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Abstract: Rangelands provide vast landscapes for grazing and foraging for livestock and wildlife. Services of rangelands 
are diverse and generally provide food for millions of the world’s population, especially the rural and sometimes poor com-
munities. Despite the importance of rangelands, they are also threatened by global change including land use and climate 
change. Land-use change is exacerbated by the ever-increasing human population, which is projected to reach over 9 billion 
in 2050. Meanwhile, climate change in the form of erratic rainfall and increasing temperatures, favours increasing woody 
cover leading to bush encroachment and recurrent droughts. The objective of this overview article is to provide a synopsis 
of the key areas covered by the subsequent articles, and drawing upon a wider body of literature. Key issues highlighted in 
this chapter are the defi nition of rangeland landscapes, their role and threats such as bush encroachment, land degradation 
(e.g. soil erosion), indicators for monitoring (i.e. quality of grass, trees, and legumes), and assessment of rangelands using 
in situ and remote sensing techniques. The threats of soil erosion, fi re, and bush encroachment are discussed in relation to 
the functioning of these landscapes for wildlife and livestock. However, in situ and remote sensing techniques provide the 
opportunity to assess the status or condition, quality, and extent of rangeland environments.

Resumo: As pastagens oferecem vastas paisagens para o pastoreio e procura de alimento ao gado e a animais selvagens. Os 
serviços das pastagens são diversos e geralmente fornecem alimento a milhões de pessoas no mundo, em especial nas co-
munidades rurais e, por vezes, pobres. Apesar da importância das pastagens, estas estão também ameaçadas pelas alterações 
globais, incluindo o uso das terras e as alterações climáticas. A alteração do uso das terras é exacerbada pelo constante cres-
cimento da população humana, a qual deverá atingir os 9 mil milhões em 2050. Entretanto, as alterações climáticas geram 
precipitação irregular e o aumento da temperatura, os quais favorecem o aumento da cobertura lenhosa, levando ao bush 
encroachment e a secas recorrentes. O objectivo deste artigo de revisão é fornecer uma sinopse das áreas chave que serão 
abordadas em artigos subsequentes. Para atingir este objectivo, foi realizada uma revisão bibliográfi ca, incluindo diversos 
capítulos deste livro. As questões-chave destacadas neste capítulo são a defi nição da paisagem de pastagem, o seu papel e 
suas ameaças, tais como a densifi cação de plantas lenhosas e degradação da terra (e.x.: erosão do solo), indicadores para 
monitorização, i.e., qualidade das gramíneas, árvores e legumes, e avaliação das pastagens recorrendo ao uso de técnicas in 
situ e de detecção remota. As ameaças em destaque identifi cadas incluem a erosão do solo, o fogo e a densifi cação de plantas 
lenhosas, as quais são alguns dos problemas que afectam paisagens críticas para os animais selvagens e o gado. No entanto, 
técnicas in situ e de detecção remota oferecem a oportunidade de avaliar o estado ou a condição, a qualidade e a extensão 
dos ambientes de pastagem.

Rangeland monitoring and assessment: 
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Introduction

Rangelands are defi ned as landscapes 
that provide grazing and foraging for 
livestock and wildlife, where the natu-
ral vegetation consists of native grasses, 
grass-like plants, fl owering plants, and 
shrubs, as well as introduced plant spe-
cies that are naturalised (Craggs, 2017). 
Rangelands cover about 51% of the 
world’s land surface (Child & Frasler, 
1992) and provide food for millions of 
the world’s population. Rangeland ser-
vices include the provision of grazing re-
sources for commercial and subsistence 
livestock or game farming (Naidoo et al., 
2013), harvesting of wild products, car-
bon sequestration, pollination services, 
and freshwater sources. Millions of 
people rely on rangelands for their daily 
sustenance and many are from rural and 
sometimes poor communities.

In the Eocene epoch (34 to 56 mil-
lion years ago), the colonisation of new 
habitats coupled with the exploitation 
of new, diverse food resources led to 
the rapid diversifi cation of large herbi-
vores, especially ruminants (Prothero 
& Foss, 2007). Vestiges of this high di-
versity of indigenous herbivores are still 
visible in Africa, especially in the open 
grassy biomes (Turpie & Crowe, 1994), 
and are related to the high availability 
and diversity of food plants. In terms of 
their abundance, there are an estimated 
75 million wild ruminants and 3.5 bil-
lion domesticated ruminants in the world 
(Hackmann & Spain, 2010). In 2014, an-
nual human meat consumption amount-
ed to 82 million tons of ruminant meat 
(excluding bush meat and meat from 
game and camelids). This corresponds to 
1,684 million individual cattle and buf-
falo and 2,165 million individual sheep 
and goats (www.fao.org).  One problem 
with having so many animals on the land 
is that they have a negative impact on the 
environment and contribute signifi cantly 
to the production of greenhouse gases 
(Steinfeld et al., 2006). 

Rapid growth in the human population 
has signifi cant implications for rangeland 
utilisation and management. The popula-
tion in 2050 is projected to be more than 
9 billion and most of the increase is esti-
mated to be in developing countries, with 

more than half in Africa (UNPD, 2015). 
The population of sub-Saharan Africa is 
growing at an annual rate of 2.6%. The 
rapid increase in the human population 
is placing new demands on rangelands 
to provide food and shelter to meet its 
needs, as a result often leading to un-
precedented changes in land cover and 
land use (Thornton, 2010; FAO, 2010). 
Overexploitation of rangelands leads to 
land degradation and threatens the qual-
ity and productivity of these ecosystems 
(FAO 2010). Hahn et al. (2005) defi ned 
land degradation as the reduction or loss 
of biological or economic productivity as 
a consequence of inappropriate land-use 
practices.

Other global change pressures, includ-
ing rising temperatures and the increased 
occurrence of extreme events such as 
drought and erratic rainfall patterns, are 
also impacting on the functioning of 
rangeland systems (Palmer & Bennett, 
2013). Drought, bush encroachment, and 
invasion by alien species are increas-
ing threats on the African continent and 
hence on rangeland productivity. Increas-
ing anthropogenic CO2 in the atmosphere 
is having a fertilisation eff ect on C3 trees, 
thereby fuelling the phenomenon of bush 
or woody encroachment. Furthermore, 
increasing warming (projected to be 
3–5 oC by the end of the century) will fa-
vour C4 grasses in place of C3 grasses 
(Scholes & Archer, 1997; Bond et al., 
2003; Palmer, 2003). Global change im-
pacts could be even severer for arid and 
semi-arid rangelands in southern Africa.

Threats faced by range-
land environments

Large areas of Africa are covered by 
savanna and grassland systems whose 
productivity is dependent mainly on the 
seasonality of climatic variables (rain-
fall and temperature). African savannas 
are both utilised as habitats for wildlife 
(e.g. the “big fi ve”) and for livestock 
and food crop production, thus support-
ing the livelihoods of millions of people 
living in these systems. However, rapid 
changes in land use and anthropogenic 
climatic changes are negatively impact-
ing on wildlife numbers and the sustain-

ability of rangelands (Lehmann et al., 
2009). Harris et al. (2014) investigated 
the resilience of vegetation cover in re-
lation to disturbance and found diff erent 
results for diff erent biomes in southern 
Africa. For some areas (e.g. the western 
and northern savanna region of Namib-
ia and the eastern part of South Africa), 
the results imply strong potential impacts 
of anthropogenic or climatic change on 
vegetation, which will certainly lead to 
changes in food availability and also bio-
diversity. In general, threats to rangeland, 
including bush encroachment, habitat 
fragmentation, overgrazing, soil erosion, 
and human-induced fi res, are the major 
causes of land degradation in many Afri-
can rangelands (Murphy et al., 2016 and 
references therein). 

Key indicators for the extent of land 
degradation are the types of soil erosion 
that might be found in an area. For exam-
ple, there is evidence that gully systems 
are cutting into urban environments in 
Angola (see SASSCAL task 171) or in 
agricultural fi elds in the Swartland region 
of South Africa (Olivier et al., 2018), 
while in Namibia, critical landscapes for 
livestock and wildlife have been lost as 
a result of erosion (Pringle et al., 2011). 
Key research related to this has focused 
on the effi  cacy of restoration from both 
ecological and socio-economic perspec-
tives (Zimmerman et al., 2018).

There has also been a lengthy debate 
about the diff erences in water consump-
tion of trees and grasses in savanna eco-
systems. Discussions have centred on 
the degree of competition for water be-
tween trees and grasses under diff erent 
environmental settings, as well as the 
consequences of bush encroachment on 
the water balance and especially ground-
water recharge (e.g. Scholes & Archer, 
1997; Scanlon et al., 2006; O’Connor et 
al., 2014). For southern African range-
lands, with their widespread problem 
of bush encroachment, robust informa-
tion is missing about the interaction of 
bushes and trees with the lower layer 
of grasses, herbs, and dwarf shrubs, and 
how this might aff ect the dynamics of 
water in plants and in the soil (Christian, 
2010). Thus, SASSCAL studied these 
interactions with diff erent methodologi-
cal approaches. Using fi eld monitoring 
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 techniques, measurements were taken 
of the soil water dynamics of bush-en-
croached areas as well as de-bushed ar-
eas since 2007 on a commercial farm in 
the central Namibian thorn-bush savan-
na and, since 2014, on two other farms 
 (Groengroeft et al., 2018).

Rangelands are thought to have been 
highly productive before modern hu-
mans disrupted their effi  cient water and 
nutrient cycles. The appropriate manage-
ment of herbivores, to provide suffi  cient 
rest for grazed grasses to regain their 
vigour, can go a long way towards re-
covering water and nutrient cycles over 
extensive areas of rangeland. Intensive 
management can also be applied on a 
few small areas, such as rain water har-
vesting measures to enhance infi ltration 
into the ground and thereby support the 
growth of natural grasses and planted 
trees. This was attempted at three sites 
by digging contour ditches, and by con-
structing ponding banks at one of those 
sites. Earth-moving machinery was used 
at the 30 ha rural site, while contour 
ditches were manually dug with pick 
and spade at the two smaller urban sites. 
Diverse tree species were planted below 
contour ditches for diff erent functions 
and products, including chop-and-drop 
mulching, tall protective canopies, and 
edible leaves, fruits and pods (Zimmer-
man et al., 2018).

Drought as a consequence of climate 
change causes devastating problems for 
rangelands and livestock production 
systems in Africa. The occurrence of 
drought limits the carrying capacity of 
rangelands and the number of animals 
that can be kept on them. Livestock 
mortality is often relatively high dur-
ing drought periods. This has important 
implications for the livelihoods of lo-
cal communities because of the loss of 
employment, production, and income 
(Tambo et al. 2017). Careful manage-
ment is necessary to balance human 
demands and landscape capacities to 
avoid overexploitation. An assessment 
of rangeland condition, through the 
identifi cation of key indicators associ-
ated with vegetation, soil, and water, is 
necessary in order to inform decision-
makers on the planning and manage-
ment of rangelands. 

What are the key indicators 
for assessing rangelands?  

Vegetation composition is the overarch-
ing key factor that determines rangeland 
quality. The presence of palatable food 
plants and the abundance of unpalatable 
plant species determine the carrying ca-
pacity of a landscape for all herbivores. 
The composition of the vegetation is 
mainly driven by the existing soil char-
acteristics (geology), water availability, 
geographical features, and prevailing 
climatic conditions. Vegetation composi-
tion, and consequently food plant avail-
ability, is aff ected by changes in tempera-
ture and/or rainfall. In order to describe 
the overall quality of a given landscape, 
diff erent indicators are used. For exam-
ple, biomass is used as an indicator of 
productivity, while digestibility or bio-
chemical concentrations (e.g. protein, 
nitrogen, lignin, fi bre) are used as indices 
of plant quality. However, other factors, 
such as the presence of chemical and 
mechanical defences in plants (e.g. toxic 
food compounds or thorns and hairs), are 
often not included in these assessments 
and might lead to misunderstanding of 
the productivity and quality of a given 
landscape. The parameters describing the 
overall quality of a given rangeland are 
also not in a steady state and will always 
change with land use and climate.  A de-
scription of these dynamic interactions is 
provided in the following sections.

Infl uence of large herbivores on 
vegetation
Since the evolution of large herbivores, 
terrestrial ecosystems have been highly 
infl uenced in shape and function by 
browsing and grazing animals, which 
modify primary production, nutrient cy-
cles, soil properties, and fi re regimes, 
with subsequent impacts on other biota 
 (McNaughton et al., 1988; Pastor & 
Naiman, 1992; Olff  & Ritchie, 1998; 
Wardle et al., 2004; Archibald et al., 
2005). The distribution of large herbi-
vores determines the vegetation compo-
sition of terrestrial ecosystems due to, 
for example, feeding damage (Rooney, 
2001; Bobrowski et al., 2015) and tram-
pling (Van der Wal et al., 2001; Cumming 
& Cumming, 2003), but also seed disper-

sal (Gill & Beardall, 2001; Hülber et al., 
2005; Benthien et al., 2016). Addition-
ally, plant chemical composition, mor-
phology, and fertility change in response 
to feeding damage (Stolter et al., 2005; 
Stolter, 2008). The key factor behind this 
ecosystem modifi cation is simply the 
food selection patterns of animals. 

Biodiversity, chemical diversity, 
resource availability, and feeding 
decisions of large herbivores
In terms of plant biodiversity in Africa, 
most people will immediately think of the 
closed canopy tropical forests. Although 
the tropical grassy biomes, including sa-
vannas, are lower in plant diversity than the 
tropical forests (Kier et al., 2005; Barthlott 
et al., 2007; Harris et al., 2014), they also 
comprise a high number of species (Mur-
phy et al., 2016). Depending on annual 
rainfall, species richness of vascular plants 
reported from the observatories of SASS-
CAL (http://www.sasscalobservationnet.
org/; Jürgens et al., 2018) may be as high 
as 45.1 species per ha for the woodland sa-
vanna, 57.9 for thorn-bush savanna, 26.4 
for dwarf shrub savanna, and 61.1 for the 
succulent karoo (in areas with high annual 
rainfall). Due to their long co-existence 
with wild, free-ranging herbivores and the 
natural, frequent occurrence of fi re, these 
ecosystems are to some extent adapted to 
both forms of disturbance (Ratnam et al., 
2011). They are also characterised by a 
large number of diff erent life forms (e.g. 
woodland and thorn-bush savanna have 
as many as 11 diff erent life forms; Jürgens 
et al., 2010). While woodland savanna is 
characterised mainly by a grassland-tree 
community, there is a shift to a grassland 
community interspersed with a relatively 
high proportion of diff erent dwarf shrubs 
and small bushes in the thorn-bush savan-
na. In the thorn-bush savanna the diversi-
ty of grasses is also extraordinarily high. 
However, small shrubs and herbs, such 
as Monechma genistifolium and diff erent 
wild legumes, often serve as food for wild 
herbivores. They can also be an additional, 
supplementary, alternative food resource 
for livestock, for example in the dry season 
when food availability is restricted (Madi-
bela et al., 2018). Their utilisation by her-
bivores, as well as their general nutritional 
quality, is poorly known. More than 150 
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trees, bushes, and shrubs and more than 
30 herbs and forbs in Namibia alone are 
reported to serve as food plants (Le Roux 
et al., 2009, and Stolter, unpublished data). 
Within SASSCAL, we aim to produce a 
database of nutritional values including 
these important but often neglected food 
plant species (Stolter 2018a). 

However, when viewed from the per-
spective of a herbivore, we would like to 
extend the concept of “plant diversity” to 
also include “plant chemical diversity”. 
Plants consist of a high number of dif-
ferent plant compounds such as proteins, 
amino acids, lipids, fi bre fractions, and 
plant secondary metabolites. The chemi-
cal composition of a plant is species-
specifi c, but also changes in response to 
external factors. For example, plants re-
act to damage caused by herbivory, but 
also to enhanced UV radiation, drought 
stress, etc. When subjected to such stress-
ors, changes occur in the concentration of 
nutritional compounds (e.g. protein) but 
also in specifi c defence compounds such 
as plant secondary metabolites (PSM) 
(Tegelberg et al., 2003; McKiernan et al., 
2014). Thousands of diff erent PSMs have 
evolved in plants and the composition var-
ies between plant species (e.g. Stolter et 
al., 2005). Even within each single chemi-
cal class of PSM (e.g. tannins, terpenoids) 
there can be thousands of compounds (Ia-
son et al., 2012) diff ering in their mode 
of action as a deterrent. Furthermore, the 
relative concentrations of specifi c com-
pounds diff er between individual plants 
of the same species growing on diff erent 
sites (Stolter et al., 2010). There are also 
diff erences between diff erent plant parts 
(e.g. twigs and leaves; Stolter, 2008) and 
diff erences between seasons (Stolter et al., 
2013). This high variability (only dem-
onstrated here for PSMs) co-varies with 
other compounds, for example diff erent 
fi bre fractions. Hence, the large number 
and variety of diff erent plant compounds 
contributes to a multidimensional feed-
ing environment for herbivores (Villalba 
et al., 2002), where the animals have to 
choose for each bite which plant or plant 
part to ingest. The impact of diff erent fac-
tors on food quality and food availability 
for large herbivores will be further dis-
cussed in the subsequent chapter (Stolter 
et al., 2018a).

Bush encroachment 

Bush encroachment is often seen as a 
sign of unsustainable land use caused by 
diff erent factors. One driver of the trans-
formation of the savanna ecosystem is 
habitat utilisation. In this respect, over-
grazing, as well as the shift from wild 
herbivores to cattle, might be an impor-
tant factor. Within SASSCAL, we inves-
tigated the eff ect of herbivore damage on 
plant and the associated consequences on 
food selection of livestock. Furthermore, 
we conducted standardised experiments 
and fi eld surveys investigating the habitat 
utilisation of, and feeding damage caused 
by, diff erent large herbivores. Knowledge 
on habitat utilisation, food selection of 
diff erent herbivores, and the consequent 
plant response might help to understand 
how herbivores infl uence the vegetation, 
and therefore aid in the development of 
appropriate management strategies to 
prevent or defend bush encroachment 
(Stolter et al., 2018b).

Fire

In addition to the factors mentioned 
above, fi re can have severe impacts on 
the vegetation, for example by slowing 
down the successional processes through 
which grassland is converted to forest 
vegetation (Backéus, 1992; Bond & Kee-
ley, 2005). Therefore, fi re can also have 
a regulatory function as it is crucial in 
interrupting the transition processes from 
one vegetation state to another (Joubert et 
al., 2012). By infl uencing the light, veg-
etation, and soil characteristics of range-
lands, fi res can lead to severe changes, 
not only in vegetation composition but 
also in the chemical make-up of plants. 
In consequence, this also aff ects the 
feeding decisions of the associated herbi-
vore community as well as biodiversity. 
Therefore, all human-induced changes 
to the natural fi re regime, including the 
use of fi re for management purposes, 
infl uences the natural dynamics of sa-
vanna vegetation and causes changes in 
the composition, biodiversity, and func-
tion of terrestrial ecosystems (Bond & 
van Wilgen, 1996; Bird & Cali, 1998; 
Guyette et al., 2002).

Fire is often used extensively as a man-
agement tool for rangelands. One reason 
for using fi re is to maintain productive 
grassland by removing moribund, poor-
quality grasses.  It is also used because 
of the “fertilising” eff ects of fi re (Hobbs 
& Schimel, 1984; Ojima et al., 1994; 
Úbeda et al., 2005), which can lead to 
increased plant growth immediately af-
ter its occurrence (Van de Vijver et al., 
1999; Giardina & Rhoades, 2001; Rieske 
et al., 2002). Furthermore, plants have 
to compensate for the lost, burnt tissue. 
Similar to the response that plants have to 
herbivory (Stolter, 2008), and depending 
on the plant species aff ected, this might 
lead to improved plant quality after a fi re 
has passed through, for example the pres-
ence of a greater concentration of protein. 
However, depending on the frequency 
and severity of fi re, essential nutrients 
such as nitrogen will be lost during the 
burning process either due to volatilisa-
tion or to their conversion into inorganic 
compounds. The latter will be lost by 
leaching processes during the fi rst rain-
fall after the fi re has occurred (Knicker, 
2007). Therefore, we investigated the 
eff ect of naturally occurring fi res on dif-
ferent parameters (e.g. vegetation compo-
sition and changes in forage quality, soil 
characteristics, biodiversity, abundances 
of mammals and insects, and large her-
bivore distribution; Joubert et al., 2018).

Nevertheless, naturally occurring fi res 
are often suppressed by policy or their 
appearance is limited due to a serious 
reduction of fuel loads caused by over-
grazing. Consequently, this reduction of 
fi re is a major factor for the transition of 
grassland into bushy areas (Joubert et al., 
2008). 

Rangeland assessment 
and monitoring

There are two main techniques for as-
sessing rangeland extent, condition, and 
quality: conventional fi eld data collec-
tion and remote sensing. Conventional 
techniques are often tedious and labori-
ous. On the other hand, remote sensing 
techniques provide a bird’s-eye view of 
landscapes with measurements that can 
be repeated on a regular basis. For remote 
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sensing techniques, fi eld data is often re-
quired to calibrate and validate prediction 
models, although this does not necessar-
ily need to be extensive. The chapter on 
rangelands in this volume shall present 
various in situ and remote sensing data 
collection techniques for the assessment 
of rangeland condition and health.

In situ based assessments 
Conventionally, the assessment of range-
land has been done using fi eld-based or in 
situ measurements. The fi eld-based meth-
ods are used to collect information about 
the state or condition of soils, vegetation, 
and water. In the rangeland chapter, the 
use of a series of in situ methods is de-
scribed in several articles, focusing on for-
age quality, landscape function, rangeland 
rehydration, fi re, and bush encroachment.

While remote sensing can give large-
scale overviews across landscapes, fi eld 
studies are needed for concrete manage-
ment, calibration, and validation (“ground 
truthing”) of the resulting products. For 
example, habitat utilisation by large her-
bivores does not exclusively depend on 
biomass, protein, or fi bre concentration. 
Factors like social behaviour (e.g. home 
ranges and territories) and geographical 
features (e.g. proximity to water holes), 
but also climatic conditions (e.g. tempera-
ture), infl uence the habitat utilisation of 
animals. Furthermore, predation risk and 
hunting pressure have an enormous impact 
on the distribution of animals. We discuss 
this in more detail in the article on bush 
encroachment management. Furthermore, 
details about plant quality can only be 
measured in the fi eld, because we are not 
able to translate every plant characteristic 
into a spectral signal measurable from sat-
ellites. For grazers, the sole use of remote 
sensing to provide an estimate of habitat 
quality might be less problematic, as these 
animals feed mainly on grass, which is not 
highly defended, either mechanically or 
chemically. However, mechanical defenc-
es (e.g. the length of thorns) can only be 
seen in the fi eld and the presence of some 
poisonous plant compounds, which might 
correlate with high nutritional quality (e.g. 
such as is frequently found in plants of the 
 Fabaceae family), can unfortunately not 
yet be captured by remote sensing. There-
fore, in-situ (fi eld-based) studies are of 

high importance to confi rm plant chemical 
composition, food utilisation, and habitat 
utilisation in order to understand habi-
tat quality for diff erent herbivores in the 
landscape. Due to the reasons mentioned 
above, we used diff erent techniques to 
determine habitat utilisation of diff erent 
animals in the fi eld. Those methods can 
range from the use of photo traps and ani-
mal counts (observation) to GPS-collared 
animals and faecal dung counts (see arti-
cle on fi re and bush encroachment). Dif-
ferent methods are also available to study 
food utilisation, such as the estimation of 
damage caused by herbivory, analyses of 
rumen and faeces content, as well as per-
sonal observations. A brief description on 
the analyses concerned with nutritional 
quality can be found in the corresponding 
infobox by Stolter (2018b).

Remote sensing techniques
Satellite remote sensing provides an al-
ternative approach for mapping vegeta-
tion cover, state, and condition for wider 
geographic areas and over relatively long 
time periods (Harris et al., 2014). The es-
timation of vegetation indicators in range-
lands has been successfully applied using 
hyperspectral data, both fi eld spectrometer 
and airborne data (Mutanga & Skidmore, 
2004; Skidmore et al., 2010; Knox et al., 

2012; Ramoelo et al., 2013), as well as sat-
ellite multispectral data (Harris et al., 2014; 
Schucknecht et al., 2017). Empirical statis-
tical methods are used to achieve this, of-
ten using vegetation indices. The approach 
involves the determination of the relation-
ship between in situ measured vegetation 
condition indicators, such as quality and 
availability (biomass, dry matter mass per 
unit area), and the vegetation indices such 
as the normalised diff erence vegetation in-
dex (NDVI; Rouse et al., 1974) and a sec-
ond generation of vegetation indices such 
as the red edge position (REP) (Curran et 
al., 1991; Cho & Skidmore, 2006) and nar-
row band indices (Mutanga & Skidmore, 
2004; Mutanga & Skidmore, 2007; Ramo-
elo et al., 2012; Ramoelo et al., 2015a; 
Ramoelo et al., 2015b). The next genera-
tion of satellite constellations incorporate 
the red edge band strategically, which 
enables forage quality estimation using ni-
trogen concentrations (N) as an indicator. 
For example, the  Sentinel-2 satellite devel-
oped and launched by the European Space 
Agency (ESA) provides freely-available 
images that – like Landsat and MODIS 
– could be useful to improve the assess-
ment of vegetation and crop productivity. 
In this study, the Sentinel-2 data (red edge 
based indices) were used to estimate leaf 
N concentrations, while a MODIS-based 
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Figure 1: Schematic representation of the rangeland chapter.
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leaf area index model was used to estimate 
regional and time-series products for her-
baceous vegetation (Task 229) (Stolter et 
al. 2018a).

Conclusions

It is evident that rangelands are under 
pressure due to ever-changing climate 
events and increasing human populations. 
As a result, threats such as bush encroach-
ment and land degradation (e.g. soil ero-
sion) are evident. Nevertheless, there 
was signifi cant progress in SASSCAL in 
assessing the status or condition, extent, 
and quality of rangelands using both in 
situ and spatially-explicit remote sens-
ing approaches. Key issues addressed in 
this chapter focused on rangeland quality 
– grass, trees and legumes, fi re impact, 
bush encroachment, and creative use of 
rangelands – and fi nally, on rangeland 
management and dehydration processes 
(Fig. 1). Future research should focus on a 
collaborative development of a regional, 
integrated, and seamless rangeland moni-
toring framework for southern Africa.
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