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Abstract: Temperatures over southern Africa have been increasing rapidly over the last fi ve decades, at a rate of about twice 
the global rate of temperature increase. Further drastic increases, in the order of 6°C by the end of the century relative to the 
present-day climate, may occur over the central and western interior regions under low-mitigation futures. Moreover, south-
ern Africa is projected to become generally drier under low-mitigation climate change futures. Such changes will leave little 
room for adaptation in a region that is already characterised as dry and hot. Impacts on crop and livestock farming may well 
be devastating, and signifi cant changes may occur in terms of vegetation cover in the savannas, particularly in the presence 
of human-induced land degradation. Under modest to high mitigation, southern Africa will still experience further climate 
change, but amplitudes of change will be reduced, potentially leaving more room for adaptation. Skilful seasonal forecasts 
may become an increasingly important adaptation tool in southern Africa, especially when combined with a robust weather 
station monitoring network.

Resumo: A temperatura no Sul de África tem vindo a aumentar rapidamente ao longo das últimas cinco décadas, a uma 
taxa de cerca do dobro da global. Aumentos adicionais drásticos, na ordem dos 6°C até ao fi nal do século em relação ao 
clima actual, poderão ocorrer nas regiões interiores centrais e ocidentais sob cenários futuros de baixa mitigação. Além dis-
so, prevê-se que o Sul de África irá tornar-se geralmente mais seco sob cenários futuros de baixa mitigação das alterações 
climáticas. Tais alterações deixarão pouco espaço para a adaptação numa região que já é caracterizada como seca e quente. 
Os impactos na agricultura e na pecuária poderão ser devastadores, e alterações signifi cativas poderão ocorrer em termos 
de cobertura vegetativa nas savanas, particularmente na presença de degradação da terra induzida pelo Homem. Com uma 
mitigação média-alta, o Sul de África continua infl uenciado pelas alterações climáticas, mas as amplitudes são reduzidas, 
deixando potencialmente mais espaço para a adaptação. Previsões sazonais competentes poderão tornar-se numa ferramenta 
de adaptação cada vez mais importante no Sul de África, especialmente quando combinadas com redes robustas de moni-
torização por estações meteorológicas.
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Introduction

The past few years in southern Africa (in 
both the summer and winter rainfall re-
gions) have demonstrated yet again the 
vulnerability of the subcontinent to cli-
mate variability. Multi-year below-nor-
mal summer rainfall has had a severe im-
pact on key sectors, including agriculture 
and water, as have multiple more recent 
winters with below-normal rainfall (see, 
for example, Archer et al., 2017).

Such conditions have highlighted the 
need for climate science in the region 
that truly enables us to both predict con-
ditions of climatic risk in the shorter to 
the longer term and to use such infor-
mation to improve short- and long-term 
readiness (Winsemius et al., 2014). In 
this overview article, we describe work 
in climate prediction undertaken on both 
longer-term climate change projections 
and seasonal early warning. We conclude 
by a brief discussion of the essentials be-
yond climate science, where we may po-
tentially eff ectively translate information 
into real utility. 

Projections of future 
climate change over 
southern Africa

Later in this chapter, we consider climate 
observations and data availability; and it 
should be noted at the start of discuss-
ing the latest fi ndings in terms of climate 
change projections for the continent that 
observation and data gaps remain a sig-
nifi cant concern. Observed data also con-
strain our work in the area of seasonal 
forecasting and early warning (see sec-
tion to follow). Figure 4, for example, 
shows the uneven coverage of observed 
climate data for the continent, particu-
larly outside of South Africa. That limi-
tation notwithstanding (and we provide 
more detail later in the chapter), substan-
tive work has been undertaken in terms of 
climate change projections on the conti-
nent. Climate change is projected to have 
widespread impacts in southern African 
during the 21st century, particulalrly un-
der low-mitigation futures (Niang et al., 
2014). Temperatures are projected to rise 
rapidly, at 1.5 to 2 times the global rate 

of temperature increase (James & Wash-
ington, 2013; Engelbrecht et al., 2015). 
Indeed, the observed rate of temperature 
increase is particularly high over the in-
terior regions of southern Africa. Here 
temperature trends as high as a 2 to 3.6°C 
increase per century have been recorded 
over the period 1961–2010 (Engelbrecht 
et al., 2015; Kruger & Sekele, 2013). In 
addition to the projected increases in sur-
face temperature, the southern African 
region is also projected to become gener-
ally drier under e nhanced anthropogenic 
forcing (Christensen et al., 2007; Engel-
brecht et al., 2009; Haensler et al., 2010, 
2011; James & Washington, 2013; Niang 
et al., 2014). These regional changes 
will plausibly have a range of impacts 
in southern Africa, including impacts on 
energy demand (in terms of achieving hu-
man comfort in buildings and factories), 
agriculture (e.g., reductions of yield in 
the maize crop under higher tempera-
tures and reduced soil moisture; Land-
man et al., 2017), livestock production 
(e.g., higher cattle mortality as a result of 
oppressive temperatures), water security 
(through reduced rainfall and enhanced 
evapotranspiration; Engelbrecht et al., 
2015) and human health (through oppres-
sive temperatures; Garland et al., 2015).

Moreover, climate change is to take 
place not only through changes in aver-
age temperature and rainfall patterns, but 
also through changes in the attributes of 
extreme weather events. For the southern 
African region, generally drier condi-
tions and the more frequent occurrence of 
dry spells are plausible over most of the 
interior (Christensen et al., 2007; Engel-
brecht et al., 2009; Haensler et al., 2011). 
Tropical cyclone tracks are projected 
to shift northward, bringing more fl ood 
events to northern Mozambique and 
fewer to the Limpopo province in South 
Africa (Malherbe et al., 2013). Cut-off  
low related fl ood events are also pro-
jected to occur less frequently in South 
Africa (e.g., Engelbrecht et al., 2013) in 
response to a poleward displacement of 
the westerly wind regime. Intense thun-
derstorms plausibly may occur more 
frequently over South Africa in a gener-
ally warmer climate (e.g., Engelbrecht 
et al., 2013). Perhaps most important is 
that the regional changes in circulation 

that are plausible over southern Africa, 
in particular an increase in the frequency 
and intensity of mid-level high-pressure 
systems, may plausibly induce the more 
frequent occurrence of heat-wave events 
over the region (e.g., Engelbrecht et al., 
2015; Garland et al., 2015).

It is against this background that a fo-
cused eff ort was made to further explore 
the climate change futures of southern 
Africa through a coordinated SASSCAL 
research programme, in addition to other 
research active in the subcontinent and 
on the continent more broadly. At the 
CSIR in South Africa and at the Cli-
mate Service Center Germany (GER-
ICS), the most recent global circulation 
model (GCM) projections of the Coupled 
Model Intercomparison Project Phase 
Five (CMIP5) and Assessment Report 
Five (AR5) of the I ntergovernmental 
Panel on Climate Change (IPCC) were 
downscaled to 50 km resolution over Af-
rica. These simulations are for the period 
1961 to 2100, follow the experimental 
design recommended by the Coordinated 
Downscaling Experiment (CORDEX), 
and have been derived for low- (Rep-
resentative Concentration Pathway 8.5 
[RCP8.5]), modest-high- (RCP4.5) and 
high-mitigation (RCP2.6) scenarios. The 
data of these simulations are also made 
available to the international science 
community via the CORDEX databases. 
The regional climate model used at the 
CSIR is the conformal-cubic atmospher-
ic model (CCAM), a variable-resolution 
global climate model (GCM) developed 
by the Commonwealth Scientifi c and In-
dustrial Research Organisation (CSIRO) 
(McGregor, 2005). At GERICS the 
simulations have been conducted with 
the REMO regional climate model. For 
each of the RCPs, six diff erent GCMs 
were downscaled, so that the results pre-
sented below are based on an ensemble 
of possible future developments. The 
CCAM simulations were performed on 
supercomputers at the Centre for High-
Performance Computing (CHPC) of the 
Meraka Institute of the CSIR in South 
Africa; the REMO simulations were con-
ducted at the German Climate Comput-
ing Center in Hamburg, Germany.

The CCAM projected changes in an-
nual rainfall over southern Africa are 
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shown in Figure 1 for the far-future 
period 2080–2099 compared to the 
 present-day (1971–2000). A general pat-
tern of rainfall decreases is projected for 
subtropical southern Africa. An excep-
tion is Mozambique, where rainfall in-
creases are projected for the central and 
northern parts in particular. There is some 
uncertainty in the projections over the in-
terior of the central subcontinent, where 
a minority of projections indicate rainfall 
increases over specifi c regions, or de-
creases that are small in amplitude. The 
largest rainfall decreases are projected 
for Angola and over the southern parts of 
South Africa. The projected decreases in 
Angola may be occurring in conjunction 
with changes in the Angola low-pressure 
system and the general strengthening of 
the subtropical high-pressure belt over 
southern Africa (e.g., Engelbrecht et al., 
2009). Over South Africa, the rainfall 
decreases projected for the southwest-
ern Cape are occurring in association 
with a poleward displacement of the 
westerlies and frontal systems under low 
mitigation (e.g., Christensen et al., 2007; 
 Engelbrecht et al., 2009). 

Drastic temperature increases of 4–7°C 
are projected to occur over the western 
interior regions of southern Africa under 
low mitigation (Fig. 2). Relatively small-
er increases are projected for Mozam-
bique (where general increases in rainfall 
and cloud cover are projected) and along 
the coastal areas (due to the moderating 
eff ects of the ocean). 

Incorporating 16 regional climate 
change projections conducted by GER-
ICS (using the REMO model) and other 
institutions in the frame of the CORDEX 
initiative for the southern African region, 
analyses of projected changes for a set 
of climate indices along various tran-
sects over the SASSCAL region have 
been conducted based on larger regional 
climate model ensembles for RCP4.5 
and RCP8.5. The median projection of 
change in annual maximum temperature 
is about 3°C (RCP4.5) to 5°C (RCP8.5) 
in the interior and about 1.5 to 2°C less 
at the coastal areas in the west, east, and 
south. The spread between the diff erent 
simulations is about 2°C (RCP4.5) to 
3°C (RCP8.5), leading to a maximum 
projected increase in maximum annual 

temperature of about 7°C (RCP8.5) over 
the semi-arid to arid western parts of the 
SASSCAL region (Fig. 3). The CCAM 
projections (Fig. 2) are consistent with 
the range of changes projected by the 
CORDEX ensemble (Fig. 3).

The SASSCAL projections and analy-
ses convey a clear message that a low-
mitigation climate future may have 
devastating impacts on the southern 
African region. Drastically rising aver-
age temperatures and related extreme 
events (e.g., very hot days, heat-wave 
days, and high fi re danger) are plausi-
ble to have a negative impact on crop 
yield, livestock production, and human 
health. The general reductions in rain-

fall may induce further stress for rainfed 
agriculture in the region. For example, 
the Kalahari Desert receives annual pre-
cipitation rates of about 250 mm in the 
arid south-western parts and rising to 
more than 600 mm towards the centre 
and north-east of Botswana. For the end 
of the century, not only rising tempera-
tures are projected but also a reduction 
in the annual rainfall rate. With a later 
onset of the rainy season and an earlier 
cessation, the number of dry days out-
side the rainy season increases and the 
rainy season itself shortens. As a result, 
semi-arid and arid domains are  estimated 
to expand by 5–8%, infl uencing the eco-
system and its vegetation, hydrology, 

Figure 1: CCAM projected change in the annual average rainfall totals (units 10*mm/
day) over southern Africa at 50 km resolution, for the time period 2080–2099 relative to 
1971–2000. The downscalings were obtained from six diff erent CMIP5 GCM projections 
under low mitigation (RCP8.5).
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and human proceedings (Stringer et al., 
2009). Climate change has already been 
noticeably present during the past dec-
ades (Kusangaya et al., 2014), and the 
associated intensifi cation and expansion 
of agriculture and livestock farming has 
reinforced land use pressure. Due to the 
absence of suffi  cient surface water re-
sources, groundwater resources are used 
to address the rising demand for water 
and, consequently, the number of wells 
and boreholes in the Kalahari Desert 
has increased remarkably during the 
last century (Christelis & Struckmeier, 
2011). Projected climate extremes, in 
combination with population growth, 
may cause an overutilization of limited 

Figure 2: CCAM projected change in the annual average temperature (°C) over southern 
Africa at 50 km resolution, for the time period 2080–2099 relative to 1971–2000. The 
downscalings were obtained from six diff erent CMIP5 GCM projections under low mitigation 
(RCP8.5).

resources in central Botswana, which in 
turn may cause migration to other areas.

Also, coastlines may be aff ected. 
While the west coast of southern Af-
rica is comparably dry (< 500 mm), the 
east coast receives more rainfall (700–
1200 mm), with a decreasing trend from 
north to south. As shown by Oltmanns 
(2015), projections indicate a decline in 
precipitation for most coastlines, except 
for northern Mozambique, for which an 
increase by approximately 10% is pro-
jected. A similar tendency can be seen 
for rainfall intensity. The west coast will 
barely experience extreme events (more 
than 20 mm/day), but an increase in ex-
treme events is projected for the north-

ern Mozambican coastline (declining 
slightly towards the south). Although 
aspects of agriculture in Mozambique 
may benefi t from an increase in rainfall, 
the country simultaneously needs to pre-
pare for the likelihood of an increasing 
number of fl ood events associated with 
landfalling tropical lows and cyclones 
under climate change. The plausibility 
of a signifi cant reduction of rainfall over 
the mega-dam region of South Africa is 
a further cause for concern. Even under 
modest-high mitigation, southern Africa 
will experience potentially signifi cant 
changes in the regional climate. Over the 
interior regions, temperature increases 
may well still reach values of 3–4°C, and 
it remains plausible that the region will 
become generally drier. Nevertheless, 
temperature increases under modest-high 
mitigation, though signifi cant, are on the 
order of half the amplitude of changes 
under low mitigation. This implies the 
availability of more options for adapta-
tion and more time to adapt before criti-
cal temperature thresholds are exceeded 
for the fi rst time.

It is important to consider what the 
implications of the projected changes in 
climate may be for vegetation in south-
ern Africa, particularly in the savannas, 
where complex interactions occur be-
tween grasses, trees, fi re, and CO2 (Bond 
& Midgley, 2012). In fact, rising levels 
of CO2 strongly favour trees over grasses 
in the savannas, potentially  causing bush 
encroachment and spawning the hypoth-
esis of the “forestation of Africa” under 
climate change (West et al., 2012). How-
ever, the substantial reductions in rainfall 
projected for southern Angola and Zam-
bia in particular, in combination with 
more frequent fi res occurring under dras-
tic temperature increases (Engelbrecht et 
al., 2015) and human-induced land deg-
radation, may in fact result in decreasing 
tree cover in the savannas (Engelbrecht 
& Engelbrecht, 2016). Dynamic vegeta-
tion-fi re models that can also incorporate 
scenarios of human-induced changes 
in land use are required to objectively 
project the vegetation future of south-
ern Africa, yet few such models have to 
date been developed and applied over the 
 region.
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Seasonal variability and 
early warning 

Southern African seasonal climate 
anomalies are (generally) predictable 
(Barnston et al., 1996), although work 
in this area remains challenged by the 
lack of observational data in certain ar-
eas (see section to follow). The notion of 
a predictable climate, further supported 
by the discovery in the 1980s of the El 
Niño-Southern Oscillation (ENSO) phe-
nomenon as a primary driver of seasonal-
to-interannual variability over the region 
(Ropelewski & Halpert, 1987, 1989), 

led to the development of operational 
seasonal prediction systems for rainfall 
(Mason, 1998; Jury et al., 1999) and for 
temperature (Klopper et al., 1998). The 
initial modelling in southern Africa was 
undertaken mainly from the early 1990s 
by a number of institutions that devel-
oped statistical seasonal forecast models 
(Mason, 1998; Jury et al., 1999; Land-
man & Mason, 1999). A few years later, 
in the early 2000s, atmospheric general 
circulation models (AGCMs) for opera-
tional seasonal forecasting and research 
began to be used (e.g. Landman et al., 
2001). Major advances in seasonal fore-

cast system and infrastructure develop-
ment have occurred since then, including 
the World Meteorological Organisation’s 
recognition of the South African Weather 
Service (SAWS) as a Global Producing 
Centre for Long-Range Forecasting, the 
development of objective mult i-model 
forecasting systems for southern Africa 
(Landman & Beraki, 2012), and, signifi -
cantly, the development of a fully cou-
pled ocean-atmosphere model at SAWS 
for operational seasonal forecast produc-
tion (Beraki et al., 2014). Nested regional 
climate models as seasonal forecasting 
tools were also investigated (Landman et 
al., 2005, 2009; Kgatuke et al., 2008; Rat-
nam et al., 2011). A review on aspects of 
seasonal forecast development in South 
Africa can be found in Landman (2014). 

After forecasts were demonstrated to 
obtain the highest levels of skill when 
statistical methods and global model 
forecasts are blended into a multi-tiered 
forecast system (Landman et al., 2001), a 
move away from compiling operational 
forecasts subjectively through consensus 
discussions was introduced by making 
use of objective multi-model forecast 
systems (Landman & Beraki, 2012). Over 
the past 10 years or so, modelling advanc-
es obtained locally were largely focused 
on the development, testing, and use of 
fully coupled ocean-atmosphere models 
in seasonal forecast production (Beraki et 
al., 2012; Landman et al., 2012), the dem-
onstrated potential of forecasts through 
the development of objective applications 
models (Malherbe et al., 2014), and the 
modelling of intra-seasonal characteris-
tics (Engelbrecht et al., 2017). 

Notwithstanding these developments, 
a number of caveats regarding season-
al forecasting in South Africa may be 
identifi ed that require the attention of 
modellers, forecast producers, and us-
ers of forecasts. These include (but are 
not limited to) the need to demonstrate 
the benefi ts derived from using seasonal 
forecasts, including fi nancial benefi ts; 
expanding on the knowledge of current 
skill levels and identifying factors limit-
ing forecast skill; the development and 
testing of forecast systems for areas of 
southern Africa largely neglected up to 
now (i.e., the south-western and south-
ern Cape); the development of schemes 
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Figure 3: Range of projected changes in annual maximum temperature along an east-west 
(25S) and a north-south (20E) transect for the time period 2071–2100 relative to 1971–2000 
for the RCP4.5 and RCP8.5 scenarios. For each of the scenarios, the projections are based 
on an ensemble of 16 transient regional climate change simulations from the CORDEX Af-
rica database. The black line represents the median change. The dark-grey area refl ects the 
range defi ned by the 25th to 75th percentiles of all simulations centred on the median. The 
light grey area spans the range between the ensemble minimum and maximum. Figures are 
taken from Oltmanns (2015).
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for process-based verifi cation; the build-
ing of so-called earth system models for 
improved forecasts through, for example, 
data assimilation systems and tropical-
extra-tropical ocean-land-atmosphere 
coupling; the operational production of 
forecasts to address seasonal character-
istics such as onset, cessation, and sub-

seasonal variations; the production and 
testing of high spatial and temporal reso-
lution forecasts; operational applications 
model development; and, through co-
production, the development of method-
ologies to better communicate seasonal 
forecast information to a variety of users 
in terms of complexity and application.

Data gaps and needs 

Lötter et al. (2018) describe a key chal-
lenge in the SADC region as being the 
lack of long-term reliable climate re-
cords, particularly outside of South 
Africa. Such records are essential both 
for measurement and interpretation of 
current trends (e.g., Kruger & Sekele, 
2013; Engelbrecht et al., 2015) and for 
providing the critical ability to interpret 
the occurrence of extreme events against 
the historical record. In addition, a robust 
observation network supports a range of 
tasks from shorter-term forecasting to 
seasonal predictions to multi-decadal cli-
mate change projections (Engelbrecht et 
al., 2011) through the process of model 
evaluation and validation and by provid-
ing options for statistical downscaling 
(e.g., Landman et al., 2017). It also sup-
ports adaptation eff orts, such as climate 
index–driven insurance schemes (e.g., 
Malherbe et al., 2018).

Figure 4 (from Lötter et al., 2018) 
shows the sparseness of climate records, 
making it evident that certain areas are 
particularly poorly served. It may be 
noted that in this regard SASSCAL has 
in recent years made a considerable ef-
fort to rescue historic climate data and to 
expand the weather station observational 
network in Namibia, Botswana, Zambia, 
and Angola (Kaspar et al., 2015; Muche 
et al., 2018; Posada et al., 2018).

Moving forward 
At a time of recent and current drought 
in both southern Africa’s summer and 
winter rainfall periods, it is an opportune 
moment to consider the role of climate 
prediction in supporting both shorter-
term coping and longer-term adaptation 
to climate variability and change. While 
improved prediction can by no means 
stand alone in support of improved re-
sponse, improvements are essential at 
both a national and regional level. It is 
hoped that such improvements in pre-
diction as those detailed here (including 
attention to gaps in data and the obser-
vational network) might be matched with 
improved support for response and adap-
tation to support the evolution of a more 
resilient subcontinent. 

a

b

Figure 4: The locations of NOAA’s Global Historical Climate Network (GHCN) weather 
stations, as used by CRU, across Africa (a) and the number of weather stations collecting 
daily temperature records across southern Africa from 1850 to 2014 used in the gridded 
CRUTEM4 product (b). Station density increased consistently from the start of the 20th 
century and peaked in the 1970s, after which it began to decline. Source: Davis & Vincent, 
2017 (reproduced with the permission of the authors).
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