Ornithological Observations

http://oo.adu.org.za

An electronic journal published by the Animal Demography Unit at the University of Cape Town and BirdLife South Africa

Ornithological Observations accepts papers containing faunistic information about birds. This includes descriptions of distribution, behaviour, breeding, foraging, food, movement, measurements, habitat and plumage. It will also consider for publication a variety of other interesting or relevant ornithological material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, and any other interesting or relevant material.

Editor: Arnold van der Westhuizen

SEASONAL CHANGES IN AVIAN COMMUNITIES IN A FARMLAND IN THE CUVELAI DRAINAGE SYSTEM, NORTHERN NAMIBIA

Grzegorz Kopij

Recommended citation format: Kopij G 2015. Seasonal changes in avian communities in a farmland in the Cuvelai Drainage System, northern Namibia. Ornithological Observations, Vol 6: 73-81

URL: http://oo.adu.org.za/content.php?id=182

Published online: 15 Junie 2015

- ISSN 2219-0341 -

SEASONAL CHANGES IN AVIAN COMMUNITIES IN A FARMLAND IN THE CUVELAI DRAINAGE SYSTEM, NORTHERN NAMIBIA

Grzegorz Kopij*

Department of Wildlife Management, University of Namibia, Katima Mulilo Campus, Private Bag 1096, Wenela Rd., Katima Mulilo, Namibia

* Corresponding author: kopij@unam.na

Abstract

The study was conducted in Ogongo communal area. It is situated in the BIOTA Observatory 'Ogongo' within the Cuvelai Drainage System, c. 50 km NW of Oshakati, Outapi district, Omusati region, North-Central Namibia. Studies were carried out in late rainy season (February) in the middle of dry season (July) and at beginning of rainy season (November). The Line Transect Method has been employed to quantify avian assemblages (frequency of occurrence and relative abundance). The total length of all transects was c. 11 km. In total, 60 breeding resident and 13 non-breeding nonresident species were recorded. Among the breeding resident species 44 were recorded in late rainy season, only 13 in the middle of dry season and 42 at the beginning of rainy season. The highly significant seasonal differences in abundance were recorded for the following species: Streptopelia senegalensis, Passer diffusus, Prinia maculosa, Cypsiurus parvus, Upupa africana, Crithagra atrogularis, Bubulcus ibis, Corythaixoides concolor, Euplectes orix, Coracias caudatus and Urocolius indicus. Significant seasonal differences were recorded for species such as Tricholaema leucomelas, Oena capensis, Nilaus afer, Cinnyris mariquensis, Bradornis mariquensis,

Corvus capensis and *Sylvia subcaeruleum*. For 38 other species no significant differences were recorded. In overall, six species have been classified as dominants: *Streptopelia senegelensis*, *Uraeginthus angolensis*, *Passer difussus*, *Prinia maculosa*, *Cypsiurus parvus* and *Bubulcus ibis*. They comprised together 64% of all pairs recorded. In all seasons granivores and insectivores comprised together more than 90% of all birds recorded. Granivores were most common in dry season, while insectivores in wet season, especially at its beginning.

Introduction

In Namibia 56% of the land falls under government control, 1% under local authorities and 43% under private control. The governmental land can be further divided into state land (c. 20% protected as national parks, game and forest reserves controlled by the Ministry of Environment and Tourism) and so called communal land (c. 30%) (Mendelsohn *et al.* 2009). The latter are usually controlled by traditional authorities and are mostly in the northern part of the country, i.e. in Damaraland, Koakoland, Owamboland, Kavangoland and in the Caprivi Strip (Mendelsohn *et al.* 2009). Today, most of the land is transformed to pasturelands for livestock. The aim of this paper was to study avian assemblages of an area well-representing such farmland. Specifically, the following parameters of these assemblages were investigated: species diversity, dominance structure, frequency of occurrence and relative abundance.

Study area

The study was conducted in a farmland situated in the central part of Ovamboland communal area near Ogongo in the Cuvelai Drainage System, c. 50 km NW of Oshakati, Outapi district, Omusati region (S17°70', E15°31'). It comprises an extensive sandy plain, c. 1100 m a.s.l., partly flooded almost annually (usually in December-June).

Fig 1 – The Cuvelai Drainage System in relation the other large drainage systems in northern Namibia. The Kunene (red) drains towards the Atlantic Ocean, Cuvelai (green) towards Etosha Pans and Okavango (blue) towards Makgadigadi Pans in Botswana. Souce: IWRM-Namibia 2001.

The farmland comprises small-scale agriculture fields with sorghum as main cultivated plant and cattle, sheep, goats and donkeys as main livestock. Natural vegetation in the form of a mixed *Mopane/Vachellia* savanna (dominated by shrubs and trees of *Colophospermum mopane*. and *Vachellia erioloba* with admixture of morula *Sclerocarya birrea*, *Berchemia discolor*, *Schinziophyton rautanenii* and the makaloni palms *Hyphaena petersiana*. *Vachellia* *nilotica, Zizyphus mucronata, Combretum* spp., *Ficus* spp.; Jürgens *et al.* 2010), interlaced with shallow oshans (natural, ephemeral lakes, pans, and canals) has been almost totally altered with pastures, arable grounds, village settlements, roads, etc. Larger game mammals have been eliminated, but birdlife remains still relatively rich and diverse (Kopij 2013).

The climate is semi-arid. Almost all rains (96%) fall in summer (November-April), with two-thirds in January-March. The amount of rain varies from year to year, usually within 400-500 mm per annum (Mendelson, Weber 2011). The average temperature of the coolest months (June-August) is 17°C and that of the warmest months (October-January) 25°C (Kopij 2013).

Methods

Studies were carried out in late rainy season (23, 25 Feb. 2012), in the middle of dry season (2, 20 July 2011) and at beginning of rainy season (2, 5 Nov. 2011). The Line Transect Method (cf. Bibby *et al.* 1992, Sutherland 1996, Kopij 2013) has been employed to quantify avian assemblages, i.e. species diversity, dominance structure, frequency of occurrence and relative abundance of all resident and breeding species. Ten transects were designed, each one was about 1 km long. Counts were conducted in the mornings from c. 07:00 till c. 11:00 by walking slowly and recording all seen and heard birds. The total length of all transects was c. 13 km. For resident birds, a breeding pair was a census unit, while for non-breeding non-resident species, the census unit was an individual.

The following parameters were used to describe the avian assemblages:

1) species diversity (number of species recorded);

2) %F - frequency of occurrence of each species, defined as the

percentage of transects, where a given species was recorded to the total number (N=10 transects) of transects surveyed;

3) %N – dominance expressed as the proportion of resident pairs of a given species to the total number of all breeding pairs of all species recorded, expressed as a percentage. Dominant species is defined here as comprising at least 5% of the total number of all breeding pairs; while subdominant that comprising 2-4.9% of that total.

The nomenclature of bird species follows that of Hockey *et al.* (2005).

Two indices were used to compare diversity of avian assemblages: Sorensen's Coefficient (S), and Shannon's Diversity Index (H):

I = 2C/A+B (A – the number of bird species in area A, B – the number of bird species in area B, C – the number of bird species common to both area)

 $H = -\sum p_i x LNp_i$ where $p_i - proportion$ of pairs belonging to *i*-species

Differences in the densities of particular species in various seasons were tested with x^2 -test. The number of recorded resident pairs (for breeding species) or individuals (for non-breeding species) was taken into account for this testing.

Results and Discussion

In total, 60 breeding resident and 13 non-breeding non-resident species were recorded, which is relatively high in comparison with other similar habitats in southern Africa (Kopij 2006). Among the breeding resident species 44 were recorded in late rainy season, only 13 in the middle of dry season and 42 at the beginning of rainy season. The number of breeding species in dry season was, therefore, significantly lower than in rainy season (x^2 -test: 38.3; p<0.01).

The highly significant seasonal differences in abundance were recorded for the following species: Laughing Dove *Streptopelia senegalensis*, Grey-headed Sparrow *Passer diffusus*, Black-chested Prinia *Prinia maculosa*, African Palm Swift *Cypsiurus parvus*, African Hoopoe *Upupa africana*, Black-throated Canary *Crithagra atrogularis*, Cattle Egret *Bubulcus ibis*, Grey Go-away Bird *Cory-thaixoides concolor*, Southern Red Bishop *Euplectes orix*, Lilac-breasted Roller *Coracias caudatus* and Red-faced Mousebird *Urocolius indicus*. Significant seasonal differences were recorded for species such as the Pied Barbet *Tricholaema leucomelas*, Namaqua Dove *Oena capensis*, Brubru *Nilaus afer*, Marico Sunbird *Cinnyris mariquensis*, Marico Flycatcher *Bradornis mariquensis*, Black Crow *Corvus capensis* and Chestnut-vented Tit-Babbler *Sylvia subcaeruleum*. For 38 other species no significant differences were recorded.

In overall, six species have been classified as dominants: Laughing Dove, Blue Waxbill *Uraeginthus angolensis*, Grey-headed Sparrow, Black-chested Prinia, African Palm Swift and Cattle Egret. They comprised together 64% of all pairs recorded. All of them have also the highest (>50%) frequency of occurrence on transects. Subdominants were represented by the African Hoopoe, Rattling Cisticola *Cisticola chiniana* and Black-throated Canary comprised together only 10.7% of all resident pairs.

In the middle dry season (July) dominant species (n=4) comprised slightly larger group (73.2%) than at the beginning (November; 6 species; 63.7%%) and the end of wet season (March; 6 species; 67.0%). Only the Blue Waxbill, was a dominant species in all three seasons compared.

In all seasons granivores and insectivores comprised together more

Fig 2 – Seasonal changes in main feeding guilds in the Ogongo farmlands. F – frugivores, G – granivores, I – insectivores, O – other guilds.

than 90% of all birds recorded. Granivores were most common in dry season, while insectivores in wet season, especially at its beginning (Fig. 1). While frugivores were much less numerous, they were represented in all seasons compared, birds from all other feeding guilds were recorded only in the wet season (Fig. 2).

Among 13 non-resident species, 5 were Palearctic migrants (Willow Warbler *Phylloscopus trochilus*, Spotted Flycatcher *Muscicapa striata*, Lesser Grey Shrike *Lanius minor*, European Bee-eater *Merops apiaster* and Wood Sandpiper *Tringa glareola*); six were water birds and two passerines (Table 3).

Sorensen Coefficient of assemblage similarity between March and July was S=0.32; March/November S=0.40; July/November S=0.63.

However the Shannon's Diversity Index was lower in July (H=2.02) than in March (H=2.89) and November (H=2.92).

- 00000 -

References

Bibby CJ, Burgess ND, Hill DA 1992. Bird census techniques. London: Academic Press.

Hockey PAR, Dean WRJ, Ryan PG (eds) 2005. Roberts Birds of Southern Africa, VIIth ed. The Trustees of the John Voelcker Bird Book Fund, Cape Town.

IWRM-Namibia 2011. An atlas and environmental profile of the Cuvelai Etosha Basin. <u>http://www.iwrm-namibia.info.na/downloads/</u><u>atlas-ceb-chapter-1.-introduction.pdf</u> (Accessed on 15.06.2015)

Jürgens N, Haarmeyer DH, Luther-Mosebach J, Dengler J, Finck M, Schmiedel U (eds.). 2010. Biodiversity in southern Africa. Volume 1: Patterns at local scale – the BIOTA Observatories. Göttingen & Windhoek: Klaus Hess Publishers.

Kopij G. 2006. The structure of assemblages and dietary relationships in birds in South African grasslands. Wrocław: Wydawnictwo Akademii Rolniczej we Wrocławiu.

Kopij G 2013. Avian assemblages in natural and modified Koakoland (Mopane) Savanna in the Cuvelai Drainage System, north-central Namibia. Lanioturdus, 46(5): 22-33.

Mendelsohn J, Jarvis A, Roberts C, Robertson T 2009. Atlas of Namibia. A Portrait of the Land and its People. Cape Town: Sunbird Publishers.

Mendelsohn J, el Obeid S, Roberts C 2000. A profile of northcentral Namibia – Windhoek: Gamsberg Macmillan Publishers.

Mendelsohn J, Weber B 2011. The Cuvelai Basin, its water and people in Angola and Namibia. Occasional Paper, no. 8. Luanda: Development Workshop.

Sutherland W J 1996. Ecological Census Techniques: a handbook. Cambridge: Cambridge University Press

Transect	Co-ordinates for	Co-ordinates for	Habitat type
number	starting point	ending point	
1	S144358 E151603	S174355 E151699	Mopane savanna
2	S174355 E151699	S174375 E151650	Mopane savanna
3	S174375 E151650	S174351 E151644	Mopane savanna
4	S174351 E151644	S174307 E151642	Mopane savanna
5	S174307 E151642	S174358 E151602	Mopane savanna
6	S173906 E151747	S173857 E151660	Vachellia savanna
7	S173857 E151660	S173808 E151777	Vachellia savanna
8	S173808 E151777	S173787 E151819	Vachellia savanna
9	S173787 E151819	S173827 E151839	Vachellia savanna
10	S173827 E151839	S173885 E151778	Vachellia savanna

Table. 1. Transects designed for counting resident bird species in a farmland near Ogongo.

Table 2. Seasonal changes in frequency (%F) and dominance (%N) of residential avian assemblage (number of potentially breeding pairs are given) in a farmland near Ogongo. In bold case dominant species are indicated. Level of significance: * - significant difference (p<0.05), ** - highly significant difference (p<0.01).

	March		July		November		Total		X²⁻test
Species	%F	%N	%F	%N	%F	%N	%F	%N	
Blue Waxbill Uraeginthus angolensis	90	12,3	80	31,1	90	10,2	87	15,1	4,0
Grey-headed Sparrow Passer diffusus	90	19,7	40	3	70	10,8	67	13,2	63,1**
African Palm Swift Cypsiurus parvus	30	2,9	50	14	80	16,7	53	10,2	33,7**
Cape Turtle-Dove Streptopelia senegalensis	80	9,3	80	22,6	60	4,6	73	10,1	10,4**
Black-chested Prinia Prinia flavicans	90	10,7	0	0	100	12,4	63	9,3	40,1**
Cattle Egret Bubulcus ibis	60	9,1	0	0	30	5,9	30	6,1	33,0**
African Hoopoe Upupa africana	30	1,3	60	5,5	70	7,7	53	4,5	17,2**
Rattling Cisticola Cisticola chinina	70	5,9	10	0,6	40	2,2	40	3,5	23,5**
Black-throated Canary Crithagra atrogularis	50	2,4	0	0	60	4,3	37	2,7	13,0**
Southern Masked Weaver Ploceus velatus	50	2,1	30	2,4	10	0,9	30	1,7	2,8
Fork-tailed Drongo Dicrurus adsimilis	20	1,1	50	3,7	30	1,2	33	1,6	0,6
Grey Go-away Bird Corythaixoides concolor	0	0	30	6,7	20	0,6	17	1,5	16,0**
Southern Red Bishop Euplectes orix	40	3,5	0	0	0	0	13	1,5	26,3**

	March		July		November		Total		X ²⁻ test
Species	%F	%N	%F	%N	%F	%N	%F	%N	
Namaqua Dove Oena capensis	10	0,3	30	4,9	20	0,9	20	1,4	6,4*
Acacia Pied Barbet Tricholaema leucomelas	60	2,1	0	0	30	0,9	30	1,3	8,8*
Pied Crow Corvus albus	20	1,1	0	0	60	1,9	27	1,2	5,7
Yellow-crowned Bishop Euplectes afer	50	2,4	0	0	0	0	17	1	18,0**
Yellow-billed Oxpecker Buphagus africanus	30	0,8	0	0	20	1,5	17	0,9	4,6
Cape Glossy Starling Lamprotornis nitens	30	0,8	0	0	30	0,9	20	0,7	3
Yellow-billed Kite Milvus aegyptius	30	0,8	0	0	20	0,9	17	0,7	3
Dark-capped Bulbul Pynconotus tricolor	20	0,8	0	0	10	0,6	10	0,6	2,8
Lilac-breasted Roller Coracias caudatus	0	0	30	3	0	0	10	0,6	9,8**
Long-billed Crombec Sylvietta rufescens	10	0,3	0	0	30	1,2	13	0,6	4,8
Red-faced Mousebird Urocolis indicus	0	0	0	0	30	1,5	10	0,6	9,7**
Scaly-feathered Finch Sporopipes squamifrons	20	0,5	0	0	30	0,9	17	0,6	2,7
Black-collared Barbet Lybius torquatus	20	0,5	0	0	20	0,6	13	0,5	1,9
Brubru Nilaus afer	0	0	0	0	40	1,2	13	0,5	7,8*
Kalahari Scrub Robin Cercotrichas paena	20	0,5	0	0	20	0,6	13	0,5	1,9
Marico Flycatcher Bradornis mariquensis	10	0,3	0	0	20	0,9	10	0,5	3,2
Marico Sunbird Cinnyris mariquensis	0	0	0	0	30	1,2	10	0,5	7,8*
Red-billed Buffalo Weaver Bubalornis niger	20	0,8	0	0	10	0,3	10	0,5	3,5
Red-billed Firefinch Lagonosticta senegala	20	0,5	0	0	10	0,6	10	0,5	1,9
Black-crowned Tchagra Tchagra senegalus	10	0,3	0	0	20	0,6	10	0,3	1,9
Cape Crow Corvus capensis	30	0,8	0	0	0	0	10	0,3	6,0*
Chustnut-vented Tit-Babbler Sylvia subcaeruleum	30	0,8	0	0	0	0	10	0,3	6,0*
Crimson-breasted Shrike Laniarius atrococcineus	0	0	30	1,8	0	0	10	0,3	5,9*
Golden-breasted Bunting Emberiza flaviventris	20	0,8	0	0	0	0	7	0,3	6,0*
Laughing Dove Streptopelia capicola	30	0,8	0	0	0	0	10	0,3	6,0*
Common Scimitarbill Rhinopomastus cyanomelas	10	0,3	10	0,6	10	0,3	10	0,3	0,0
White-tailed Shrike Lanioturdus torquatus	0	0	0	0	20	0,9	7	0,3	5,8
Cape Penduline Tit Anthoscopus minutus	10	0,3	0	0	10	0,3	7	0,2	1,1
Diederick Coockoo Chrysococcyx caprius	20	0,5	0	0	0	0	7	0,2	3,8
Little Bee-eater Merops pusillus	20	0,5	0	0	0	0	7	0,2	3,8
Swallow-tailed Bee-eater Merops hirundineus	0	0	0	0	10	0,6	3	0,2	3,9
African Pipit Anthus cinnamomeus	0	0	0	0	10	0,3	3	0,1	1,9

	March		Jul	July		November		tal	X ^{2⁻} test
Species	%F	%N	%F	%N	%F	%N	%F	%N	
African Quailfinch Ortygospiza atricollis	10	0,3	0	0	0	0	3	0,1	2,3
Blacksmith Lapwing Vanellus armatus	10	0,3	0	0	0	0	3	0,1	2,3
Common Moorhen Gallinula chloropus	10	0,3	0	0	0	0	3	0,1	2,3
Greater Striped Swallow Hirundo cucullata	0	0	0	0	10	0,3	3	0,1	1,9
Hammerkop Scopus umbretta	0	0	0	0	10	0,3	3	0,1	1,9
Little Sparrowhawk Accipiter minulus	10	0,3	0	0	0	0	3	0,1	2,3
Painted Snipe Rostratula benghalensis	10	0,3	0	0	0	0	3	0,1	2,3
Pink-billed Lark Spizocorys conirostris	0	0	0	0	10	0,3	3	0,1	1,9
Red-breasted Swallow Hirundo semirufa	0	0	0	0	10	0,3	3	0,1	1,9
Red-headed Finch Amadina erythocephala	0	0	0	0	10	0,3	3	0,1	1,9
Rosy-faced Lovebird Agapornis roseicollis	0	0	0	0	10	0,3	3	0,1	1,9
Scarlet-chested Sunbird Chalcomitra senegalensis	0	0	0	0	10	0,3	3	0,1	1,9
Southern Pochard Netta erythrophthalma	10	0,3	0	0	0	0	3	0,1	2,3
Violet-backed Starling Cinnyricinclus leucogaster	10	0,3	0	0	0	0	3	0,1	2,3
Zitting Cisticola Cisticola juncidis	10	0,3	0	0	0	0	3	0,1	2,3
Total number of pairs recorded		375		164		323		862	

Table 3. Seasonal changes in frequency and dominance of non-residential avian assemblage in a farmland near Ogongo. In bold case Palearctic migrants are indicated.

Level of significance: * - significant difference (p<0,05), ** - highly significant difference (p<0.01).

	March		July		November		Total		X ² -test
Species	%F	%N	%F	%N	%F	%N	%F	%N	
Common Quelea Quelea quelea	30	50.4	0	0	40	98,1	23	74,1	131,4**
Openbill Stork Anastomus lamelligerus	20	22,7	0	0	0	0	7	11,4	68,7**
Chustnut Weaver Ploceus rubiginosus	10	10,4	0	0	0	0	3	5,2	54,1**
Wood Sandpiper Tringa glareola	30	6,2	0	0	0	0	10	3,1	86,1**
Black-headed Heron Ardea melanocephala	20	3,8	0	0	10	0,4	10	2,1	19,8**
Abdm's Stork Ciconia abdimii	10	1,9	0	0	0	0	3	1,0	14,6**
Little Egret <i>Egretta garzetta</i>	10	1,9	0	0	0	0	3	1,0	9,9**
Lesser Grey Shrike Lanius minor	20	1,5	0	0	0	0	7	0,8	7,8*

	Ma	rch	July		November		Total		X ² -test
Species	%F	%N	%F	%N	%F	%N	%F	%N	
Pied Flycatcher Muscicapa striata	20	0,8	0	0	0	0	7	0,4	4,2
Willow Warbler Phylloscopus trochilus	0	0	0	0	20	0,8	7	0,4	2
European Bee-eater Merops apiaster	0	0	0	0	10	0,4	3	0,2	13,4**
Grey Heron Ardea cinerea	0	0	0	0	10	0,4	3	0,2	13,4**
Red-billed Teal Anas erythrorhyncha	10	0,4	0	0	0	0	3	0,2	2,1
Total number of birds		260		0		257		517	