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A B S T R A C T   

Effective conservation efforts and predictions of future impacts on biodiversity depend heavily on publicly 
available information about species distributions. However, data on species distributions is often patchy, espe-
cially in many countries of the Global South where resources for biological surveys have been historically 
limited. In this study, we use biodiversity ignorance scores to quantify and visualize gaps and biases in biodi-
versity data for Namibia, with a focus on five terrestrial taxa at a spatial scale of 10 x 10 km. We model the 
relationship between ignorance scores and socio-geographical variables using generalized additive models for 
location, scale and shape (GAMLSS). Our findings demonstrate that despite a high volume of occurrence records 
available on the Global Biodiversity Information Facility (GBIF), publicly available knowledge of Namibia’s 
terrestrial biodiversity remains very limited, with large areas contributing few or no records for key taxa. The 
exception is birds that have benefitted from a massive influx of data from the citizen science platform eBird. Our 
study also highlights the importance of citizen science initiatives for biodiversity knowledge and reinforces the 
usefulness of ignorance scores as a simple intuitive indicator of the relative availability and distribution of 
species occurrence records. However, further research, biological surveys, and renewed efforts to make existing 
data held by museums and other institutions widely available are still necessary to enhance biodiversity data 
coverage in countries with patchy data.   

1. Introduction 

The development of new surveying tools and national and interna-
tional biodiversity information systems is making existing species re-
cords available to researchers worldwide via the internet (Hedrick et al., 
2020). The most important of these endeavours is the Global Biodiver-
sity Information Facility (GBIF) that was started in 2001 (Edwards, 
2004). The GBIF takes advantage of long-term, coordinated and ongoing 
efforts to digitize specimens from world’s natural history collections 

(Gaijy et al., 2013; Nelson & Ellis, 2019) and, more recently, from some 
citizen science databases (Chandler et al., 2017). By most measures the 
GBIF has been a remarkable success, and currently hosts over two and 
half billion species occurrence records from over two thousand in-
stitutions and open access data repositories (GBIF, 2023). However, 
even enormous databases such as the GBIF are incomplete and uncer-
tain, with a considerable amount of biodiversity data subject to errors, 
often due to the low accuracy, low precision and lack of standardization 
from multiple data sources (Barve & Otegui, 2016; Cobos et al., 2018; 
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D’Antraccoli et al., 2022; Ladle & Hortal, 2013). 
Accepting that biases and gaps in biodiversity data often cannot be 

avoided, especially in the more unevenly sampled countries and regions 
of the world (Danovaro et al., 2010; Hopkins, 2019; Lessa et al., 2019), it 
becomes important to quantify and understand the limits of our biodi-
versity knowledge. There are several ways to evaluate biodiversity 
knowledge gaps and data quality. One recent proposal is through the 
creation of ‘maps of biogeographical ignorance’ (MoBIs) that distinguish 
intensively sampled areas from poorly sampled ones (Rocchini et al., 
2011; Tessarolo et al., 2021). MoBIs are typically based on a combina-
tion of: i) completeness of species inventories for defined sampling units 
(e.g., Stropp et al., 2016); ii) estimates of taxonomic quality, and; iii) 
temporal and spatial decay in data (Ladle & Hortal, 2013; Tessarolo 
et al., 2021). Unfortunately, MOBIs are not appropriate to use in data- 
poor regions because they are very sensitive to low record numbers 
and to non-natural relative abundances of species in natural history 
collections (Meyer et al., 2016; Steege et al., 2011; Stropp et al., 2016); 
for example, the overrepresentation of rare species in museum collec-
tions relative to their true abundances (Gotelli et al., 2021). 

A simpler alternative to MoBIs is to quantify and map the absence of 
data (i.e., ignorance) in biodiversity databases through the ‘ignorance 
scores’ approach (Ruete, 2015). These are useful to rapidly assess and 
visualize biases and shortfalls related with taxonomy, temporal and 
spatial data. Ignorance scores can also be used to characterize the degree 
of biodiversity knowledge based on the effort (or weakness of it) to re-
cord species occurrences (Correia et al., 2019; Mair & Ruete, 2016; 
Ruete, 2015). The approach has the added advantage of being simple to 
calculate, does not involve prediction or estimation of the total number 
of species in a given area, has a very limited number of assumptions, and 
relies solely on raw data of species occurrences, i.e., presence-only data 
(Correia et al., 2019). The score provides information on recording 
coverage and reliability that can be used to measure the spatial distri-
bution of recording effort across a study area, and thus to identify 
undersampled and priorities areas for data collection (Mair & Ruete, 
2016). 

Multiple factors have been identified as potentially influencing 
recording effort. For example, reasons associated with how accessible 
and/or practical it is to sample a given area, such as road density, human 
population density, or proximity to universities (Meyer et al., 2015; 
Sastre & Lobo, 2009), and public and/or scientific interest are known to 
positively influence the site selection for recording biodiversity (Millar 
et al., 2019; Oliveira et al., 2016). Collectors (biodiversity researchers 
and citizen scientists) often prefer to sample sites perceived as being 
poorly studied, ecologically unique, more diverse or well-preserved, 
such as formally protected areas (PA) or sites with pristine native 
vegetation (Boakes et al., 2010; Rocha-Ortega et al., 2021; Yang et al., 
2014). Additionally, collectors frequently prefer to sample areas near 
research centres (Ribeiro et al., 2016; Carvalho et al., 2023), which are 
typically located in economically more developed regions (Meyer, 
2016). Species distribution data thus tend to vary more among political 
than ecological units, reflecting historical patterns of collecting, 
collating and digitalizing biogeographical data (Hortal et al., 2015; 
Stropp et al., 2016). In unevenly sampled regions this can lead to maps 
of species richness that closely resemble maps of survey effort (Hortal 
et al., 2015), a pattern that is particularly striking in sub-Saharan Africa 
(Stropp et al., 2016). 

Namibia is a large, arid southwest African country with high levels of 
endemism and low human population density (Atlas of Namibia Team, 
2022; Simmons et al., 1998). It has a strong system of protected areas, 
but Namibia’s species occurrence records are very patchy on publicly 
available platforms such as GBIF (GBIF, 2023). These characteristics 
make the country an ideal political unit to evaluate the spatial patterns 
of biodiversity ignorance through ignorance scores (Lessa et al., 2019). 
Therefore, we applied the ignorance score approach to evaluate varia-
tion in species occurrence records available from GBIF across multiple 
terrestrial taxa for Namibia. Specifically, we used species records 

collected from GBIF to: i) characterize temporal and taxonomic biases in 
recording efforts; ii) evaluate and map spatial shortfalls in recent 
recording effort, iii) analyse the influence of multiple socio-geographical 
variables on the distribution of recent recording effort, and iv) discuss 
the usability of ignorance score approach to evaluate quality in publicly 
available biodiversity data. 

2. Material and Methods 

2.1. Study area 

Namibia is a southwest African country with a terrestrial area of 
approximately 824,000 km2 (Fig. 1). Its geomorphology is dominated by 
the great escarpment along the western side of the country, forming a 
transition between the narrow coastal desert and a flat inland plateau 
dominated by aeolian sand. Namibia is the most arid sub-Saharan 
country (Gargallo, 2020), with the Namib desert in the southwest of 
the country receiving an annual average precipitation of less than 50 
mm. Moreover, rainfall is very variable, mostly falling over short, 
intense periods (Atlas of Namibia Team, 2022). There are few perma-
nent rivers; the Kunene and Okavango Rivers form the northern border 
with Angola, the Kwando, Linyanti, Zambezi and Chobe Rivers form the 
borders with Botswana and Zambia, and the Orange River borders South 
Africa in the south. The vegetation of Namibia can be broadly classified 
in deserts (16 % of the country), savannas (64 %) and woodlands (20 %) 
(Giess, 1971) with both summer and winter rainfall zones. Over 70 % of 
the country is classified as arid or semi-arid (Simmons et al., 1998). The 
great variability in rainfall means that the amount of standing herba-
ceous vegetation varies considerably from year to year (Wardell-John-
son, 2000). 

2.2. Species occurrence records and filtering processes 

We collected all species occurrence records (hereafter just ‘records’) 
available for Namibia in GBIF (https://www.gbif.org/). We chose to 
collect data from GBIF because it has an international mandate to 
compile global species records and is one of the most commonly used 
sources of data for biodiversity studies globally. We first collected data 
from records of Namibia (1,656,016 records, GBIF, 2021). The following 
methods were used to exclude records: i) suspicious geographical co-
ordinates - these are records with geographical coordinates assigned to 
the centroid of a municipality, state, country or falling in the ocean; ii) 
invalid, unlikely, mismatched or absent collection dates; iii) absent 
taxonomic identification at species level, or; iv) uncertain taxonomic 
data at species level - taxonomic data that does not match any known 
species or where matches can only be obtained through fuzzy matching. 
Records were collected with the ‘rgbif’ library for R software (Cham-
berlain & Boettiger, 2017). The precision of geographical coordinates 
was examined with the ‘CoordinateCleaner’ library for R software (Zizka 
et al., 2019). Given that GBIF includes datasets with varying coordinate 
precision, we accepted geographical coordinates with varying levels of 
precision, allowing for a certain degree of rounding. However, these 
coordinates were accepted only if they kept a precision greater than the 
spatial unit used in the study, which was the 10 km cell (Zizka et al., 
2020). The validation of scientific names was performed with the 
‘taxize’ library for R software (Chamberlain et al., 2020) and manually. 
The cleaning process returned 1,139,786 records. Then, we filtered only 
records on five reference taxonomic groups that would be evaluated (as 
described below), which resulted in a dataset with 1,075,916 records 
collected from 1783 to 2021 (full dataset). 

We arranged records into subcategories of reference taxonomic 
groups, which refer to a group of species that can be studied or collected 
across similar methodologies. All species belonging to a reference 
taxonomic group probably share the record bias analogously. In these 
cases it is standard practice to use occurrence counts of species from that 
taxonomic group as a substitute for its recording effort (Phillips et al., 
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2009; Ponder et al., 2001). The assumption underlying this statement is 
that the absence of records for any species from a reference taxonomic 
group (e.g. mammals) in a particular area is likely due to a lack of a 
specialist, rather than the total absence of the reference group in the 
area. Similarly, if there are many records of a reference taxonomic group 
in a given place, it is likely that the lack of records of a particular species 
in that place is due to true absence (Phillips et al., 2009; Ruete, 2015). 
We considered five taxonomic groups for calculating ignorance scores: 
birds (Aves), mammals (Mammalia), amphibians (Amphibia), reptiles 
(Reptilia) and insects (Insecta). 

After the data cleaning process, we carried out a temporal filtering 
process keeping only records collected from 2000 onwards for making 
ignorance scores and maps, and spatial analysis. The chosen time win-
dow reduces the probability of changes in collection behaviours, thereby 
minimizing recording biases (Ponder et al., 2001; Ruete, 2015) and 
ensuring that the period of time the records were collected is congruent 
with the socio-geographic variables used to explore recording biases 
(details in section 2.4). The temporal filtering dataset (from 2000 to 
2021; hereafter, recent dataset) returned 1,010,800 records which were 
analysed to create ignorance scores and maps (section 2.3) and explore 
factors influencing the spatial distribution of records (section 2.4). 

2.3. Ignorance scores and maps 

We calculated ignorance scores for each reference taxonomic group 
over the entire Namibian territory by defining recording units (SUs) of 
10 x 10 km, using the recent dataset (data from 2000 to 2021). For this, 
we generated a raster grid using an equal-area (Eckert IV) projection, 
which returns 8,567 grid cells. We chose square grid because it is the 
most commonly used polygon shape in spatial analysis by ecologists, it is 
simple for calculations, transformations and comparisons, and is 
frequently used in Geographic Information Systems rasters (Birch et al., 
2007). The 10 x 10 km spatial resolution was chosen because it was 
considered an adequate size to be reasonably sampled during a 
recording visit (Correia et al., 2019). We then converted the grid to 

WGS84 to match species records projection. Ignorance scores were 
calculated using the ‘Log-Normalization approach’ suggested by Ruete 
(2015) – ignorance is equal to one minus the normalization of the nat-
ural logarithm of the data – and defined by the following equation: 
Ignorance score = 1 – (ln(Ni + 1)/ln(Nm + 1)). 

Where Ni is the number of records in a grid cell i and Nm, the 
maximum number of records in the cell with the highest number of 
records. For example, in the case of Birds the highest number of records 
(N = 29,914) was found in a cell near Windhoek. Therefore, the ’Log- 
Normalization approach’ considered the maximum value of 29,914 
when calculating the ignorance score for birds. The ‘Log-Normalization 
approach’ transforms records counts into a 0–1 scale of ignorance, with 
a score of one indicating complete ignorance, i.e., no single record 
available for the cell, and a score of 0 indicating the best available 
knowledge, i.e., the maximum number of records (Nm). This approach is 
the most suitable when there are large differences in the minimum and 
maximum number of records for a given reference taxonomic group, 
which is our case (Birds = 1–29,914; Mammals = 1–594; Reptiles =
1–79; Amphibians = 1–21; Insects = 1–540) and allows comparisons 
among the distinct reference taxonomic groups. 

2.4. Environmental and socio-geographical drivers of species recording 
effort 

We collected data on five socio-geographical variables that may 
drive the spatial distribution of recording effort based on perceptions of 
site accessibility or biological value: 1) road density; 2) human popu-
lation density; 3) minimum distance to a university; 4) minimum dis-
tance to a protected area; and 5) average vegetation cover. 

Road density was estimated as the total length of roads (in km) in an 
area of 100 km2 (10 x 10 km grid cells) covering the Namibian territory 
based on data from the OpenStreetMap database (see Correia et al. 
(2019) for a similar approach). Human population estimates for the 
years 2000, 2005, 2010, 2015, and 2020 were obtained at 1 km reso-
lution from the Center for International Earth Science Information 

Fig. 1. Map of Namibia highlighting socio-geographical variables used in our analysis, for example, roads, protected areas, vegetation cover and density of people.  
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Network – CIESIN – Columbia University (2018), and aggregated for the 
grid cells resolution (10 x 10 km) by summing cells’ values, so that 
population density refers to the total count of people in cells of 100 km2. 
Vegetation cover at 2000 was obtained at 30 m’ resolution from (Hansen 
et al., 2013) and aggregated for the grid cells resolution by the mean 
value of cells. Minimum distance to universities was calculated for each 
grid cell based on the location of universities and other higher education 
institutions (e.g., colleges) inside the country. The geographical location 
of each higher education institution was obtained from OpenStreetMap 
database. Grid cells containing at least one higher education institution 
were assigned a distance of zero. For grid cells without any higher ed-
ucation institution, the distance of the cell centroid to the nearest higher 
education institution was estimated. Minimum distance to Protected 
Areas (PAs) was calculated for each cell based on the location of PAs in 
the region. Maps of PAs were obtained from the World Database on 
Protected Areas on November 2021 and include national parks, private 
reserves, communal conservancies among other categories of protected 
areas (available from https://www.protectedplanet.net). Cells covered 
by protected areas were assigned a distance of zero, otherwise the dis-
tance from the cell centroid to the nearest boundary of a protected area 
was calculated. 

Spatial analyses were performed on QGIS 3.20. We used Spearman’s 
correlation to assess pairwise correlation among variables and observed 
a weak correlation (rs < 0.3 for all variable pairs), except for population 
density and vegetation cover, which exhibited a correlation coefficient 
of 0.53. The exclusion of population density during the model selection 
process (see below and Supplementary Material 1) mitigates any mul-
ticollinearity issues arising from this. 

2.5. Data analysis 

Initially we used the full dataset (cleaned records from 1783 to 2021) 
to characterize temporal and taxonomic biases in recording efforts. To 
do this, we created bar and spider graphs using R software. Afterwards, 
we used the recent dataset (cleaned records from 2000 to 2021) to create 
ignorance scores and ignorance maps for the five reference taxonomic 
groups, and to perform statistical analysis. When exploring ignorance 
scores and maps, we found a large proportion of grid cells that had 
ignorance scores of 1 (i.e., without any record). Based on this evaluation, 
we used Generalized Additive Models for Location, Scale and Shape 
(GAMLSS) (Rigby & Stasinopoulos, 2005) to explore the relationship 
between ignorance scores and the multiple environmental and socio- 
geographical variables outlined for Namibia. 

GAMLSS was chosen because our response variable, ignorance 
scores, follow a one-inflated beta distribution (“BEINF1”; Ospina & 
Ferrari, 2010), with values ranging between 0 and 1 (0 < Ignorance 
score<=1) and containing a large proportion of ignorance scores of 1. 
This distribution is suitable when there is an excess of ones in the data 
compared to what would be expected from a standard beta distribution, 
and cannot be modelled using a classical Generalized Linear Model 
(GLM) approach. In addition to allowing the use of a wide range of 
statistical distributions, GAMLSS can deal with heterogeneous, highly 
skewed and kurtotic data, such as the left-skewed distribution of the 
ignorance scores. We converted ignorance scores equal to zero to 10e-06, 
as the log-Normalization approach returns ignorance scores equal to 
zero for cells with the maximum number of records, and the one-inflated 
beta distribution only accepts values greater than zero. 

GAMLSS models assume that the response variable is described by a 
density function defined by up to 4 parameters (μ, σ, ν, τ) that determine 
its location μ (i.e., mean), scale σ (i.e., standard deviation) and shape (i. 
e., skewness ν and kurtosis τ) (Stasinopoulos & Rigby, 2007). We 
examined the relationship between ignorance scores and socio- 
geographical factors by assessing how these factors affect the location 
(i.e., the mean), skewness and kurtosis (i.e., the shape of the relation-
ship). To capture non-linear relationships, we applied a smoothing 
function (P-splines). Finally, we used a model selection approach based 

on Generalized Akaike Information Criterion (GAIC) scores to select the 
most informative socio-geographical variables for each reference taxa 
model. GAIC is an extension of AIC (Akaike Information Criterion), 
which takes into account the additional complexity of GAMLSS models, 
which have more parameters than traditional GLM models, and there-
fore include a higher penalty for the number of parameters in the model. 
In general, the smaller the GAIC value, the better the model fit (Stasi-
nopoulos et al., 2017). 

We ran GAMLSS models for the reference taxonomic groups. 
GAMLSS models were calculated independently. All model results, 
including the relative explanatory power of each model, are reported in 
Supplementary Material 2. Statistical analyses were carried out in R 
statistical software 4.2.0 (R Team Core, 2017) using the ‘gamlss’ pack-
age (Rigby & Stasinopoulos, 2005). Models were implemented with the 
‘gamlss’ function and pseudo R-squared values for each model were 
obtained with function ‘Rsq’ using option ‘Cragg Uhler’ (Stasinopoulos 
& Rigby, 2007). 

3. Results 

Based on records incorporated into GBIF, some clear temporal biases 
were observed in recording effort over the nearly 240 years (the full 
temporal window − 1783–2021) of recording biodiversity in Namibia. 
Specifically, there are very few records available before the 1990 s, 
representing only 3.2 % of all data. The highest peaks of records 
occurred from the 1990 s onwards. The first peak occurred between 
1993 and 2007 holding 14.8 % of the full dataset, and the second peak 
between 2008 and 2019 with the highest number of records (71.7 %) - 
five times more recording effort than the initial period. The year with the 
highest volume of records was 2019 (Fig. 2, grey line). 

The temporal biases in recording effort for each taxonomic group 
followed a similar pattern to the overall dataset for birds (Fig. 2, blue 
line). For mammals, the largest influx of records into GBIF was after 
2000 s, however a significant influx of records was noted in 1970 s (red 
line). For reptiles and amphibians, the greatest recording efforts were 
made between the 1970 s and 1990 s, with few records collected and/or 
available after the 2000 s (orange and purple line, respectively). Finally, 
the pattern of data influx for insects was more uniform when compared 
to the other taxonomic groups, showing peaks in the number of records 
collected in the 1920 s, 1970 s and 2000 s (green line). 

Despite the relatively large volume of data on Namibia’s biodiversity 
available in the GBIF from 1783 to 2021, our analysis still revealed 
strong biases in terms of taxonomic groups and in the characteristics of 
the records. Approximately 94 % (n = 1,011,197) of records in the full 
dataset refers to birds, and 99.6 % of these records were from human 
observations rather than specimens. Birds had the lowest rate (2.5 %) of 
data loss after the temporal filtering process (2000–2021; recent data-
set) (Fig. 3). The second most representative reference taxonomic group 
was insects, with 26,707 records in the full dataset, though 86.6 % of 
these records came from preserved specimens rather than observations. 
However, 65.4 % of records in the full dataset were lost after the tem-
poral filtering process (2000–2021). The records of mammals repre-
sented only 1.8 % of the full database, and after the year 2000 there was 
a decrease of 44.5 % in the number of records. About 55 % of mammals’ 

records came from observations. The most critical shortfall was in 
Herpetofauna records. With 1,540 records, amphibians showed the 
lowest number of records in the full dataset (0.14 %), and the highest 
rate (85 %) of record loss after 2000. Furthermore the low number of 
records of amphibians implies that most species in our dataset are rep-
resented by only one or few records (i.e., singletons, doubletons, etc.). 
Reptiles showed the second lowest number of records in the full dataset 
(16,916 records) and 76 % was lost after 2000 s. Over 85 % of herpe-
tofauna records are based on preserved specimens (Fig. 3). 

Notable gaps and biases for all reference taxonomic groups were 
observed in spatial distribution of ignorance scores in Namibia. A tem-
poral decline in ignorance scores was noted when accumulating records 
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(see temporal figure in Supplementary material 3). In more populated 
areas, such as the capital Windhoek, the coastal cities Swakopmund and 
Walvis Bay, the central cities Otjiwarongo and Okahandja, Rundu 
(northeast) and Keetmanshoop (southern), were characterized by high 
recording effort, and consequently, low ignorance scores. The coastal 
zone, where the Namib Desert is located, had low ignorance scores for 
mammals, birds and insects. The Succulent Karoo region showed low 
ignorance only for birds and insects. For almost all taxonomic groups 
(except birds), the eastern portion of Namibia – a scrub savanna region 
of aeolian sands bordering Botswana and South Africa – showed lower 
recording efforts and thus, high rates of ignorance scores (Fig. 4). 

Analysing only the recent dataset (from 2000 to 2021), large areas of 
the country were underrepresented, even for birds the group with the 
highest number of records in GBIF (Fig. 4). The ignorance maps for birds 
revealed that 52.4 % of grid cells had no single record (ignorance score 

= 1), 17.3 % had between 1 and 10 records (ignorance score =
0.93–0.76) and 5.7 % had between 50 and 100 records (ignorance score 
= 0.61–0.55). Conversely, a small portion of the country was found to be 
overrepresented, i.e., 0.17 % of 10 x 10 km2 grid cells had between 
30,419 to 10,405 records (ignorance score = 0–0.1) and 1.78 % of 10 x 
10 km2 grid cells had between 9,185 to 1,003 records (ignorance score 
= 0.11–0.33) (yellowest parts of the map in Fig. 4). Spatial biases in the 
distribution of records were more pronounced in the other reference 
taxonomic groups. The percentage of grid cells without any records 
(ignorance score = 1) was 99 % to amphibians, 90.5 % to reptiles, 90.2 
% to insects and 87.6 % to mammals. In contrast, the percentage of grid 
cells that had ignorance score ≤ 0.5, i.e., where there is a greater 
recording effort, ranged between 0.1 % (amphibians), 1 % (insects), 1.1 
% (mammals) and 1.2 % (reptiles) (Fig. 4). 

Unsurprisingly the socio-geographical variable that best drives 

Fig. 2. Historical progression of the number of occurrence records for Namibia’s biodiversity publicly available on GBIF platform (full dataset). Number of records of 
all taxa (grey line) and separately, according to the fauna silhouette. 

Fig. 3. Bar graphic indicates the number of records in full dataset (1783–2021) and recent dataset (2000–2021). Radar chart illustrates the percentages of GBIF’s 
basis of records using full dataset, with HO = Human Observation and PS = Preserved Specimen. 
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recording effort for all taxonomic groups analysed was road density, 
with an overall bias towards recording specimens in more accessible 
areas (higher road density, lower ignorance scores; Table 1). The dis-
tance to universities was also a significant predictor for bird and 
amphibian records. Ignorance scores exhibited an increase as the dis-
tance from universities increased, suggesting a tendency to record spe-
cies in close proximity of these institutions. Maps of ignorance show a 
tendency for mammal, reptile and amphibian records to be collected in 

protected areas, such as national parks Etosha, Bwabwata, Waterberg 
Plateau, Skeleton Coast, Tsau and Namib-Naukluft. The eastern portion 
of Namibia (scrub savanna region), which had higher ignorance scores, 
is not covered by protected areas. Our statistical analyses validated these 
observations, demonstrating that the distance from protected areas is a 
significant driver of recording effort for these taxa. Ignorance scores 
increase with distance from PAs, indicating a decrease in recording ef-
forts for sites located far from protected areas. Finally, the percentage of 
vegetation cover showed effect on recording effort only for birds, the 
ignorance scores for this taxon were lower in areas with less vegetation 
coverage, since much of Namibia’s vegetation is composed of savannah, 
dry woodlands and desert (Table 1). 

4. Discussion 

Our main finding is that the volume of publicly (and thus widely) 
available digital information about Namibia’s mainland fauna on the 
GBIF is still very low for most taxa and regions. Except for birds, all 
reference taxonomic groups evaluated here have significant temporal 
and spatial data shortfalls, and most of the records that have so far been 
added to GBIF were collected before 2000′s and are therefore subject to 
higher rates of data degradation (Tessarolo et al., 2017). Interestingly, 
however, there were peaks in collection and availability of records 
during the period when Namibia was engaged in armed conflict for its 
independence (1960–1980). Although the amount of GBIF records ap-
pears to be increasing rapidly from 1990 onwards, when Namibia finally 
became independent, it is important to note that much of this increase is 

Fig. 4. Spatial distribution of GBIF’s records and ignorance scores for Namibia’s birds, mammals, reptiles, amphibians and insects. Maps were calculated from recent 
dataset (2000–2021). Ignorance maps represent a gradient of ignorance scores - from cells with high ignorance scores (purple tons) to cells with low ignorance scores 
(yellow tons). Histograms represent the frequency of cells according to ignorance scores gradient. Silhouettes refer to taxonomic groups. 

Table 1 
Significant results of GAMLSS models exploring the association between igno-
rance scores and environmental and socio-geographical factors for the five 
reference taxonomic groups in Namibia (p < 0.05). The complete results, 
including non-significant associations, are available in the Supplementary Ma-
terial 2.  

Variable Reference 
taxonomic group 

Coefficient 
estimate 

T value P 

Road density Amphibians  −0.666  −4.767  0.000 
Birds  −1.030  –23.582  0.000 
Insects  −0.356  −5.073  0.000 
Mammals  −0.518  −8.240  0.000 
Reptiles  −0.448  −5.592  0.000 

University 
distance 

Amphibians  −0.002  −2.539  0.011 
Birds  0.001  9.156  0.000 

Protected Area 
Distance 

Amphibians  0.005  2.279  0.023 
Mammals  0.005  6.257  0.000 
Reptiles  0.004  4.408  0.000 

Forest Cover Birds  −0.041  −7.471  0.000  
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being driven by the recent influx of information on birds from the eBird 
citizen science platform (Bonney, 2021). eBird is also likely to be the 
main driver behind the decline in GBIF records during the 2020 COVID- 
19 pandemic when international travel was restricted and visits to na-
tional parks around the world fell precipitously (Hockings et al., 2020; 
Souza et al., 2021). 

That Namibia has a low number and coverage of biological records is 
perhaps unsurprising given that it is the driest country in Sub-Saharan 
Africa (Simmons et al., 1998) with all of the associated challenges that 
this poses for biological surveying and collecting in arid, inhospitable 
environments with limited accessibility (Boakes et al., 2010; Lessa et al., 
2019). In a recent assessment of insects’ (Lepidoptera, Sphingidae) in-
ventory completeness in Sub-Saharan Africa, a large proportion of 
Namibia had between 1 and 50 records in 200 x 200 km grid cells, and 
5–30 % of these were complete (Ballesteros-Mejia et al., 2013). For 
plants, Namibia showed a low proportion of well-sampled areas and 
much of the data was missing, incipient and outdated (Stropp et al., 
2016). The persistence of more obsolete data compromises our under-
standing of the true composition of biodiversity, making conservation 
actions potentially inaccurate and inefficient (Escribano et al., 2016). 
Nevertheless, Namibia has a considerable need for publicly available 
high quality biodiversity information compared to other arid and dry 
regions – such as its neighbouring South Africa, which holds 30 times 
more records in GBIF, including more recent and complete data (Stropp 
et al., 2016) – given the enormous interest and economic importance of 
its wildlife industry (Schalkwyk et al., 2010). 

We found that road density, a proxy of accessibility, was most 
strongly related to recording effort for all modelled taxonomic groups. 
This is a long-recognized bias for records, both historical and contem-
porary, and is often referred to as ‘roadside’ bias or the ‘roadside effect’ 
(Oliveira, et al., 2016; Petersen et al., 2021). A similar pattern was 
observed for the location and density of passerine birds and hawkmoths 
records in sub-Saharan Africa, which had a higher effort in more 
accessible locations: close to roads, railway lines, airports, rivers and 
cities (Reddy and Dávalos, 2003; Ballesteros-Mejia et al., 2013). The 
probable mechanism behind this bias is that observations are more 
frequently made at short distances from roads and paths due to easier 
accessibility and convenience for collectors/surveyors (Kadmon et al., 
2004; Petersen et al., 2021; Sastre & Lobo, 2009). This may be especially 
true in more inhospitable environments. Some researchers have also 
observed a trend of more records in densely populated areas (Luck, 
2007), presumably for similar reasons. As Petersen et al., (2021) point 
out, the major concern over this particular bias is that areas close to 
roadsides may not be representative of the wider landscape, potentially 
leading to incorrect inferences about biodiversity patterns (but see 
Revermann et al., 2017). 

Perhaps our most surprising result was the lack of influence of 
population density on ignorance scores of reference taxonomic groups as 
this variable was excluded by the Generalized Akaike Information Cri-
terion (GAIC). This finding can be explained by Namibia’s very low 
population density. With over 2.6 million people (The World Bank, 
2022), Namibia is one of the most sparsely populated countries in Africa 
(and the world). It has an average density of 2.5 persons per square 
kilometer (Wart et al., 2015), except for urban centres such as Wind-
hoek, Rundu, Walvis Bay and Swakopmund, and certain densely popu-
lated rural areas in the central north and north-eastern areas of the 
country (Fig. 1). Our findings indicated that 99 % of Namibia territory 
has no amphibian records, 90.5 % no reptiles, 90.2 % no insects and 
87.6 % no mammals. In a previous study in a similarly arid region, the 
variables human population density and road density were spatially 
correlated (Oliveira et al., 2016; Correia et al., 2019). However, 
although the area in question – Brazilian Caatinga – has a geographic 
size similar to Namibia, it has almost ten times more inhabitants. 

Our model also showed a relationship between recording effort and 
distance to universities for birds and amphibians. Again, this can be 
interpreted as a form of ‘convenience bias’; a high proportion of 

individuals contributing data to the GBIF are from the university sector 
(Correia et al., 2019; Liu et al., 2021) and, ceteris paribus, they will be 
more likely to collect records from sites close to their place of work than 
more distant sites. This behaviour is likely to have several underlying 
causes, including the practical and financial burden of mounting 
research expeditions to more remote areas, the increased likelihood of 
field stations and other research infrastructure closer to the university, 
and the added scientific value of working on a site that has already been 
partially or fully documented (dos Santos et al., 2015). 

We found a clear tendency for records of all reference taxonomic 
groups to be collected in protected areas, such as the National Parks of 
Etosha, Bwabwata, Waterberg Plateau, Skeleton Coast, Tsau and Namib- 
Naukluft. Approximately 40 % of Namibia territory has some degree of 
protection (Corrigan et al., 2018). In an extremely fragmented world, 
Namibia bucks the trend, connecting and protecting its areas in terms of 
ecological and economic values through ecotourism. This observed 
tendency is not surprising since we would expect both academics and 
amateur naturalists to take advantage of the superior infrastructure and 
accessibility available in these areas. The positive impact of protected 
areas on GBIF records has been noted previously (Correia et al., 2019; 
Oliveira et al., 2016), including in Sub-Saharan Africa (Ballesteros-Mejia 
et al., 2013), where several studies have shown that research sites tend 
to cluster close to universities in areas with some form of protection (dos 
Santos et al., 2015; Lessa et al., 2019). Despite the clear tendency of 
records to be associated with protected areas, we found very low 
recording effort for all reference taxonomic groups in national parks in 
the eastern portion of the country. This region has the lowest protected 
areas coverage and should be prioritized in new field works and 
recording efforts, or if these records already exist they should be made 
publicly available. Although our model did not reveal a significant as-
sociation between recording effort and bird records in protected areas, 
these areas are still important for bird conservation according to the 
Atlas of Namibia (2022). Increased research effort could lead to a higher 
number of records if researchers make their data available through 
digital platforms such as GBIF. 

Citizen science initiatives have played a significant recent role in 
mobilizing biodiversity data to the GBIF. Half of all records shared via 
GBIF come from datasets with significant volunteer contributions 
(Chandler et al., 2017). This trend is particularly notable in the case of 
Namibian birds and mammals, where a large amount of records came 
from citizen science platforms such as eBird, Southern African Bird Atlas 
Project 2 (SABAP2), the South African Bird Ringing Unit (SAFRING), 
iNaturalist and Observation.org. These platforms are almost universally 
used by amateur and professional wildlife watchers and photographers, 
resulting in a remarkable increase of the information available in GBIF 
(Bonney, 2021). This effect is especially notable in countries like 
Namibia, due to the large influx of international ecotourists. Although 
for other reference taxonomic groups citizen science appears to be a less 
common source of biodiversity data in Namibia. Specifically, amphib-
ians and reptiles present a high proportion of records based on speci-
mens preserved in museum collections. 

4.0.1. Ignorance scores as a tool for visualizing biodiversity data needs 

The concept of Ignorance Scores was introduced by Ruete (2015) and 
subsequently applied by Correia et al., (2019) for the semi-arid Caatinga 
biome of northeast Brazil. In contrast to alternative approaches pro-
posed to evaluate data quality and completeness, such as Inventory 
Completeness (Sousa-Baena et al., 2014; Stropp et al., 2016) and MoBIs 
(Hortal et al., 2022; Tessarolo et al., 2021), Ignorance Scores stand apart 
by their unique approach. By exclusively relying on the presence of data 
in their metrics, without considering observed or expected species 
richness, ignorance scores can be applied in areas with very few data. 
Specifically, key distinctions between these approaches can be delin-
eated as follows: i) Ignorance Score: bases on raw data, does not require 
a minimum number of records, and there are no estimations of species 
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richness; ii) Completeness: draws upon species accumulation curves, 
requires a minimum number of records and estimates the number of 
species; and iii) MoBIs: integrates several data sources (completeness, 
temporal and spatial decay, and taxonomic quality) and requires a 
minimum number of records. 

The advantage of the Ignorance Score approach is that it provides “a 
simple and intuitive indicator of species recording effort, allowing the 
assessment of taxonomic and spatial biases present in the GBIF data-
base” (Correia et al., 2019, p. 8). Furthermore, it is ideal for regions or 
countries where there are large areas with few or no records where it 
would be impossible to compute more sophisticated measures of 
recording completeness based on species accumulation curves (e.g. 
Sousa-Baena et al., 2014). The ignorance score approach is extremely 
flexible and can be easily computed and mapped at different spatial 
scales and can be used, as in the current case study, to provide a rapid 
visual indicator of areas in need of further recording effort (Correia 
et al., 2019; Ruete, 2015). 

Our study clearly shows an urgent need of collection efforts and 
mobilization of existing biodiversity data in the eastern and southwest 
portion of Namibia, especially the savanna region bordering Botswana 
and South Africa. Moreover, ignorance scores could provide a simple 
way to quantify and visualise the impact of new expeditions on biodi-
versity knowledge, providing a useful tool for demonstrating the value 
of such enterprises. Indeed, it would be extremely interesting to annu-
ally re-evaluate ignorance scores to provide a continuously updated 
account of progress in biological surveying and data mobilization. 

As demonstrated here and elsewhere (Ruete, 2015; Correia et al., 
2019), ignorance scores are also highly sensitive to spatial biases, 
making them useful tools to identify socio-geographical factors influ-
encing recording effort. Nevertheless, the ignorance score algorithm also 
has certain limitations, the most serious of which is that it could be 
considered overly simplistic for many forms of analysis since they are 
only calculated using the number of records available in a given region 
over the time period of analysis. This means that valuable information 
on, for example, the identities or characteristics (e.g. threat status) of the 
species recorded, or the distribution of records within the annual cycle 
are not considered (Meyer et al., 2016). 

A particular limitation of the Log-Normalization algorithm is that the 
minimum ignorance score (i.e. 0), is relative to the maximum number of 
records for the reference taxonomic group (Ruete, 2015), which may 
still be low (for example, in our database the maximum number of re-
cords in a cell for amphibians is 22). So, rather than indicating complete 
biodiversity knowledge, an ignorance score of 0 should be interpreted as 
the “best available knowledge” in any cell for the study region. In the 
current study we attempted to counter the inherent simplicity of the 
algorithm by independently considering multiple taxa and by restricting 
our analysis to more recent records whose collection is likely to have 
been driven by similar socio-geographical factors. In this context, 
ignorance scores provide a robust metric for measuring the importance 
of data mobilization efforts on biodiversity knowledge, and we would 
strongly recommend their use to quantify and visualize the impact of 
such initiatives. 

Finally, it is important to highlight that the publicly available records 
on GBIF for Namibia only represent a fraction of the documented 
biodiversity in the country. Other types of institutions, such as museums, 
herbaria and other research centres in Namibia and elsewhere harbour 
biodiversity data. For example, about 1.2 million bird records were 
assembled during the first southern African bird atlas project (SABAP1) 
which was pre-2000 and are not currently included in GBIF (J. Men-
delsohn, pers. comm.). In addition to the SABAP1 and SABAP2 projects 
(the latter already included in GBIF), which have numerous records of 
birds, there are many other African projects that use the efforts of citizen 
scientists to carry out inventories of taxonomic groups of vertebrates, 
invertebrates, plants and even fungi, as is the case of the Virtual Museum 
(Biodiversity and Development Institute, 2023). 

The impediments to accessing, collecting and evaluating African 

biodiversity data have been previously acknowledged and reported by 
decision-makers represented by government, civil society and UN 
agencies, who have recommended a strengthening of national and in-
ternational collaboration to ensure availability and usability of infor-
mation and achieve conservation goals (Han et al.,2014; Stephenson 
et al.,2017). Notwithstanding the significance of such engagement to 
collect and document data, it is also imperative that these records be 
incorporated into online platforms and thus made available for both 
scientists and decision makers. 
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V., Salmon, M., Li, G., & Grenié, M. (2020). taxize: Taxonomic information from 
around the web (R package version 0.9.98). https://github.com/ropensci/taxize. 

Chandler, M., See, L., Copas, K., Bonde, A.M.Z., López, B.C., Danielsen, F., Legind, J.K., 
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