobacteriaceae) of rhizobia, which have the ability to fix atmospheric nitro-
gen. Acinetobacter and Sphingomonas, known to solubilize soil-insoluble phosphate [34].
Nitratireductor, commonly reported as able to reduce nitrate to nitrite, that could be involved
in nitrogen metabolism. Steroidobacter, recognised to produce brassinosteroids, which have
been reported to control seed germination, stem and root elongation, vascular differentiation,
leaf expansion and stress protection in plants [35]. Pseudonocardia as well as Rhizophagus were
also found in the rhizosphere ofWelwitschia plants. Pseudonocardia is well-known for produc-
ing antibiotic compounds [36], which can theoretically counteract some phytophatogenic
microbes, whereas Rhizophagus, an arbuscular mycorrhizal fungus (AMF), could potentially
supply phosphorus and other nutrients toWelwitschia in exchange for plant carbon [37]. It is
noteworthy that Nitratireductor, Steroidobacter, Pseudonocardia and the three Phylobacteria-
ceae OTUs were core members of the rhizosphere community (see above). However, more
research is needed to elucidate the role of the members of these microbial communities, as it is
well known that plant growth promoting characteristics are strain dependent.

In conclusion, we have shown that the rhizosphere ofWelwitschia harbours diverse and dis-
tinct bacterial and fungal communities compared to the bulk soil. Many of the genera consis-
tently observed in the rhizosphere samples are known to contain strains with plant-growth
promoting abilities. Further investigations using culture-based approaches will help in eluci-
dating whether or notthese microbes interact synergistically to promoteWelwitschia plant
health and productivity.

Supporting Information
S1 Fig. Welwitschia plants dotted across an arid landscape (left). The exposed radial root sys-
tem of aWelwitschia plant (right).
(TIF)

S2 Fig. Rarefaction curves. a) bacteria, b) fungi. Sample nomenclature is as in S1 Table.
(PDF)

S3 Fig. Bar graph showing the phylum-level distribution of (a) bacterial and (b) fungal
OTUs (97% cutoff). The taxonomic affiliation was performed using the Ribosomal Database
Project Classifier (bacteria) and the UNITE database (fungi).
(PDF)
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S4 Fig. Venn diagram showing the number of shared phylotypes observed between the rhi-
zosphere samples. a) bacteria, b) fungi. Sample nomenclature is as in S1 Table.
(PDF)

S1 Table. Bacterial diversity. Sample nomenclature indicates the sample type (S = bulk soil;
R = rhizosphere), replicate (S = 1 to 5, R = 1 to 3) and pseudoreplicate (a, b).
(DOCX)

S2 Table. Fungal diversity. Sample nomenclature is as in S1 Table.
(DOCX)
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