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Abstract With a high percentage of endemics along

the west coast of South Africa, especially in the family

Aizoaceae, the region is considered one of the earth’s

biodiversity hot spots. It has been suggested that the

diversity and radiation of the Aizoaceae are coincident

with low but predictable rainfall and lack of compe-

tition between species. In this study we examine the

relationship between water source and the efficiency

of PSII photochemistry for representative Aizoaceae

and non-Aizoaceae. We do this to determine the extent

to which the different genera are adapted to the

frequent, low volume, precipitation characteristic of

the region and to ascertain the extent to which there is

competition for water. Our water isotope results show

that the Aizoaceae use shallow surface water while the

non-Aizoaceae use a deeper water source. We are

however not able to show the extent to which the

Aizoaceae utilize fog or dew. Our chlorophyll fluo-

rescence results show that there are no differences in

efficiency of PSII photochemistry between the species

in the wet season. The decline from wet to dry season

for the Aizoaceae is, however, more dramatic than that

of the non-Aizoaceae reflecting the differences in

rooting depth between the different families. These

results suggest that, during the dry season, there is no

competition for resources between families but there is

competition between species. We conclude that the

adaptation to using shallow water, coupled with

susceptibility to drought of adult short lived Aizoaceae

may be a, mechanism for the diversification of this

family.

Keywords d18O � d2H �Water source �
Photosynthesis � Community structure

Introduction

Namaqualand, on the west coast of South Africa, is a

winter rainfall desert region receiving between 20 and

290 mm of rain annually (Milton et al. 1997). The

Succulent Karoo vegetation that characterizes the

region shows over-representation of families that are

succulent, especially Aizoaceae and Crassulaceae

(Desmet and Cowling 1999). Depending on rainfall,

canopy heights vary from 50 to 75 cm (Desmet 2007).

With approximately 40 % of the nearly 5,000 species

endemic to the region the Succulent Karoo is consid-

ered one of the earth’s biodiversity hot spots (Hilton-
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Taylor 1996; Klak et al. 2004). Constituting approx-

imately 85 % of the Aizoaceae, subfamily Ruschio-

deae is by far the largest group of plants in the

succulent Karoo with about 1,563 species in 101

genera. It has been suggested that the diversity and

radiation of these short- to medium-lived (3–10 years)

succulent shrubs are coincident with low winter

rainfall and mild, fog-ameliorated summers (Cowling

et al. 1994; Desmet 2007). The low rainfall is

considered to be very reliable as the year on year

coefficient of variation of monthly rainfall is very low

(Cowling et al. 1999, 2005). Klak et al. (2004) suggest

that climate and environmental factors alone may not

explain the diversity of Aizoaceae, especially within

Ruschiodeae. They suggest that several morphological

innovations contributed toward the radiation including

wide band tracheids (Landrum 2001), leaf shape and

hygroscopic capsules (Klak et al. 2004). These may,

however, not be the only adaptations that facilitated

radiation of Aizaoceae.

A number of recent studies have shown that plants

are able to intercept and utilise moisture from fog

events (Corbin et al. 2005; Dawson 1998; Gabriel and

Jauze 2008). These studies have also demonstrated

that fog and dew condensates of saturated air close to

the earth’s surface usually have a higher proportion of

heavy oxygen and hydrogen isotopes (enriched), than

rain condensing at higher levels in the atmosphere.

These isotopic differences between different sources

of precipitation makes it possible to determine the

water source (fog, dew or rain) of a plant by examining

isotope ratios of water extracted from suberized plant

stems.

South westerly winds off the cold South Atlantic

Ocean result in regular fog and heavy dew events

primarily in summer. These events cover the entire

region, moving inland from the coast to the foothills of

the escarpment (Desmet 2007). Data collected along

the west coast of South Africa between 1954 and 1986

show that, in this area, fog occurs on 84–140 days of

the year. These data also show that these regular fog

events may deposit considerable amounts of water

with projected annual yields at Cape Columbine of

around 2,080 Lm-2 of collecting surface per year

(Olivier 2002). In the Namib Desert, several studies

have shown that such fog events provide a predictable

source of water for both plants and animals (Lange

et al. 2007; Seely 1979). In the Succulent Karoo,

plants that are able to use these water inputs such as

some of the dwarf succulents (Matimati et al. 2012a),

would likely have a significant productivity gain over

those that are unable to utilise them. Several studies

have demonstrated that the Aizoaceae have extremely

shallow roots (Carrick 2003; February et al. 2011;

Midgley and van der Heyden 1999). Given their

diversity and abundance in the Succulent Karoo, it is

possible that the Aizoaceae have adapted rooting

depth not only to the low but reliable rainfall (Fig. 1),

but also to taking up fog and ephemeral rain in

summer.

Here we examine the relationship between water

source and the efficiency of PSII photochemistry for

representative, succulent, shrub, Aizoaceae and non-

Aizoaceae. Our primary objectives are to determine

the extent to which different genera in the Succulent

Karoo are adapted to the frequent but low volume

rainfall events characteristic of the region, and the

extent to which the different groups can utilise water

from fog. We do this through a determination of

quantum yield efficiency (Fv/Fm), and water source for

both Aizoaceae and non-Aizoaceae. Relative to the

non-Aizoaceae, we expect the Aizoaceae to utilize

ephemeral rainfall events which should manifest in an

increase in the efficiency of PSII photochemistry.

Methods

Study area

The study site was located on the farm Quaggaskop in

the Moedverloren region of the Knersvlakte approx-

imately 22 km NW of Vanrhynsdorp in Namaqualand,
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Fig. 1 Total monthly rainfall at our study site for the year of our

study (June 2007–May 2008) showing both rainfall seasonality

and regularity
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South Africa (S31.427363 E18.643497). Mean annual

rainfall at the closest weather station, Vredendal,

between 1957 and 1984 was 145 mm (Weather

Bureau 1986). The mean monthly temperature is

18.9 �C, with the lowest temperature 11.3 �C in July

and highest 25.3 �C in December. Rainfall, consisting

predominantly of frontal systems from the South

Atlantic to the west, falls primarily in the cooler

months from June to August (winter), with occasional

thundershowers during the hot dry season (summer)

(Desmet 2007). Large parts of the Knersvlakte, are

covered by quartz-gravel fields, an extra-zonal special

habitat, with a globally unique flora comprising

specialized dwarf succulents (canopy covers:

0.5–3.4 cm2 plant-1) (Schmiedel and Jürgens 1999).

Inter-dispersed among the quartz-gravel fields are

areas where the underlying quartz gravel is covered

with shale, phyllite and limestone derived substrates

where larger shrubby species up to 40 cm high with

multiple leaves are more prevalent (canopy covers:

59.6–341.8 cm2 plant-1).

We investigate water use in six of these succulent

shrub species, each with a different growth form.

These include three Aizoaceae, the erect evergreen

Ruschia bolusiae Schwantes and Ruschia stricta L.

Bolus var. turgida L. Bolus, as well as the prostrate

dwarf succulent Cephalophyllum framesii L. Bolus

and three non-Aizoaceae, the partly drought deciduous

microphyllous succulent Lycium cinereum Thunb.

(Solanaceae) the mesophyllous drought deciduous

Tripteris sinuata DC. (Asteraceae) and the prostrate

dwarf succulent Zygophyllum cordifolium L. f. (Zy-

gophyllaceae). Of these, the Aizoaceae species are

predominantly using CAM photosynthesis while the

non-Aizoaceae have mixed C3–CAM photosynthesis

(Matimati et al. 2012b).

Sampling and measurements were carried out at the

end of each month for 1 year from the end of June

2007 to the end of May 2008.

Water source

Oxygen and hydrogen isotope ratios of water extracted

from plants may be used to determine the water source

of the plant (Dawson and Ehleringer 1991; February

et al. 2007). The method is based on the understanding

that the stable isotope ratio of the water in suberized

woody tissue is not significantly different from its

source (White et al. 1985). We collected soil and twig

samples as well as potential source waters (rain, fog and

dew) for stable isotope analysis. The twig samples (c.

10 mm Ø 9 60 mm) of suberized wood were collected

from six randomly selected individuals of each shrub

species while the soil cores were taken directly under the

canopy of each shrub. Soil samples were taken at depths

of 5, 10 and 20 cm. Both twig and soil samples were

collected directly into borosilicate tubes (Kimax-Kim-

ble, Vineland, USA). These tubes were subsequently

inserted onto a cryogenic vacuum extraction line to

extract the xylem and soil water for isotope analysis.

One meter square sheets of plexiglass mounted at 45�
angles with gutters installed at the lower ends (Muselli

et al. 2002) were used to separately intercept rain and

dew water which were channelled to an insulated bottle

with a layer of liquid paraffin to minimise evaporation.

Collections of rainwater were confined to sporadic day-

time rain events and dew collections to overnight dew

precipitation which was restricted to night time condi-

tions of high humidity and low temperature. Fog water

was collected using a harp-style collector based on a

design by Hutley et al. (1997) and channelled through a

tipping bucket rain gauge into an insulated bottle with a

layer of liquid paraffin. The plexiglass rain/dew collec-

tor as well as the harp style fog collector were solely

used for sampling water for isotope analysis, and was

checked daily at 07 h and after a precipitation event.

Rain, dew and fog samples were collected immediately

after rain, dew and fog events and were stored in

borosilicate tubes prior to mass spectrometry (Kimax-

Kimble, Vineland, NJ, USA).

All water samples were analysed for 18O/16O ratios

using the CO2 equilibrium method of Socki et al.

(1992) while 2H/H ratios were obtained after the

closed tube zinc reduction method of Coleman et al.

(1982). Isotopic ratios of both 2H/H and 18O/16O were

then determined using a Finnigan Mat 252 mass

spectrometer (Bremen, Germany) at the University of

Cape Town. Our own internal standards were run to

calibrate the measurements relative to standard mean

ocean water (V-SMOW) and to correct for drift in the

reference gas. Analytical uncertainty in measurement

of d was c. 2 % for d2H and c. 0.2 % for d18O.

Rainfall

Rainfall amounts at the study site were measured with

a tipping bucket rain gauge (Campbell Scientific Inc.,

USA).
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Chlorophyll fluorescence

The determination of chlorophyll fluorescence emis-

sion is a useful means for quantifying the effects of

stress on photosynthetic performance. Fluorescence, a

measure of the efficiency of electron transfer,

decreases under any stress that negatively affects the

PSII reactions (Logan et al. 2007). We determined

dark adapted PSII quantum efficiency by enclosing the

entire shrub under a purpose built wire cage covered

with a thick black cloth. Measurements of Fo and Fm

were made following dark adaptation for 30 min to

determine Fv/Fm. We did this on between 5 and 10

fully expanded apical leaves of 6 randomly selected

individuals of each shrub species using a hand held

modulated fluorometer (OSI-FL, Opti-Sciences Inc.,

Hudson, USA). To produce a maximal fluorescence

signal we exposed each leaf to a 0.8 s light pulse of

15,000 lmol m-2 s-1.

Statistical analyses

Since the experimental designs were not fully bal-

anced due to unequal measurements, we applied a

residual maximum likelihood (REML) variance com-

ponents analysis (repeated measures mixed model) to

test for significant differences in measured d18O and

d2H values and PSII function between the different

succulent species, dry (Oct–Mar) and wet (Apr–Sept)

seasons and their interactions using the Wald v2

statistics generated by REML (GENSTAT Discovery

Edition 3, VSNI Ltd, UK). Species were fitted in the

fixed model and months in the random model.

Differences exceeding twice the average standard

error of differences were used to separate significantly

different treatment means at P B 0.05. This is based

on the assumption that for a normal distribution from

REML estimates, the 5 % two-sided critical value is

two.

Results

Water source

When there were multiple rainfall events in a month,

the measured d18O and d2H values for each rain event

were volume weighted. There is a linear relationship

in d2H and d18O depletion in fresh water described by

the global meteoric water line (GMWL) with the

equation d2H = 8d18O ? 10 (Craig 1961). Evapo-

ratively enriched water (shallow soil water) plots

below the meteoric water line with a slope that is less

than 8 and an intercept less than 10. We constructed a

local meteoric water line (LMWL, d2H = 8.3d18O ? 5)

from our monthly measures of rainfall (Fig. 2). When

plotted on the LMWL the volume-weighted values for

both wet (April–Sept) and dry (Oct–Mar) season fog

fell very close to the LMWL and was not significantly

different from wet season rain (Fig. 2a). Wet season

rain was not significantly different from wet season fog

but was different (P = 0.002) from dry season fog

(Fig. 2a). There is very little rain in the dry season

(Oct–Mar; Fig. 1). These light rainfall events were

enriched relative to all other water samples (wet season

rain, wet season fog, dry season fog and dew (Fig. 2b).
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Fig. 2 a. d2H and d18O values for precipitation at our study site

showing the local (LMWL, d2H = 8.3d18O ? 5) as defined

from local precipitation (filled circle) during the course of our

study relative to the global (GMWL, d2H = 8d18O ? 10)

meteoric water line. Also shown are mean values with standard

error for rain fog and dew. b d2H and d18O values for both

Aizoaceae and non-Aizoaceae relative to both the LMWL and

the GMWL. Bars are standard error and points are means.

Symbols are dry season (grey) and wet season (open)
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In the dry season plant water isotope ratios for the

Aizoaceae, C. framesii, R. stricta and R. bolusiae,

plotted away from and with a shallower slope than the

amount-weighted LMWL. Dry season values for the

non-Aizoaceae T. sinuata, L. cinereum and Z. cor-

difolium are not as conspicuously different as the

Aizoaceae. In the wet season values for both the

Aizoaceae and non-Aizoaceae are not significantly

different from rain (Fig. 2b).

Although we did extract water from the soil profiles

under each shrub to establish the depth at which the

different species are sourcing water, the extremely dry

soils resulted in analytical problems which made the

data unreliable.

Chlorophyll fluorescence

We did determine Fv/Fm ratios at the end of each

month (Suppl. Table 1), however, we report on

differences between the Aizoceae and non-Aizaceae

manifested in the wet (Apr–Sept) and dry (Oct–Mar)

seasons (Fig. 3). There are no significant differences

between species in mean wet season Fv/Fm ratios

(0.75–0.77). There are however significant differences

between wet and dry season for all species except the

drought deciduous T. sinuata (Fig. 3). For the non-

Aizoaceae these differences are less apparent than for

the Aizoaceae. Mean dry season Fv/Fm ratios for the

Aizoceae are between 0.50 and 0.61 while those of the

non-Aizoaceae are much higher ranging between 0.71

and 0.77 (Fig. 3). While the two ruschia shrubs have

similar values in the dry season the prostrate dwarf

succulent C. framesii had significantly lower Fv/Fm

ratios than the rest (Fig. 3).

Discussion

The isotopic ratio of water available to plants reflects

the isotopic ratio of precipitation as affected by

various evaporative processes. Free evaporative pro-

cesses from shallow soils will result in plant water

from these shallow soils plotting away from, and with

a shallower slope than, the global or local meteoric

water line. This relationship is extremely useful as the

greater the distance along an evaporative line away

from the rain the more shallow the soil water source

(Dawson 1996; West et al. 2012). Cooler temperatures

and regular replenishment of water in the surface soils

in the wet season results in the plant water of both

Aizoaceae and non-Aizoaceae reflecting isotope ratios

very similar to that of the rain. In the dry season,

however, the Aizoaceae xylem water reflects an

isotopic enrichment typical for plants using surface

soil water while the non-Aizoaceae values are consis-

tent with deeper rooting (West et al. 2012).

Several studies have shown that the Aizoaceae are

rooted in the top 5 cm of the soil (Carrick 2003;

February et al. 2011; Midgley and van der Heyden

1999). Our results show that the shallow rooting of the

Aizoaceae is associated with these plants using highly

evaporated water from the surface layers in the hotter

dry season. We are, however, unable to draw conclu-

sions as to the nature of this water source as there are

not sufficient differences in isotope ratio between the

source waters rain, fog and dew. We may however

speculate that the source of the highly fractionated

water in the xylem of the Aizoaceae in the dry season

is from either, light summer rain, fog or dew or a

combination of the three.

It is generally accepted that photosynthesis is

down-regulated as plant available water decreases

with this response dependent on CO2 availability in

the mesophyll, as regulated by the stomata, rather than

on leaf or stem water potential (Flexas and Medrano

2002). Our chlorophyll fluorescence results demon-

strate that the efficiency of PSII photochemistry for the

Aizoaceae is high in the wet season declining signif-

icantly as stomata close and CO2 availability declines

as water becomes less available in the dry season. In

contrast, the decline in efficiency of PSII for the non-

Aizoaceae while significant is not as pronounced as in

the Aizoaceae. With much less fractionation of the

xylem water, isotope ratios for the non-Aizoaceae

suggest a deeper water source that allows these species
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to maintain the efficiency of PSII photochemistry at a

higher rate and for much longer. While all shrubs in

Namaqualand are relatively shallow rooted (Esler

et al. 1999) our results show that there are differences

in rooting depth between the Aizoaceae and non-

Aizoceae. These differences in rooting depth and

water uptake indicate that there is no competition for

resources between the Aizoaceae and non-Aizoceae

when rainfall is limiting. When rainfall is high enough

to wet the soil throughout the profile our results show

no difference in water source between Aizoaceae and

non-Aizoaceae. The Aizoaceae and non-Aizoaceae

growing in this low rainfall environment avoid

competition for limited resources through partitioning

of rooting niches, with the non-Aizoaceae sourcing

resources from deeper soil layers than the Aizoaceae

allowing these species to remain less stressed than the

Aizoaceae when rainfall declines (February et al.

2011; Walter 1971). Rather than competition for

resources between families our results show that there

is competition for resources between species of the

same family as the different families in our study are

rooted in the same soil depths and using the same

water source.

The key feature of the rainfall in Namaqualand is its

reliability when compared with other arid regions

(Desmet 2007). While there may be a low coefficient

of variation in the rainfall in Namaqualand the region is

prone to local droughts, the most recent of which

occurred in 2010 and the most severe in 1979 (Hoffman

et al. 2009; Jurgens et al. 1999). Several studies have

suggested that despite its leaf succulence the Aizoaceae

are vulnerable to drought (Carrick 2003; Midgley and

van der Heyden 1999; von Willert et al. 1985). In a

review article Hoffman et al. (2009) have, however,

indicated that many species within the Aizoaceae may

not be susceptible to drought as greenhouse experiments

have shown seedlings to survive with no water for as

much as 160 days. Many of the Aizoaceae in Nam-

aqualand are, however, relatively short lived and it is

mature individuals of these relatively short lived

succulents that are primarily susceptible to drought

(Jurgens et al. 1999). Sensitivity of the short lived

Aizoaceae to these droughts, possibly because of

competition for resources within the family, are likely

to have profound consequences on their metapopulation

dynamics. The demographic and genetic properties of

metapopulations experiencing periodic, severe, and

patchy extirpations such as occurred in the 1979

(Jurgens et al. 1999) drought are likely to be highly

conducive to evolutionary radiation and local speciation

(Lande 1980, 1988; Levin 1995). Thus the adaptation to

using shallow water because of competition for

resources with non-Aizoaceae, coupled with stochastic,

local, and lethal drought events for the short lived adult

Aizoacea, may constitute another, completely unex-

plored, mechanism whereby the Aizoaceae have diver-

sified so spectacularly in Namaqualand.
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