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Cold-water corals mounds develop over millennial timescales as a result of

sustained coral growth and concurrent with sediment deposition within their

coral frameworks. So far, coral mounds have been primarily investigated as

deep-sea biodiversity hotspots and geo-biological paleo-archives, whereas

their morphological appearance and spatial arrangement have received much

less attention. Here, we analysed the spatial distribution and the morphometry

of coral mounds that developed on the Namibian shelf during a single short

period dating back to the Early. The spatial distribution of these “early-stage”

mounds and their morphological characteristics revealed a hierarchy of three

different patterns. These comprise an alongslope mound distribution at a

regional scale (first-order pattern), a topography-steered downslope

alignment of mounds at a local scale (second-order pattern), and a

hydrodynamic-controlled downslope orientation of the individual mounds at

a mound scale (third-order pattern). In addition, because the Namibianmounds

rarely exceed 20 m in height, key steps in the development of early-stage coral

mounds (e.g. elongation, merging, limited gain in height compared to lateral

extension) have been identified. With increasing size, coral mounds are more

elongated, parallel to the prevailing tidal system, which is interpreted to reflect

the transition from an “inherited” to a “developed”mound morphology. Besides

supporting this earlier hypothesis on mound development, we could show that

this transition takes place when the Namibian coral mounds reach ~150 m in

length and ~8 m in height. This study reveals that the spatial-morphological

appearance of coral mounds, often treated as a descriptive information, can

provide valid information to understand their formation.
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Introduction

Coral mounds are seafloor structures built by framework-

forming scleractinian cold-water corals (CWC; Roberts et al.,

2006). The development of the coral mounds firstly depends on

CWC proliferation, controlled by a wide range of environmental

parameters (dissolved oxygen concentrations, temperature,

aragonite saturation state, pH, etc.; e.g., Davies et al., 2008).

When their physic-chemical boundary conditions are met, the

distribution of CWC is strongly controlled by food supply, since

CWC are sessile opportunistic suspension feeders with a diet

based on particulate and dissolved organic matter (Kiriakoulakis

et al., 2005; Duineveld et al., 2007; Dodds et al., 2009; Mueller

et al., 2014). The required food is mostly delivered by a moderate

to strong hydrodynamic regime induced by geostrophic bottom

currents and/or turbulent mixing triggered by internal waves,

downwelling, cascading density currents, and Taylor columns

(e.g., Frederiksen et al., 1992; Taviani et al., 2005; White et al.,

2005; Thiem et al., 2006; Mienis et al., 2007; Davies et al., 2009;

Mienis et al., 2009; Mienis et al., 2012; van Haren et al., 2014).

The bottom currents do not only deliver food to the CWC, but

also suspended sediments, which become trapped (baffling

effect) by the coral frameworks (Mienis et al., 2019; Bartzke

et al., 2021; Hennige et al., 2021). This baffled sediments within

the coral frameworks usually contributes >50% to the coral

mound deposits (e.g., Dorschel et al., 2007; Titschack et al.,

2015; Wang et al., 2021).

Coral mounds are often clustered in coral mound provinces

(CMPs) with 10s to 1000s of mounds (e.g., Wheeler et al., 2011;

Lo Iacono et al., 2014; Glogowski et al., 2015; Hebbeln et al.,

2019; Mareano, 2020; Steinmann et al., 2020). Most of these

CMPs occur around the continental margins of the Atlantic

Ocean, on the upper to mid continental slopes (e.g., Kenyon

et al., 2003; Colman et al., 2005; Grasmueck et al., 2006; Le

Guilloux et al., 2009; Carranza et al., 2012; Hebbeln et al., 2014;

Glogowski et al., 2015; Steinmann et al., 2020), but a large

number of mounds appear also on continental shelves (e.g.,

Reed, 2002; Fosså et al., 2005; Douarin et al., 2013; Tamborrino

et al., 2019). Often the occurrence of the CMPs correspond to

present or past boundaries of intermediate water masses (Dullo

et al., 2008; White and Dorschel, 2010; Mohn et al., 2014; Matos

et al., 2017; Wang et al., 2019). Density gradients (pycnocline)

between water-mass boundaries allow for the accumulation of

(re-)suspended organic particles and fine-grained sediments,

resulting in the formation of intermediate and/or bottom

nepheloid layers (Wang et al., 2001; Cacchione et al., 2002;

Hosegood et al., 2004; Cheriton et al., 2014). Density gradients

also play a key role for the formation of internal waves when

intersecting relative steep slopes, which causes turbulent mixing

(Garrett and Kunze, 2007; Klymak et al., 2011; Pomar et al.,

2012; van Haren and Gostiaux, 2012). Both processes support

CWC proliferation and coral mound formation as they enhance

the availability and supply of food and sediments (Frederiksen

et al., 1992; Mienis et al., 2007; Davies et al., 2009; White and

Dorschel, 2010; Hebbeln et al., 2014; Wang et al., 2019).

The presence of a suitable hard substrate of any size (from

rocky outcrop to mm-sized bioclasts or gravel) represents an

important prerequisite for the settlement of CWC planula

(Wilson, 1979). Moderately enhanced hydrodynamics

increasing the probability of food capture by the CWC is

another advantageous prerequisite (Wheeler et al., 2007). This

leads to a preferential CWC settlement on pre-existing seabed

topography of variable scale, such as erosional features (De Mol

et al., 2005), mud volcanoes (Wienberg et al., 2009; Margreth

et al., 2011), underlying faults (Haberkern, 2017), iceberg plough

marks (Freiwald et al., 1999; Fosså et al., 2005) and dropstones-

boulders (Hübscher et al., 2010; Hebbeln et al., 2012; Savini et al.,

2014; Buhl-Mortensen et al., 2017), which eventually reflect

preferred sites for the initiation of coral mounds. The

underlying topography often conditions the spatial

distribution, but also the morphology of mounds in their

early-stage development (defined as “inherited” mound

morphology; see Wheeler et al., 2007), with such mounds

largely reflecting the morphology of the underlying

topographic features. As CWCs continue to grow, mound

height and volume increase, and the mounds become

increasingly subject to the local hydrodynamic regime. The

inherited mound morphology transforms into a “developed”

morphology, meaning the underlying topography becomes

increasingly attenuated and the mound assumes its own

morphology, which reflects rather its interaction with the

prevailing hydrodynamic conditions (Wheeler et al., 2007).

Coral mound morphologies, detected by multibeam

echosounders (MBES), side-scan sonar and seismic reflection

data, exhibit a wide qualitatively-described morphological

variety: simple conical, conical with an oval footprint,

elongated, arcuate, ridge-like, V-shaped and multi-peaked (e.g.,

Colman et al., 2005; Grasmueck et al., 2006; Wheeler et al., 2007;

De Haas et al., 2009; Hebbeln, 2019), but discrete quantitative

measurements are still rare (Mortensen et al., 2001; Huvenne

et al., 2003; Correa et al., 2012b; Lim et al., 2018). To document

the transition from inherited to developed morphologies or

other controls on mound distribution/formation in CMPs, a

large-scale spatial and morphometric analyses are needed but are

still largely lacking.

Coral mounds can rise from their surrounding seafloor from

a few meters (e.g., Foubert et al., 2008; Somoza et al., 2014;

Collart et al., 2018; Lim et al., 2018) up to >350 m (Kenyon et al.,

1998) and have a lateral extension that can reach the km-size

scale (e.g., Beyer et al., 2003; Colman et al., 2005; Mienis et al.,

2007). Most of the morphometric information on coral mounds

is based on manual measurements describing mostly the size

ranges or the highest values (e.g., Colman et al., 2005; Wheeler

et al., 2007; De Haas et al., 2009; Angeletti et al., 2020; Steinmann

et al., 2020). Crucial for morphometric analysis of coral mounds

are objective measurements based on solid definitions. Already
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basic terrain variables obtained from the digital elevation model

(DEM), such as slope angle or bathymetric positioning index,

allowed (semi)automated identification and extraction of the

coral mounds by thresholding and the subsequent determination

of morphometric parameters like footprint area and lateral

extension (Correa et al., 2012b; Hebbeln et al., 2019).

However, a relevant morphometric parameter, such as mound

height, has often been measured only manually (Huvenne et al.,

2003; Lo Iacono et al., 2014; Vandorpe et al., 2017; Hebbeln

et al., 2019).

In recent years, a large variety of mapping classification

methods for coral mounds based on manual, semi-automated,

automated and machine-learning-based approaches have been

developed (Lim et al., 2021). These methodologies benefited

from high-resolution MBES datasets (e.g., De Clippele et al.,

2017a; Lim et al., 2018), combined with imagery data (side-scan

sonar, ROV photogrammetry; e.g., Savini et al., 2014; Price et al.,

2019). Often the focus of these spatial-mapping investigations

was rather on ecological aspects of CWC colonies and their

associated fauna (e.g., Boolukos et al., 2019; Corbera et al., 2019;

De Clippele et al., 2021) than on coral mounds as morphological

features. The morphology of coral mounds represents a

synthesis of complex biological and physical processes

interacting on geological timescales, which likely can be

assessed retrospectively by the extraction of morphometric

parameters. Some morphometric parameters, such as mound

height and length, are commonly mentioned for coral mounds

(e.g., De Mol et al., 2002; Colman et al., 2005; Foubert et al., 2005;

Mienis et al., 2006; De Mol et al., 2007; Carranza et al., 2012;

Hebbeln et al., 2014; Angeletti et al., 2020), but only few studies

used these information to classify coral mounds (e.g., Mortensen

et al., 2001; Lo Iacono et al., 2014; Vandorpe et al., 2017; Lim

et al., 2018) and even less linked mound morphology with

mound formation processes (Correa et al., 2012a; Hebbeln

et al., 2019).

Our study presents a detailed analyses of the spatial

distribution pattern and morphometric parameters of coral

mounds, which were recently discovered on the outer

Namibian shelf (Hebbeln et al., 2017). The large number of

>2000 small mounds forming the Namibian CMP (Tamborrino

et al., 2019) provides an excellent and extensive database to

explore the potential of spatial-morphometric analyses to better

understand the effect of regional oceanographic and local

hydrodynamic processes and the underlying topography on

mound formation. Due to extremely low ambient dissolved

oxygen concentrations nowadays, no living corals occur on

these mounds (Hanz et al., 2019). According to Tamborrino

et al. (2019), the Namibian coral mounds show the typical

mound composition of coral fragments embedded in a matrix

of hemipelagic sediments and formed during a well-defined

short period during the Early to Mid-Holocene, which suggest

well-constrained environmental conditions during their

development. Accordingly, by analyzing the spatial

distribution and morphology of the Namibian coral mounds,

this study reveals a hierarchy of three different (first- to third-

order) patterns controlled by partly competing influence of the

regional oceanography, local hydrodynamics and underlying

topographic features. Finally, our study outlines an approach

to exploit spatial and morphometric analyses that could be easily

applied to other CMPs, which would allow an observer-

independent comparison of different CMPs and could

contribute to the understanding of basic principles of coral

mound development.

Material and methods

Study area

The Namibian CMP consists of ~2,000 coral mounds

in ~160-270 m below sea level (mbsl) extending over a

distance of (at least) 80 km along the northern outer

Namibian shelf/upper slope (Figure 1). The Namibian coral

mounds are grouped in three clusters or sub-provinces, which

occur on top (Escarpment mounds) and west (Squid Mounds,

SQM; Coral Belt Mounds, CBM) of a large NNE-SSW-trending

Escarpment (Tamborrino et al., 2019). The Namibian mounds

developed during one short (~5 kyr) period corresponding to the

Early to Mid-Holocene. Today, they are densely covered by fossil

coral rubble clogged by hemipelagic sediments (Tamborrino

et al., 2019).

The water masses along the Namibian margin are surface

waters (0-85 mbsl) and the central water masses (85-480 mbsl),

South Atlantic Central Water (SACW) and Eastern South

Atlantic Central Waters (ESACW). Southern-sourced surface

waters and the ESACW are carried equatorward from the

southern tip of Africa (37°S) by the Benguela Current, while

the oxygen-depleted SACW and related surface waters are

transported southward from the Angolan margin by the

Angola Current (AC) and the Poleward Undercurrent (PUC;

Figure 1A). The two surface water masses converge at the

Angola-Benguela Front (14-17°S, ABF), which is a pronounced

frontal system (von Bodungen et al., 2008). Within the

underlying central water masses, no sharp boundary exists

between the SACW and ESACW, but rather a broad transition

zone (Mohrholz et al., 2008). The southward migration of the

SACW by the PUC contributes to the well-developed OMZ off

Namibia (Schmidt and Eggert, 2016). Here, the OMZ is further

influenced by the Benguela Upwelling System (BUS), which

enhances surface productivity leading to an increased export of

organic matter and enhanced oxygen consumption (Schmidt

and Eggert, 2016). The Namibian coral mounds are today

located within the core of the OMZ (160-270 mbsl), where

dissolved oxygen concentrations are below 0.5 ml l-1 and even

drop to 0.1 ml l-1 (Hanz et al., 2019). An intensification of the
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FIGURE 1

(A) Overview map showing the oceanographic circulation along the Namibian coast. Red square highlights the study area. Bathymetric map (B)

showing the Namibian coral mound province. Dots are indicative of the mound peaks, light blue for Squid Mounds (SQM) and pink for Coral

Belt Mounds (CBM). For the position of the Escarpment Mounds see Tamborrino et al. (2019). (C, D) Detailed view of some SQM and CBM,

respectively. Position of the Parasound profiles (see Figure 3) are shown by black (panel B) and red lines (panels C, D). Black boxes indicate the

position of the 3D view maps in Figure 7. Acronyms: ABF-Angola Benguela Front; AC-Angola Current; PUC-Poleward Undercurrent; SACW-

South Atlantic Central Waters; ESACW-Eastern South Atlantic Central Waters. PS-Parasound profiles.
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BUS, and therefore, of the OMZ likely caused the Mid-Holocene

demise of the CWC off Namibia (Tamborrino et al., 2019).

At a regional scale, large portions of organic particles,

derived from the BUS, are laterally transported and deposited

on the Namibian outer shelf, contributing to the formation of

intermediate nepheloid layers (INL, Giraudeau et al., 2000;

Inthorn et al., 2006). A semi-diurnal internal tide has been

measured by a benthic lander also in the Namibian CMP, close

to the CBM (Hanz et al., 2019). Thus the formation of this INL is

likely derived from the interaction between topography of the

outer Namibian shelf and the pycnocline, with the formation of

the internal tide at the boundary between PUC-delivered SACW

and the surface waters, that keep particles in suspension (Zabel

et al., 2019).

Hydroacoustics

The hydroacoustic data for this study were collected during

R/V Meteor expedition M122 (Hebbeln et al., 2017) and during

R/V Maria S. Merian expedition MSM 20-1 (Geissler et al.,

2013). Seabed mapping was performed by two different hull-

mounted Kongsberg multibeam echosounders (MBES): EM710

(70-100 kHz) and EM1002 (95 kHz) during expedition M122

and MSM20/1, respectively. The EM710 acquired 200 beams per

ping and 400 soundings (“soft-beams”) in the high-density mode

covering a depth range of several meters up to ~800 m The

EM1002 emitted 111 beams per ping, covering a depth range of

2-1000 m. During both cruises, the spatial integrity of the

mapping data was achieved by combining the ship’s inertial

navigation systems including differential global positioning

system information with motion data (roll, pitch, heave)

provided by the motion reference units (Kongsberg Seapath

320 and 200, respectively for R/V Meteor and R/V Maria S.

Merian). Based on comparing the two independent MBES

bathymetric data sets, their vertical precision is ±50 cm. For

the correction of the hydroacoustic measurements, sound

velocity profiles through the water column were repeatedly

recorded using either a CTD or sound velocity probes. The

open-source software package MB-System v.5.3.1 (Caress and

Chayes, 1995) was used for bathymetric data post-processing,

editing and evaluation. MBES data were interpolated to make a

digital elevation model (DEM) with 10 x 10 m grid cell size

(using MB-system mbgrid tool). Maps were produced with ESRI

ArcGIS v.10 and Global Mapper v.20.

During the M122 expedition, seismoacoustic sub-seafloor

information was acquired with ATLAS PARASOUND PS70, a

deep-sea sub-bottom profiler that utilizes the parametric effect

based on non-linear relation of pressure and density during

sonar propagation. The sub-bottom profiling relies on the signal

from the secondary low frequency at ~4 kHz. The opening angle

of the transducer array is 4° by 5°, which corresponds to a

footprint size of about 7% of the water depth. The data

acquisition was performed with the real-time values of surface

sound velocity measured close to the Tx/Rx-array (System C-

Keel) and a static sound velocity profile of 1500 m s-1 (C-Mean).

The program Teledyne PARASTORE 3.0 was used for storing

and displaying echograms. Within the Teledyne Hydromap

Control program, the proper hydroacoustic settings were set

before the acquisition. Kingdom IHS was used for reproducing

the PARASOUND profiles with a bandpass filter (low-high cut

2000-4000 Hz, low-high pass 2500-4500 Hz).

Mound extraction and morphometric
analyses

Analyses of morphometric data were carried out for each

mound following the workflows presented by Purkis et al.

(2007). Most of the processing was performed with the

Petrel™ software package (Schlumberger, license: University

of Miami, US). The coral mound base was defined following

the methodological approach of Correa et al. (2012b) using the

dip angle map (“Petrel/Op./Surface operations/Dip Angle”),

generated from the original DEM, to extract closed polygons

describing the mound footprints that follow the 3°-contour line

(“Petrel/Op./Convert points, polygons, surfaces/Create

intersection with plane”). This 3°-cutoff has been qualitatively

validated with a comparison between the DEM and the dip angle

(Figure 2). Small-scaled polygons obtained by the automated 3°

cut-off value (e.g. bathymetry artifacts or decrease in slope

within mound perimeter) were removed. Unrealistic mound

footprint polygons, more common by CBM due to steeper

underlying slope, were corrected by removing single polygon

nodes. Polygon nodes were also manually edited to split twin-

peaks mounds on the base of higher cut-off dip angle values (5°).

The DEM was subsequently re-gridded to generate hypothetical

bathymetric maps without mounds (“Petrel/Calc./Eliminate

inside” to remove the coral mounds, and “Utilities/Make-edit

new surface” to create an interpolated map from the DEM with

no mounds), for which the vertical relief beneath each removed

mound was interpolated from the mound perimeters. The newly

interpolated surfaces were then subtracted from the original

DEMs to calculate the volume and heights of the coral mounds.

Only features with a footprint area greater than 900 m2

(corresponding to a two-dimensional array of 3 × 3 DEM grid

cells) and with a height of >2 m above the surrounding seafloor

(4 × 0.5 m of vertical precision) were considered as coral

mounds. Because the small size (mostly <2 m height) and

number (138) of the Escarpment mounds (Tamborrino et al.,

2019), the analyses reported here focus on the CBM and SQM

only (Figure 1).

A summary of the morphometric parameters used to

quantify the spatial variability of the Namibian coral mounds

is presented in Table 1. For all obtained morphometric

parameters descriptive statistics, such as mean, standard
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deviation (SD) and median, were determined. To evaluate the

spatial distribution and density of the coral mounds, heatmaps

were calculated with the kernel density tool of ArcGIS 10.3 and

an output raster cell neighborhood of 50 m and a search radius

of 1 km, after projecting the DEM into UTM Zone 33S,

following Lim et al. (2018). Slope and aspect maps are based

on the interpolated DEM without coral mounds (grid size: 20 m)

and were calculated with the ArcGIS tool Benthic Terrain

Modeler, using the Horn method (Horn, 1981).

To differentiate between inherited and developed mound

morphologies (sensu stricto Wheeler et al., 2007) we evaluated

the morphometric analysis of the coral mounds (i.e, orientation,

size parameters) in relation to their size (relative to their height

and PAX length) and compared it with hydrological data (i.e.,

current directions) obtained by benthic lander to characterize

the local hydrodynamic regime (Hanz et al., 2019). Inherited

coral mounds should generally be marked by no preferred

orientation and low degree of elongation, while developed

coral mounds should be elongated and exhibit a clear

preferential orientation in line with the prevailing

hydrodynamic reg ime. Addi t ional ly , we extracted

geomorphometric parameters of the underlying topography

(slope, aspect) to assess its potential additional influence on

the coral mound morphology.

Results

Prominent morphological features of the
Namibian coral mound province

The MBES bathymetric map of the Namibian CMP covers

an area of 1179 km2 along the northern Namibian shelf

(Figure 1). The most prominent morphological feature is

represented by a straight ~63-km-long NNW-SSE trending

Escarpment with heights of up to ~50 m (top of the

Escarpment: ~165 mbsl). Its eastern steep margin exhibits a

slope angle of up to 40° and ends in a moat (maximal depth:

~215 mbsl) developed parallel to the Escarpment. Several

irregular-shaped erosive features occur east of the Escarpment

(~150-190 mbsl; Figure 1B). The Western Flank of the

Escarpment (~ 165-220 mbsl) is gently dipping (slope angle

<5°) and shows no pronounced surface features. Close to its

western limit just below 220 mbsl, slope-indenting channels and

headwalls (referred to as Flank-toe Channels, 220-260 mbsl,

Figures 1B, D) incise the foot of theWestern Flank. Most of these

channels have a NE-SW orientation, hence are orientated

perpendicular to the shelf. The area west of the Flank-toe

Channels changes towards the gently westward-dipping Squid

Plain (240-310 mbsl; Figure 1B). The northern termination of

the Escarpment (at ~20°34’S) is bordered by the NW-SE-

trending Squid Ridge (top: 140 mbsl). The western flank of the

Squid Ridge is shaped by a 5-km-long headwall (up to 20 m

high). West of this headwall, the Western Flank of the

Escarpment fades into a slightly westward-dipping slope with

a faintly-carved surface (referred to as Squid Ridge Foreland,

210-240 mbsl). West of the Squid Ridge Foreland, low relief

furrows incise the flat morphology of the Squid Plain.

The PARASOUND profiles exhibit a relatively good

penetration (>50 m) and reveal mainly seaward-dipping

reflectors (Figure 3). Only close to the Flank-toe Channels the

sub-bottom reflectors are partly horizontal (Figures 3B, C).

Furthermore, some unconformities can be observed beneath

the seabed, with the seabed itself also partly representing an

erosive surface (Figures 3A–C). PARASOUND profiles do not

show any buried portions of the SQM and the CBM, which are

sitting on topographic highs made up of exposed older

strata (Figure 3).

Spatial distribution and density pattern of
the Namibian coral mounds

A total of 659 and 542 coral mounds were extracted from the

SQM and CBM sub-provinces, respectively. These numbers are

slightly lower as initially proposed by Tamborrino et al. (2019;

SQM: 959; CBM: 896), who manually counted the total number of

mound peaks. This difference is ascribed to the here applied cutoff-

A

B

FIGURE 2

Comparison between (A) digital elevation model (DEM) and (B)

dip angles exemplified for an area within Squid Mound cluster.

The red line indicates the polygons obtained by applying the 3°-

cutoff value, after editing. DEM and dip angles are gridded at 10

m. The scale (shown in the DEM frame) bar is equal for both

frames. This highlights also the morphological appearance of

merging coral mounds.
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based method to separate multi-peak mounds and the exclusion of

very small mounds (height: <2 m, footprint: <900 m2).

The SQM extend for at least 5 km downslope and 20 km

alongslope on the northern portion of Squid Plain (Figure 1B),

where they partly sit on the margin of low-relief furrows

(Figure 1C). Further to the south, the CBM are mostly associated

with the Flank-toe Channels (Figures 1B, D) and stretch in a

narrow (mostly <3 km) belt for >40 km from SSE to NNW.

Together the SQM and the CBM encompass ~1,200 mounds that

are located between ~210 and 270 mbsl (Figure 4). The 659 SQM

cover a slightly broader depth interval (~210-270 m) with a slightly

deeper mode of 250-255mbsl compared to the 542 CBM occurring

between ~220-260 mbsl with a mode of 240-245 mbsl (Figure 4).

The extension of the mapped portion of the two sub-

provinces is given by the heatmaps (based on outer limits of

all 1 km radii around the individual mound peaks), which

amount to ~95 km2 for the SQM and ~100 km2 for the CBM.

Although in both areas mound densities vary between 1 and 40

mounds/km2 (Figures 5A, D), the average density is slightly

higher for the SQM (10.1 mounds/km2) compared to the CBM

(8.9 mounds/km2). The sum of the mound footprint areas covers

6.0 % and 2.9 % of the extension of the SQM and CBM sub-

provinces, respectively. The heatmaps highlight a general

alongslope distribution of the coral mounds in both sub-

provinces. In detail, areas of high concentrations of SQM

stretch in different directions such as NE-SW, E-W and NW-

SE (Figure 5A). The CBM are largely concentrated in a general

belt-like NW-SE trend (Figure 5D).

The seabed area occupied by the Namibian coral mounds is

relatively flat with a mean slope of 0.7° (SD 0.7°) in the SQM area

and a slightly steeper mean slope of 1.5° (SD 1.5°) in the CBM

area (Figures 5B, E). This slight difference is also expressed by

more topographic features characterizing the CBM (channels

indenting the flank-toe) than the SQM area. The Namibian CMP

covers a seabed area with a general SW orientation, with the

topography underlying the SQM sub-province trending more

towards the S, while the aspect of the CBM sub-province is more

directed to the west (Figures 5C, F). Areas of slightly-dipping E-

orientated values appear on the eastern shallow limit of the SQM

(Figure 5C), as also indicated by the slope change in the

PARASOUND profile (Figure 3A).

Morphometric parameters of the
Namibian coral mounds

Size-related morphometric parameters, such as footprint area,

volume, height and PAX (principal axis of the mound footprint

polygon) length, show similar trends in both sub-provinces, the

SQM and the CBM (Figures 6A–D). The exponential decline of

mound numbers with increasing size indicate the dominance of

small mounds off Namibia: most of the SQM and CBM have a

footprint area of <10,000 m2 (SQM: 78%, CBM: 90%), a volume of

<10,000 m3 (SQM: 70%, CBM: 79%), a height of <10 m (SQM:

88%, CBM: 98%), and a PAX length of <120 m (SQM: 67%, CBM:

78%). Despite similar sizes of most coral mounds, differences

between the SQM and CBM are highlighted by comparing the

maximum (Table 1) and mean values (Figure 6). The mean values

represent the overall similarity of the two sub-provinces with

slightly higher average values for the SQM (Figure 6), While the

TABLE 1 Summary of parameters used to quantify the spatial-morphometric variability of Squid (SQM) and Coral Belt Mounds (CBM) off Namibia.

Parameter Definition Unit Range

SQM CBM

Mean depth Average depth within the mound perimeter mbsl 211 – 266 225 – 258

Mound footprint area Area of mound perimeter based on 3° cutoff m2 900* – 115,639 900* – 47,040

Mound height Maximum elevation within mound perimeter, after subtracting the interpolated surface

without mounds

m 2* – 21 2* – 15

Mound volume Volume of the mound above the interpolated surface without mounds m3 92 – 492,198 270 – 114,282

PAX (principal axis) length Length of the principal axis crossing the centroid of the mound footprint (Peura and

Iivarinen, 1997)

m 38 – 1,100 39 – 428

OPAX length Length of the axis orthogonal to PAX m 4 – 255 9 –205

PAX direction Direction of the principal axis 1 – 180 0 – 180

PAR OPAX/PAX ratio 0 to 1

ratio

0.03 – 0.97 0.06 – 0.98

Average slope Average slope angle within the mound perimeter 2 – 14 2 – 24

Underlying-mound average

slope

Average slope angle within the mound perimeter on the interpolated surface after mound

removal

0 – 8 1 – 12

*defined lower threshold for mound detection.
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major differences are caused by the presence of a few relatively

large mounds among the SQM (Table 1; Figure 6).

The shape-related parameters reveal some more differences

between the two sub-provinces. The principal axes ratio (PAR)

shows mostly similar trends in the two sub-provinces

(Figure 6E). However, a larger number of the SQM (21%)

show a PAR of <0.3, indicative of more elongated mounds on

the Squid Plain compared to the CBM (16%). The PAX

directions of the SQM have three maxima: 45°, 90-95° and

135°, while the PAX directions of CBM are generally

concentrated between 55° and 100° (Figure 6F). The average

slopes of the mounds show a similar distribution for both the

SQM and CBM (Figure 6G). However, the SQM have a much

steeper mean slope angle than the CBM, considering the number

of mounds with slope angles of <6° (SQM: 25%, CBM: 40%)

and >8° (SQM: 40%, CBM: 27%). The average slope of the

underlying topography where the coral mounds sit on, have very

small values of <3° for 79% of the SQM and for 58% of the CBM

(Figure 6H). However, values steeper than 8° occur only on

CBM, although in rather low numbers (2%, Figure 6H).

Discussion

Spatial distribution

The Namibian coral mounds occur on the outer shelf in

relatively shallow water depths (210 – 270 mbsl, Figure 4)

compared to the majority of CMPs in the Atlantic Ocean that

are found on the upper continental slope in much deeper depths

of 500 and 1,000 m (e.g., Schroeder, 2002; Wheeler et al., 2007;

Hebbeln et al., 2019; Galvez, 2020; Raddatz et al., 2020; Steinmann

et al., 2020). Lophelia-(Purkis et al. 2007) dominated mounds

developed in shallow shelf waters are mainly known from high

latitudes in the NE Atlantic, such as off Norway (38 - 400 mbsl,

e.g., Mortensen et al., 2001; Fosså et al., 2005; Lindberg et al., 2007;

Lavaleye et al., 2009) and off Scotland (Mingulay Reef, 90-200

mbsl, Duineveld et al., 2012), while the Namibian CMP is the first

shelf site described from the SE Atlantic and positioned in low

latitudes. All shelf coral mounds (Norway, Scotland, Namibia)

have in common that they have relatively small elevations (<20 m;

Bøe et al., 2016; De Clippele et al., 2017b), which reflects most

FIGURE 3

PARASOUND sub-bottom profiles crossing the major topographical features of the Namibian coral mound province: (A) the Squid Mounds

(SQM), (B, C) the Coral Belt Mounds (CBM). Position of the PARASOUND profiles is shown in Figure 1. Orientation (E-W) is indicated at the

bottom of the profile (orange letters).
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likely their short (but often rapid) formation history that started

only during the Early Holocene with the drowning of the shelves

during the deglacial sea-level rise (López Correa et al., 2012;

Douarin et al., 2013; Tamborrino et al., 2019).

The Namibian coral mounds extend alongslope for >80 km

in a narrow water depth interval (<60 m) in NNW-SSE direction

(Figures 1, 4, 5A). This regional-scale alongslope distribution

(first-order pattern) is also observed in other Atlantic CMPs, e.g.,

on the Irish margin (De Haas et al., 2009; White and Dorschel,

2010; Wienberg et al., 2020), the southern Gulf of Mexico

(Hebbeln et al., 2014), and the Argentine margin (Steinmann

et al., 2020). In some CMPs, coral mounds are distributed in two

alongslope chains (Porcupine Seabight, Beyer et al., 2003;

Atlantic Morocco, Hebbeln et al., 2019) or are merged to more

or less continuous alongslope ridges (Mauritania, Colman et al.,

2005; Angola, Hebbeln et al., 2020). Considering that the

development of coral mounds relies primarily on the

proliferation of the CWC, which depends on environmental

conditions fitting their physiological needs (e.g., food, dissolved

oxygen, temperature; Roberts et al., 2009; Davies and Guinotte,

2011; Wienberg and Titschack, 2017), suggests that the regional-

scale distribution of coral mounds is primarily controlled by the

regional oceanography. Off Namibia, the occurrence of

intermediate nepheloid layers (Inthorn et al., 2006) along the

boundary between the SACW and the surface waters (Hanz

et al., 2019) probably plays a key role for the food supply to the

CWC and, thus, these present a potential mechanism that could

have triggered the observed alongslope distribution of the

Namibian coral mounds.

On a local scale the distribution density maps show a

downslope component in the SQM distribution (Figure 5A). A

comparable distribution pattern is not observed (on the

heatmaps) for the CBM (Figure 5D), which might be

explained by the steeper slope of the underlying topography

causing most likely the narrower E-W extension of the CBM

sub-province. However, a closer look at the MBES bathymetry

reveals that the CBM have been formed along the rims of the

Flank-toe Channels, comparably to the SQM that are aligned

along the low-relief furrows in the Squid Plain (Figure 7). These

downslope-directed topographic features have an erosive origin

and were most likely formed before corals colonized the area.

Elevated topographic features at the seafloor are well known as

preferential settling grounds for CWC (and subsequent

formation of coral mounds) due to the related enhanced

turbulence that supports food (and sediment) supply (e.g.,

Genin et al., 1986; Frederiksen et al., 1992; White, 2003; White

et al., 2005; Mienis et al., 2007; Mohn et al., 2014). Consequently,

off Namibia pre-existing sea floor topography is suggested to

play an important role on a local-scale and the downslope

component in SQM and CBM distribution, mainly steered by

this underlying topography, reflects a distinct second-order

pattern for the spatial distribution of the coral mounds. On

the individual mound scale, many Namibian coral mounds have

a downslope orientation (third-order pattern) as reflected by

their PAX angles (Figures 6F and 8). The PAX angles of the

CBM show a broad range of preferred directions between 55°

and 100° that overlaps with two PAX angle maxima of the SQM

(at 45° and 90°), which have an additional maximum at ~130°

(Figure 8). The observed range of PAX angles follows the

predominantly SW-dipping regional topography (Figures 5C,

F, 8) and aligns with the direction of the regional tidal currents

(Hanz et al., 2019). Coral mounds with specific orientations as a

response to hydrodynamic forcing are often observed (e.g.,

Mortensen et al., 2001; Beyer et al., 2003; Masson et al., 2003),

however, depending on the overall setting, these are either

aligned to the main current direction (i.e., first-order pattern;

e.g., Wheeler et al., 2011; Mienis et al., 2014) or to internal tides

(e.g., Hebbeln et al., 2019). As off Namibia orientations of the

mounds are mostly parallel to the direction of the internal tides

FIGURE 4

Histogram plot showing the relative depth distribution of the Squid

Mounds (light blue) and Coral Belt Mounds (pink) based on the

mean water depth of the mound footprint area. Interval of the bin:

5 m. Histogram bar plotted at upper limit (lowest water depth).
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(and perpendicular to the main current direction), thus, tidal

action appears to be the dominant forcing causing the elongation

of the mounds and the third-order pattern.

In summary, the spatial distribution and the orientation of

the Namibian coral mounds are interpreted to reflect a hierarchy

of three different patterns (first- to third-order) controlled by the

interplay of the regional oceanography, the seafloor topography,

and the local hydrodynamic regime. While the first-order pattern

addressing the large-scale coral mound distribution is steered by

the overall slope topography and the water column structure and

results in an alongslope organization of the coral mounds within

the entire CMP, the second-order pattern addressing the small-

scale mound distribution is controlled by the underlying

topography. In addition, the impact of the local hydrodynamic

A B

D E F

C

FIGURE 5

Density of coral mounds, slope and aspect maps of mound-underlying topography for Squid Mounds (A–C) and Coral Belt Mounds (D–F).

Density is expressed as a number of mound peaks per km2 over a neighborhood of 50 m retrieved from a search radius of 1 km. Zero values

are excluded. Slope and aspect are computed by the ArcGIS Benthic Terrain Modeler using DEM after mound removal. In the background, the

border of the bathymetric dataset is indicated by a thin black line (see Figure 1 for orientation).
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FIGURE 6

Histogram plots showing the relative distribution of selected morphometric parameters collected from the Squid Mounds (light blue) and Coral

Belt Mounds (pink): (A) mound footprint area (bin size: 1000 m2), (B) mound volume (bin size: 1000 m3), (C) mound height (bin size: 1 m), (D)

PAX length (bin size: 20 m), (E) PAR (bin size: 0.05), (F) PAX angle (bin size: 5°), (G) average slope of the mounds (bin size: 0.5°), (H) average

slope of topography underlying the mounds (bin size: 0.5°). Descriptive statistics (mean, standard deviation (SD) and median) are provided for all

morphometric data. Further details (description, unit and range) on morphometric parameters are presented in Table 1.
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FIGURE 7

Detailed 3D-view of topographic features associated with the Namibian coral mounds. (A) 3D-view of the Squid Mounds (SQM). The blue

dashed line marks the occurrence of SQM from the surrounding areas with no mounds (B) Slope failures appear to be associated with the

underlying topography of the northernmost Coral Belt Mounds (CBM). (C) Channels (white lines) indenting the Flank-toe with coral mounds

along their edges. Vertical exaggeration: 10x. The locations of these examples are shown in Figure 1.
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regime and of internal tides creates the third-order pattern at the

individual mound scale impacting on mound shape and

orientation. As mentioned above, previous studies on other

CMPs have partially identified similar patterns in the

distribution of coral mounds (e.g., De Mol et al., 2002; Fosså

et al., 2005; White and Dorschel, 2010; Lim et al., 2018; Hebbeln

et al., 2019).

Morphometric variability

Coral mounds or ridges can reach heights of >350 m above

the surrounding seafloor (Kenyon et al., 2003) and stretch

laterally of >10 km (Colman et al., 2005; Hebbeln et al., 2020).

Whereas large coral mounds are comparably easy to detect (e.g.,

Hovland et al., 1994; Kenyon et al., 1998; De Mol et al., 2002;

Beyer et al., 2003; Colman et al., 2005), only recent technological

advances in deep-sea acoustic mapping allowed the detection

and mapping of small coral mounds (even with heights of <5 m)

(e.g., Correa et al., 2012b; De Clippele et al., 2017a; Diesing and

Thorsnes, 2018; Lim et al., 2018), also facilitating the detection of

new CMPs (e.g., Hebbeln et al., 2014; Lo Iacono et al., 2014;

Somoza et al., 2014; Glogowski et al., 2015; Hebbeln et al., 2019;

Steinmann et al., 2020), including the Namibian coral mounds

(Tamborrino et al., 2019). With a maximummound height of ca.

20 m and the majority of mounds (83%) having heights of <8 m,

the Namibian coral mounds are clearly among the smallest coral

mounds discovered so far. Nevertheless, other large CMPs also

comprising hundreds to even thousands of individual mounds

have similar or only slightly larger mound heights (Magellan

mounds, Irish margin, Huvenne et al., 2003; e.g., Florida Straits,

Correa et al., 2012b; Atlantic Morocco, Hebbeln et al., 2019). The

exponential decrease of mound numbers with increasing mound

sizes (Figure 6) has been observed earlier for coral mounds

(Correa et al., 2012b) as well as for other carbonate geobodies

ranging from shallow-water shoals, to reefs, to karst terrain

(Purkis et al., 2010; Harris et al., 2011; Purkis et al., 2016; Purkis

and Harris, 2017; Harris et al., 2018).

Initial settlement and widespread occurrence of CWC at

several sites might correspond to the high number of small

mounds, which likely decreased in the course of mound

development as two or more mounds have merged into larger

and more complex mound structures (De Mol et al., 2005;

Huvenne et al., 2005). Indeed, the small size and the high

number of the Namibian mounds clearly indicate multiple

initiation sites. Their small sizes are probably related to the

relative short mound formation interval (~5 kyr, Tamborrino

et al., 2019), which in most cases was probably too short to allow

FIGURE 8

Rose diagram with percentages of PAX angle (full colors) and aspect of underlying topography (transparent colors) of Squid Mounds (light blue)

and Coral Belt Mounds (pink). In addition, the local bottom current direction among the CBM (collected over 8 days, Hanz et al., 2019) are

shown in light gray. Bin size: 10°.
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for the merging of two or more mounds, as it also has been

hypothesized for the small Moira Mounds on the Irish margin

(Wheeler et al., 2011).

Overall, the coral mounds in both sub-provinces off Namibia

exhibit a high morphometric similarity (Figures 6A–D), though

there are also a few but distinct differences between the SQM and

CBM. The examination of size parameters shows that the total

footprint area (5.7x106 m2) and volume (10.9x106 m3) of the

SQM are ~2 times greater than those of the CBM (2.9x106 m2;

5.3x106 m3), despite the comparably minor difference in

population size (SQM; 659 mounds, CBM: 542 mounds).

Furthermore, the mean, the median and the variability (i.e.,

standard deviation) are higher in SQM compared to CBM not

only for the footprint area and volume but also for the height

and PAX length (Figures 6A–D). The height difference between

the sub-provinces becomes especially conspicuous for mound

heights >8 m, which are reached by 23% of the SQM but only by

8% of the CBM. These observations reveal the occurrence of

some larger, higher, and more voluminous SQM that have

hardly any counterparts among the CBM (Figure 6).

Mound-shape parameters exhibit that there is a larger

number of elongated mounds with PAR of <0.3 among the

SQM (21%) compared to the CBM (16%; Figure 6E). This

pattern goes along with larger PAX lengths of SQM relative to

CBM – 23% of SQM exceed a PAX length of 150 m, which is

only reached by12% of the CBM (Figure 6D). A cross-plot of

PAX length versus mound height shows that PAX length

increase progressively faster than height (Figure 9A) and

comparing PAX length versus PAR exhibits that PAR decrease

with increasing length (Figure 9C). These results clearly suggest

that the Namibian mounds tend to form laterally without

gaining substantial additional height, a pattern that is most

obvious for the largest SQM (Figure 9C).

The mound elongation becomes most apparent when PAX

lengths of ~150 m and heights of ~8 m are exceeded and likely

reflects the preferential coral growth on mound flanks facing a

favorable hydrodynamic regime (e.g., Messing et al., 1990;

Freiwald et al., 1997; Correa et al., 2012b; Mienis et al., 2014;

Cathalot et al., 2015; De Clippele et al., 2017b; Lim et al., 2017).

However, some of these elongated mounds might result from the

merging of smaller mounds (see Figure 2). This merging could

be facilitated by the high-density of mounds (Figure 5A) and the

alignment of coral mounds along underlying topographic

features that are also largely oriented downslope (second-order

pattern, Figures 5B, 7, 8). The lack of large elongated mounds in

the CBM sub-province (Figure 9C) suggests that the two sub-

provinces were subject to (slightly) different forcing, which

favored the merging of mounds in SQM. Possible forcing

factors could be, e.g., slightly better living conditions for CWC

on the SQM enabling faster formation or shorter distances

between “early-stage” mounds facilitating earlier merging.

The evaluation of coral mound orientation shows variable

PAX angles of smaller mounds (comprising the majority of the

CBM and many SQM). This might be ascribed to their more

circular mound footprint areas (PAR, Figure 9C) and an

additional influence of the underlying topography on their

orientation (PAX angles, Figure 6F), which could result in

mound orientations completely unrelated to the hydrodynamic

regime, as observed by the PAX angles of early-stage coral

mounds developing on carbonate blocks/boulders in the

Florida Straits (Correa et al., 2012b; Hebbeln et al., 2012). In

contrast, larger coral mounds with heights >~8 m and PAX

lengths >~150 m (mostly SQM) exhibit a preferential PAX

orientation that narrows towards ~90° with increasing size

(Figures 9D, E). This preferred PAX orientation of ~90°, is

roughly parallel to the modern local tidal regime (Hanz et al.,

2019), which suggests an increasingly hydrodynamic control on

the shape of the mounds.

The average slope is a morphometric parameter strongly

dependent on mound height, as it is, for example, shown by the

consistent parallel increase of mound height and average slope

(Figure 9B). This is interpreted to reflect the gain of relief from

the surrounding seafloor during the early mound formation

stage. With increasing height, the local hydrodynamic regime

strengthened around the mound summit resulting in an

enhanced lateral food supply to the CWC there – as also

implicated in the development of shallow-water reefs (Schlager

and Purkis, 2013). This is supported by the common observation

from various CMPs in which CWC predominantly thrive on

mound tops (e.g., Huvenne et al., 2005; Wienberg et al., 2008; Le

Guilloux et al., 2009; Heindel et al., 2010; Westphal et al., 2012).

Whereas the elongation and direction of individual mounds

are probably largely controlled by hydrodynamics, the interplay

of the duration of the formation period and the mound

formation rate might play a key role for the size parameters, as

suggested by Mortensen et al. (2001). Excluding the large (most

likely merged) SQM, the populations of SQM and CBM have

very similar size-frequency distributions (Figure 6). Considering

the relative shallow occurrence and post-glacial development of

the Namibian mounds combined with the synchronous demise

of the CWC in both sub-provinces (Tamborrino et al., 2019),

suggests that similar mound sizes in the sub-provinces likely

correspond to a similar temporal development (quasi-

synchronous initiation and akin formation rates). Thus,

probably only small offsets, e.g., in the environmental factors

supporting CWC or in the initial distance between mounds,

controlled the small differences between SQM and CBM, most

prominently expressed by the more frequent merging of mounds

in the SQM sub-province.

The relationship between mound height and PAX length

from the Namibian mounds follows a common trend in coral

mound development, identifiable also in other CMPs, for which

instead of PAX lengths partly comparable measures, such as

mound length or max diameter of the mound footprint area

have been used. The overall ratio of mound height to PAX length

measured for the Namibian coral mounds is <0.2 (98% is
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even <0.1), comparable with the (mean) values of height and

PAX-like parameters measured from other CMPs (e.g., Huvenne

et al., 2003; Wheeler et al., 2007; Wheeler et al., 2008; Lo Iacono

et al., 2014; Hebbeln et al., 2019). These low ratios highlight the

“shield-like” morphology of most coral mounds rather than the

conical morphology often described in the literature (e.g., van

Rooij et al., 2003; Wheeler et al., 2007). This latter term most

likely results from the vertical exaggeration often applied to

seabed maps and seismic sections, which can visually transfer a

shield-like to a conical morphology.

Finally, the coral mound development off Namibia from

small, rather round mounds with variable orientations and

relative flat slopes towards larger elongated mounds with

preferred orientations and steeper slopes supports the

hypothesis of Wheeler et al. (2007) about “inherited” and

“developed” mound morphologies. As pointed out above, this

transition from the small “inherited” to the larger “developed”

mounds probably reflects the increasing control of the local

hydrodynamic regime on the formation of mounds.

Furthermore, based on the observed transition of the rather

“inherited” to a predominantly “developed”mound morphology

at a mound height of ~8 m and a PAX length of ~150 m, we

postulate these values as size thresholds for the transition from

“inherited” to “developed” coral mounds. If these thresholds are

valid for this region only or reflect general thresholds must be

tested in the future at other CMPs.

Carbonate deposition in the Namibian
mounds

The morphometric analyses also allow the calculation of

mound volumes (Figure 6B). Based on this calculation, the total

volume of the Namibia coral mounds is estimated to be 16.2 × 106

m3 (SQM: 10.9x106 m3; CBM: 5.3x106 m3). These values are a

conservative estimate as mounds with a footprint area of <900 m2

or height of <2 m are not considered, and the mapped area likely

does not cover the entire extent of the Namibian CMP. Following

the approach of Hebbeln et al. (2019), the stored coral carbonate

within the Namibian mounds is estimated by using the following

assumptions: based on a volume ratio of 20 vol.% CWC to 80

vol.% matrix sediment (Titschack et al., 2015; Titschack et al.,

2016) and applying average density values for coral aragonite of

~2.66 g cm-3 and for matrix sediments of 1.52 g cm-3 (Hamilton,

1976; Dorschel et al., 2007), the average sediment density of the

coral mounds is estimated to be ~1.75 g cm-3 with a 30 wt.%

contribution of CWC. Based on these assumptions, the total mass

of the Namibian mounds is calculated to 28.2 × 106 tons to which

A B

D

E

C

FIGURE 9

(A, B) Crossplots with mound height versus PAX length (A) and average slope (B). (C) Crossplot with PAR versus PAX length (descending order

for the y-axis). (D, E) Crossplots with mound height and PAX length versus PAX angle. Size of the dots is proportional to the PAX length (D) and

mound height (E). Color: light blue, Squid Mounds; pink, Coral Belt Mounds.
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CWC contribute 8.5 × 106 tons of carbonate. Considering a

mound development period lasting for ~5 kyr (Tamborrino

et al., 2019), the CWC-related carbonate production of the

Namibian coral mounds had a rate of ~1,900 tons yr-1, which is

very close to the number of ~1,550 tons yr-1 obtained from a large

CMP located on the Moroccan slope in the NE Atlantic (ca. 10x

volume of the Namibian CMP, Hebbeln et al., 2019). With an

extension of ~200 km2 as derived from the heatmaps (Figure 5),

the coral-derived carbonate productivity in the SQM and CBM

sub-provinces was approximately 9.5 g m-2 yr-1 during their

development (4.9-9.5 kyr, Tamborrino et al., 2019). These

numbers confirm the capacity of the coral mounds to

accumulate carbonate much faster (2.5 times) than the

surrounding seafloor (Milliman, 1993; Titschack et al., 2009;

Titschack et al., 2015; Titschack et al., 2016).

Conclusions

The combined analysis of the spatial distribution of the

Namibian coral mounds and their morphometric characteristics

enables to outline a potential concept for understanding the

initiation and the early development of these mounds. A first-

order pattern derived from the depth interval, in which CWC could

thrive due to the supporting environmental conditions created

along a water-mass boundary that stretches along the margin.

The second-order pattern likely corresponds to the sites colonized

by the first pioneering coral planulae, which successfully developed

in colonies/patches that are aligned along topographic features at

the seafloor which off Namibia are erosive in nature and stretch

downslope. Mound orientation represents the third-order pattern

documenting the increasing hydrodynamic control on mound

morphology along their formation. These patterns reflect how

environmental conditions, namely the interplay of topography

with the regional oceanography and local hydrography,

influenced mound development off Namibia at different scales

(from colony to coral mound province).

The progressively faster increase in PAX length compared to

mound height, especially beyond the thresholds of ~150m in length

and ~8 m in height, probably documents the initial from inherited

to developed mounds as this trend aligns with the change from

rather random PAX orientations to orientations parallel to the main

direction of the tidal bottom current. This is most pronounced for

the larger SQM. These numbers can be seen as the first size criteria

for the transition from the inherited to the developed mound stage.

This analysis of an extensive morphometric database

increases our understanding of the formation of the Namibian

coral mounds (incl. e.g. carbonate production) and the involved

processes. Similar approaches should be considered for future

studies on other CMPs in the Atlantic Ocean (and beyond),

which would allow to differentiate between locally unique

features and regionally or basin-wide common features of

coral mound formation. Such common features to be

identified bear a large potential for the definition of a set of

basic principles to describe the formation of coral mounds.
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Débora Duarte (Royal Holloway, University of London) are

thanked for the support with the hydroacoustic data. The data

reported in this paper are archived in Pangea (www.pangea.de).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Tamborrino et al. 10.3389/fmars.2022.877616

Frontiers in Marine Science frontiersin.org16

https://doi.pangaea.de/10.1594/PANGAEA.944627
https://doi.pangaea.de/10.1594/PANGAEA.944627
https://doi.pangaea.de/10.1594/PANGAEA.944595
https://doi.pangaea.de/10.1594/PANGAEA.944595
http://www.pangea.de
https://doi.org/10.3389/fmars.2022.877616
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Angeletti, L., Castellan, G., Montagna, P., Remia, A., and Taviani, M. (2020). The
“Corsica channel cold-water coral province” (Mediterranean Sea). Front. Mar. Sci.
7. doi: doi.org/10.3389/fmars.2020.00661

Bøe, R., Bellec, V. K., Dolan, M. F. J., Buhl-Mortensen, P., Rise, L., and Buhl-
Mortensen, L. (2016). Cold-water coral reefs in the hola glacial trough off
vesterålen, north Norway. Geological Society London Memoirs 46, 309–310. doi:
10.1144/M46.8

Bartzke, G., Siemann, L., Büssing, R., Nardone, P., Koll, K., Hebbeln, D., et al.
(2021). Investigating the prevailing hydrodynamics around a cold-water coral
colony using a physical and a numerical approach. Front. Mar. Sci. 8. doi: 10.3389/
fmars.2021.663304

Beyer, A., Schenke, H. W., Klenke, M., and Niederjasper, F. (2003). High
resolution bathymetry of the eastern slope of the porcupine seabight. Mar.
Geology 198, 27–54. doi: 10.1016/S0025-3227(03)00093-8

Boolukos, C. M., Lim, A., O’riordan, R. M., and Wheeler, A. J. (2019). Cold-
water corals in decline – a temporal (4 year) species abundance and biodiversity
appraisal of complete photomosaiced cold-water coral reef on the Irish margin.
Deep Sea Res. Part I: Oceanographic Res. Papers 146, 44–54. doi: 10.1016/
j.dsr.2019.03.004

Buhl-Mortensen, L., Serigstad, B., Buhl-Mortensen, P., Olsen, M. N., Ostrowski,
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