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Abstract. The present study presents an electronic decision-support tool that uses a fuzzy-logic model of expert knowl-
edge to assist in multi-criteria decision-making in the context of an EcosystemApproach to Fisheries (EAF). The prototype
model integrates the multiple goals and objectives related to the evaluation of the ecosystem performance of the South
African sardine Sardinops sagax fishery into a NetWeaver knowledge base and provides intuitive visual outputs to com-
municate results to managers and stakeholders. The software tool was developed in a consultative process with key experts
and follows the hierarchical tree approach recommended in the FAO guidelines for responsible fisheries. Input variables
are based both on quantitative data and expert opinion. We evaluated the model in terms of robustness to input changes,
influence of system structure, and appropriateness of input scales for parameters based on expert opinion. Results show
that the model is robust and conservative. The strength of the approach lies in the ability to include variables that are
difficult to measure. It provides a means of rendering value judgements explicit and transparent. The tool synthesises a
large amount of information and aims at improving understanding rather than achieving precision. The system has the
potential to have wide application in the context of EAF.

Additional keywords: Ecosystem Approach to Fisheries (EAF), fisheries management, multi-criteria decision analysis
(MCDA).

Introduction

Following the 2002 World Summit on Sustainable Development
(WSSD), signatory nations are required to develop and imple-
ment an ecosystem approach to fisheries (EAF) by 2012 (Garcia
and Cochrane 2005). EAF aims to achieve the collective sustain-
ability of all uses and impacts on an ecosystem. Consequently
individual issues cannot be addressed independently because
attempts to manage any one issue are likely to have impacts
on other issues. Each possible management action has costs and
benefits, not only in the financial sense but also in ecological,
social and political terms. It is therefore necessary to address
all objectives together as far as is practical, and guidelines have
been developed to make EAF operational (FAO 2003).

In southern Africa a regional EAF project was launched in
2004, under the auspices of the Benguela Current Large Marine
Ecosystem Programme. It includes participation by researchers
and managers from Angola, Namibia and South Africa, and
addresses EAF implementation from both national and regional
perspectives. Ecological Risk Assessments (ERA) have been
undertaken for selected fisheries (Nel et al. 2007) based on the
method developed for Australian Fisheries (Fletcher et al. 2002;
Fletcher 2005). The ERA identified the major issues related to

EAF for each fishery that are not adequately addressed by present
management strategies. Although statistical methods and mod-
elling can be used to evaluate the effect of management scenarios
in the southern Benguela region (Shannon et al. 2004), in many
cases the necessary data are not available or the issues are not
conducive to evaluation through modelling. In such cases it is
necessary to rely on common sense and expert opinion.

Electronic decision-support tools can help to guide man-
agers in situations characterised by uncertainty. In particular,
fuzzy logic (Zadeh 1965) has been promoted to deal favourably
with uncertainties in our understanding of aquatic systems (e.g.
Mackinson 2000; Cheung et al. 2005) and provide a rigorous
approach for including variables for which quantitative data are
not available (Miller and Saunders 2002; Paterson et al. in press).
Furthermore, fuzzy logic potentially provides an elegant solution
in information-rich contexts by avoiding a possible proliferation
of rules in an attempt to accurately represent the data (e.g. Miller
and Saunders 2002).

Fuzzy logic is based on the concept of the fuzzy set (Zadeh
1965). The boundaries of a fuzzy set are not sharp; the transi-
tion between set membership and non-membership is gradual
rather than abrupt. Elements that are considered marginal or
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Fig. 1. Structure of a dependency network in NetWeaver, which evaluates the trueness of the
proposition ‘sardine mortality is low’. A truth value is generated based on the truth values of the
three antecedent networks ‘no unaccounted dumping of sardine’, ‘low exploitation rate’ and ‘no
by-catch of juvenile sardine’.

intermediate are given a degree of membership between 0 (non-
membership) and 1 (membership). Thus, instead of only two
truth values (true and false) fuzzy transformations provide a
continuous measure.

The present study introduces the prototype of an electronic
fuzzy-logic decision-support tool for monitoring and evaluating
the implementation of EAF for the South African sardine fishery
(EAF monitoring tool).The prototype was evaluated with respect
to sensitivity towards model input and model structure.

The pelagic fishery targets mainly sardine Sardinops sagax
and anchovy Engraulis encrasicolus, and to a smaller extent red-
eye round herring Etrumeus whiteheadii. In terms of volume
of landings, the fishery is the largest in South Africa and the
second most important in terms of value. The industry employs
∼7800 people. The fishery is currently managed in terms of
an Operational Management Procedure (OMP) as described in
Fairweather et al. (2006a). Anchovy and red-eye round herring
are fished for reduction purposes, whereas sardine are mainly
fished for consumption. After a period of very low abundance in
the 1960s, sardine have been managed conservatively since the
early 1980s to allow rebuilding of the stock. High biomass has
been observed since the late 1990s.

Materials and methods
Software
The EAF monitoring tool was implemented using NetWeaver, a
knowledge-engineering platform for the development and main-
tenance of fuzzy-logic knowledge bases (Miller and Saunders
2002). The primary structural element of a NetWeaver knowl-
edge base is a dependency network, whose function is to evaluate
a proposition (Reynolds et al. 2000). The truth-value of a net-
work expresses the degree to which the proposition is true,
based upon its premises. In NetWeaver the level of trueness is
expressed as values between −1 (100% false) and +1 (100%
true). In the case of missing data 0 is returned, that is the level
of trueness is undetermined. For example, the trueness of the
proposition ‘low sardine mortality’ is evaluated in terms of its
antecedent propositions ‘no unaccounted dumping of sardine’,

‘low exploitation rate’ and ‘no by-catch of juvenile sardine’
(Fig. 1). These propositions are, in turn, evaluated in terms of
their antecedent propositions and so on.A NetWeaver knowledge
base is thus a hierarchical network of propositions (Fig. 2). At
the lowest level input data are transformed based on fuzzy input
variables in order to generate a truth value (Fig. 3). For instance,
the fuzzy variable low exploitation rate (Fig. 3d) returns positive
truth values when input values for exploitation rate are below 0.4,
with 0.2 (exploitation rate) returning 100% true. When input val-
ues for exploitation rate are above 0.4 the proposition is evaluated
as false, with inputs greater than or equal to 0.55 (exploitation
rate) returning 100% false. When exploitation rate is 0.4 the
proposition is neither true nor false.

Individual dependency networks are combined by nodes that
represent mathematical operators. In the case of the EAF mon-
itoring tool all input variables and networks of propositions are
connected by AND nodes. NetWeaver AND nodes use fuzzy
logic to handle uncertainty. Traditionally the value of a logi-
cal AND is true if all antecedents are true, and false if at least
one antecedent is false. However, if none of the antecedents is
completely false, NetWeaver calculates the value of AND as
follows:

AND (a) = MIN (a) + [AVERAGE (a) − MIN (a)]
× [(MIN (a) + 1)/2]

MIN (a) is the minimum truth value of the antecedents and
AVERAGE (a) is a weighted average of the truth values of the
AND node’s antecedents. If one of two antecedents of the same
network returns 100% false, the network will always evaluate
to false, irrespective of the truth value of the other antecedent.
The fuzzy AND is designed to produce a conservative estimate
when uncertainty is high. The closer to 0 a truth value is, the
greater is the uncertainty regarding the trueness or falseness of
the associated proposition. In the case of missing data, the truth
value generated by the fuzzy variable is 0. There is thus a penalty
for uncertainty, which prevents the AND node evaluation from
being overly optimistic (Miller and Saunders 2002). NetWeaver
models are hierarchical. There is no limit to the number of layers
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Fig. 2. The logic tree representing the key criteria based on which the fuzzy system evaluates the South African sardine
fishery in terms of an Ecosystem Approach to Fisheries.
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Fig. 2. (Continued)

of nodes in a network (Miller and Saunders 2002). Each layer can
increase the number of fuzzy AND nodes, and thus the number
of times a penalty is given.

The EAF monitoring tool is structured hierarchically, that is
truth values generated on the input level are propagated upwards
to influence the truth value of the next higher node. The over-
all EAF assessment is thus an aggregation of all input values.
Consequently great care has to be taken in selecting appropriate
input variables.

Results are visualised as bar charts with green bars describing
degrees of trueness and red bars describing degrees of falseness.

Prototype development
The structure of the model follows the hierarchical tree approach
using the three categories (human wellbeing, ecological
wellbeing and ability to achieve EAF) that are recommended
in the FAO guidelines for responsible fisheries (FAO 2003)

and used in ERA (Fletcher et al. 2002; Fletcher 2005). Issues
relevant for the South African small pelagic fishery were identi-
fied in Nel (2007). During a consultative process with key experts
from research, management and industry, the main issues were
structured into a hierarchy of objectives by breaking general
top-level objectives into increasingly specific operational objec-
tives (Fig. 2; Paterson 2007). This objectives hierarchy was then
implemented in NetWeaver with dependency networks repre-
senting objectives and input variables representing the indicators
for operational objectives.

Input variables include the IUCN status of selected seabirds,
the condition of populations of marine top predators, by-catch in
the pelagic fishery, sardine mortality, sardine production, socio-
economic benefits returned by the fishery, management and
research capacity in the responsible government agency, and
co-management (Appendix 1). Of the 40 variables, 14 are
based on data and 26 rely on expert opinion. The threshold
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Fig. 3. Fuzzy arguments defining the truth value of some of the ecological variables: (a) high lipid content
in recruits; (b) high lipid content in spawners; (c) high length at 50% maturity; (d) low exploitation rate;
(e) healthy African penguins; and ( f ) hake are not starving.

parameters for variables based on data were provided by experts.
All variables were given equal weights, following the NetWeaver
recommendation (Miller and Saunders 2002).

Two input datasets for 1999 and 2005 were compiled, based
on empirical data and expert opinion elicited from key experts.
Expert opinion was elicited through unstructured interviews and
small group discussions. Propositions were formulated for each
parameter and experts were asked to rate the trueness of the
proposition on an 11-point scale. If more than one expert was
asked, the input value was based on group consensus.The outputs
are expressed as truth values between −1 and +1, describing
the trueness of the overall proposition ‘EAF implementation is
successful’as well as the trueness of the component propositions
‘human wellbeing is high’, ‘ecological wellbeing is high’ and
‘ability to achieve EAF is high’.

Model evaluation and sensitivity analysis
The EAF monitoring tool was run with both the 1999 and 2005
data, and outputs were examined by experts for their concor-
dance with general perception of the state of the ecosystem and
management performance. We examined the robustness of the
model to different input values by changing each input vari-
able at a time across the entire input interval while holding all
other variables constant.The impact of changing a single variable
depends on the values of the remaining variables. We therefore
did three test series, holding all unchanging variables at input

values corresponding with truth values that were (1) 80% false,
(2) 80% true, and (3) ‘realistic’, using input data for 1999. The
input for each variable was incremented by a value close to or
equivalent to a 20% positive truth value. For example, length at
50% maturity (100% false 19 cm, undetermined 17.5 cm, 100%
true 16 cm) was incremented 10 times, each time by 0.3 cm.
Variables defined over an input range of 0–10 were incremented
by 1 and increments were repeated 10 times. Variables based on
IUCN categories that were defined from 0 to 9 were incremented
nine times.

As each layer in a NetWeaver model hierarchy can increase
the number of times a penalty is given by the fuzzy AND node, it
is possible that model structure can influence model results. If the
number of levels does not impact the overall result a model can
be structured interactively with stakeholders and the structure
can reflect stakeholder preference and thus add transparency. If
structure has an impact on the result this needs to be explic-
itly understood, and guidelines for structuring will be helpful.
We created a copy of the network ‘Ecological Wellbeing’. The
hierarchy of this network was flattened by putting all ecologi-
cal variables, which were originally structured into three levels,
into one level. We then repeated the sensitivity test with both
the hierarchical and flat networks. Results were compared with
those from the previous sensitivity test. We assumed that if the
hierarchy has no effect on the model output, the sensitivity results
should be the same.
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We chose an 11-point scale for opinion-based variables,
assuming that high input resolution is necessary for model
robustness. A large scale may, however, introduce expert bias
as it is difficult to distinguish clearly and consistently between
individual points on the scale. There may be a need to balance
input resolution and input bias. We tested model sensitivity to
input scales by repeating the sensitivity analysis, but convert-
ing the 11-point scale for variables based on expert opinion to a
5-point scale and a 3-point scale (Table 1).

Results

Based on realistic input data, the EAF monitoring tool evaluated
the South African sardine fishery with respect to EAF for the
years 1999 and 2005 respectively (Fig. 4). According to these
results, ecological wellbeing decreased in that period, whereas

Table 1. Conversion from 11-point scale to 5- and
3-point scales

11 point 5 point 3 point

0 0 0 100% false
1 0 0 80% false
2 1 0 60% false
3 1 0 40% false
4 2 1 20% false
5 2 1 Undetermined
6 2 1 20% true
7 3 2 40% true
8 3 2 60% true
9 4 2 80% true
10 4 2 100% true

(a) (b)

Fig. 4. EAF evaluation by the fuzzy system for (a) 1999 and (b) 2005. Red bars extending to the left indicate
degrees of falseness, green bars extending to the right indicate degrees of trueness.

the performance of the fishery with respect to institutional and
social criteria has improved. Impacts of the fishery on the wider
ecosystem have remained largely the same, that is close to unde-
termined, although the condition of marine predators was rated
higher for 1999 than for 2005. Impacts of the fishery on its target
stock have worsened due to an increase of spatially dispropor-
tionate fishing and decreased sardine production. Institutional
improvements are mainly in terms of research and management
staff and a perceived higher degree of self-regulation by stake-
holders. The evaluation of the latter has changed from ∼80%
false to 40% true, whereas the functionality of the Resource
Management Working Group, the main institutional mecha-
nism for co-management, was rated false for both years and
lower for 2005 than for 1999. Maximum economic sustainabil-
ity and optimum socio-economic benefits were evaluated close
to undetermined for 1999. For 2005, both were evaluated as
∼50% true.

During the first sensitivity test, we changed variables one at
a time while holding all other variables at input values corre-
sponding with a truth value of 80% false. The first increment
(from a corresponding truth value of 100% false to 80% false)
caused an average change of 0.198 in output truth value while
all further increments showed no or negligible effect (Fig. 5a).
Changing each variable, while holding all other variables at
80% true, caused changes in output after every increment step.
The highest change occurred after the first increment and then
decreased with each further increment (Fig. 5b). Once the incre-
ment step crosses the undetermined threshold value the changes
in output are below 0.1. Holding all variables at realistic values
while changing one variable at a time caused an initial change
in truth value and further increments showed negligible effect
(Fig. 5c).
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Comparing the sensitivity test results after reducing the scale
of opinion-based variables from 11 points to 5 and 3 points does
not increase sensitivity of the model for both the false and the true
scenarios (Table 2). However, the 5-point scale shows a change
after the first increment that is higher than the initial change of
the 11-point scale, whereas the initial change caused by the 3-
point scale is lower (Table 2). In the realistic scenario for both the
5-point and the 3-point scale the model returns 100% false for
all test cycles (Table 2), because several inputs were transformed
into truth values of 100% false.

Truth values of the flat network ‘High Ecological Wellbeing’
resemble the results for the original steeply-structured network
(Fig. 6). Sensitivity is highest when remaining variables are false
and lowest when remaining variables are true. The difference in
truth values between the steep and flat networks are small for the
realistic input scenario (Table 3) and highest for the true input
scenario. In all input scenarios the truth values of the flat network
are lower than those of the steep network (Fig. 6).

Discussion
Model evaluation
The results for 1999 and 2005 correspond with expert opinion
on the status of the fishery in these years. In 1999, the abundance
of pelagic fish had increased since the low levels in the 1980s
and ecological wellbeing is assumed to have been good. Since
then, sardine biomass increased until 2002, even after the onset
of an eastward moving of the fish. The main reason the outputs
for ecological wellbeing show small truth values for 2005 is the
increase in spatially disproportionate fishing linked to this east-
ward shift. Another factor is the decrease in productivity, which
corresponds with the decrease in sardine biomass since 2002.

Many of the input values used to evaluate the realistic sce-
narios for 1999 and 2005 are still somewhat unreliable. In
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Fig. 5. Sensitivity of overall truth value of proposition ‘EAF is successfully implemented’ to changes in input
while holding remaining variables at (a) 80% false, (b) 80% true and (c) realistic values elicited form experts.
The dots are the average changes in truth value after each increment.

particular, many of the variables describing institutional aspects
rely on expert opinion rather than measurable indicators. How-
ever, although the lack of reliable input data is a constraint
that has to be taken seriously, this does not lessen the value
of this modelling exercise. The move from single-stock manage-
ment towards EAF involves many, often conflicting, objectives
and as such presents a complex problem scenario. Like any
multi-criteria decision analysis (MCDA), the purpose of this
decision-support tool is to structure the evaluation of EAF and to
distil its complexity into key factors (Belton and Stewart 2002).
The idea is not to find indicators that can be measured in order
to increase the correctness of the system, but to find indicators
that are accepted as relevant by stakeholders, generate insight
and understanding and can be utilised in a transparent model
reflecting the decision process.

The selection of indicators and the way these are interlinked
within the model represent an important structuring process that
reflects expert understanding of the problem at hand.This knowl-
edge cannot be challenged by a purely statistical analysis. Many
of the factors involved cannot be measured in precise, quantifi-
able terms. This does not mean, however, that these factors are
unimportant or meaningless. The development of the EAF mon-
itoring tool described here has been a process of identifying key
factors, irrespective of whether they represent measurable crite-
ria. Many of the variables that inform this decision-support tool
will always be based on human values and subjective opinion.
The strength of this approach lies in the fact that it allows the
combination of objective measurement and value judgements.
Naturally, value judgements are subjective. Subjectivity, how-
ever, is inherent in all decision making, the choice of criteria and
the relative importance that is given to them.To improve decision
making, therefore, does not mean to eliminate subjectivity but to
render it explicit (Belton and Stewart 2002). Consequently the
purpose of this tool is not so much measurement and precision

Barbara Paterson
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but synthesising many perspectives and enhancing understand-
ing of all the factors involved and their relation to one another.

Sensitivity analysis
Recognising the inherent subjectivity of the variable selection,
the present study is not concerned with evaluating the sensitiv-
ity of individual variables or the influence of their inclusion or
omission on the overall result. We used sensitivity analysis to
gain a better understanding of the workings of the model and to

Table 2. Sensitivity of the output truth value to changes in input and length of input scale
The numbers express the change in output truth values between increment steps

11-point input scale
Remaining variables at 80% false

Increment step 1 2 3 4 5 6 7 8 9 10
Minimum change in output (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum change in output (%) 25 0.2 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0
Average change in output (%) 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Remaining variables at 80% true
Increment step 1 2 3 4 5 6 7 8 9 10

Minimum change in output (%) 61 32 7.4 1.3 6.2 3.5 1.6 0.3 0.5 0.0
Maximum change in output (%) 9190 3936 2173 1236 727 445 273 173 82 36
Average change in output (%) 933 454 241 133 78 47 28 17 8.8 3.6

Remaining variables at realistic input values
Increment step 1 2 3 4 5 6 7 8 9 10

Minimum change in output (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum change in output (%) 37 1.9 1.5 34 3.0 0.1 0.3 1.0 1.6 34
Average change in output (%) 32 1.1 0.6 1.8 0.2 0.1 0.0 0.1 0.1 1.8

5-point input scale
Remaining variables at 60% and 80% false

Increment step 1 2 3 4 5 6 7 8 9 10
Minimum change in output (%) 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum change in output (%) 30 0.5 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.0
Average change in output (%) 29 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Remaining variables at 60% and 80% true
Increment step 1 2 3 4 5 6 7 8 9 10

Minimum change in output (%) 75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum change in output (%) 1053 335 172 93 52 19 9.6 100 100 1.8
Average change in output (%) 286 76 30 11 4.7 1.8 0.9 4.9 5.0 0.2

Remaining variables at realistic input values
Increment step 1 2 3 4 5 6 7 8 9 10

Minimum change in output (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum change in output (%) 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Average change in output (%) 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3-point input scale
Remaining variables at 50% and 80% false

Increment step 1 2 3 4 5 6 7 8 9 10
Minimum change in output (%) 0.254 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum change in output (%) 0.258 0.016 0.007 0.005 0.003 0.001 0.001 0.000 0.001 0.001
Average change in output (%) 0.258 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000

Remaining variables at 50% and 80% true
Increment step 1 2 3 4 5 6 7 8 9 10

Minimum change in output (%) 0.090 0.000 0.000 0.000 0.002 0.002 0.001 0.001 0.000 0.000
Maximum change in output (%) 0.581 0.289 0.026 0.016 0.008 0.006 0.007 0.007 0.006 0.007
Average change in output (%) 0.547 0.022 0.016 0.005 0.004 0.003 0.003 0.002 0.002 0.003

Remaining variables at realistic input values

All outputs 100% false

get a feel for its vulnerability to experts’misjudgement. Sensitiv-
ity results for the realistic input scenario show that the model is
robust towards changes in input. However, sensitivity is reduced
when the truth values of the remaining variables are small, and
is greatest when truth values of the remaining variables are large
and the value of the variable under investigation is small. Thus
a negative truth value impacts more strongly than a positive
truth value and system outputs are conservative. Because nodes
throughout the model use the fuzzy AND, which is designed
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to produce conservative estimates, these results are in accor-
dance with expectations from theory. What is surprising is that
the flatter-structured network produces results that have smaller
truth values than the steeply-structured one. We assumed that
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Fig. 6. Average output values for network ‘High Ecological Wellbeing’.
Input values for one variable at a time were incremented across the entire
input range while first holding remaining variables (a) true, then (b) false
and then at (c) realistic input values elicited form experts and data. The grey
squares are the average truth values of the steeply structured network, the
black dots are the average truth values of the flat network.

Table 3. Difference (%) in truth values between steep and flat structure of network ‘High Ecological Wellbeing’

Increment step 0 1 2 3 4 5 6 7 8 9 10

Remaining variables false 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.4 0.4
Remaining variables true 9.2 37 44 42 35 27 20 15 12 11 11
Remaining variables 1.4 2.4 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.4 2.4

at realistic values

a steep, multi-layered structure with several fuzzy AND nodes
would produce reduced truth values due to repeated penalties by
the fuzzy AND. Results indicate, however, that the opposite is
the case. We examined an input scenario where one variable is
80% false and all others are 80% true (Fig. 7). In the flat structure
all antecedents are on the same level, which means that the false
value has great pulling strength against all other truth values.
In the multi-layered hierarchy the false value has great pulling
strength in the lowest level network, resulting in a negative truth
value. This result is then combined with the positive truth values
of the other networks to produce a result less negative, which is
again combined with positive levels on the next level. These test
results show that the structure of NetWeaver knowledge bases is
not arbitrary but meaningful. Structuring networks into multi-
level hierarchies impacts on the overall truth value. Therefore,
great care has to be taken when designing a knowledge base.
This result is valuable for knowledge-base developers. Although
NetWeaver knowledge bases are transparent, the real workings of
the fuzzy AND and its impact within knowledge-base structure
are not immediately apparent.

Although the shortening of the input scale to five and three
points does not impact on model sensitivity for the false and true
scenarios, the results for the realistic scenario indicate that these
scales are too coarse. Jarre et al. (in press) found that reducing
the fuzzy-output values from a continuous scale between −1 and
+1 to four categories (critical, bad, medium, good) generated
useful results. The reduction of the input scale, however, means
that many input values, which on the 11-point scale were various
degrees of false, are now 100% false. As a consequence, most
networks return 100% false and the overall model result is 100%
false, too. This indicates that these short input scales are not
appropriate in a fuzzy model, despite the difficulty for experts
to give meaning to the individual points on the scale. Further
research is needed to find the ideal balance between length of
input scale and expert ability to use it. Burgman (2005) lists
several approaches to eliciting expert knowledge. Among these
is the use of Kent scales to express degrees of probability. This
approach can be used to link linguistic terms to truth values
and rank them according to degrees of trueness (Table 4). Full
descriptors for each point on the scale will go a long way in
reducing expert bias.

Application of the tool in fisheries management
South Africa committed to EAF implementation at WSSD and
has a dedicated EAF scientific working group, which has coor-
dinated the South African portion of the Benguela Current Large
Marine Ecosystem feasibility study investigating how to move
towards implementing EAF within the region (Shannon et al.
2004; Nel 2007). Given that fisheries management is largely
undertaken on a single-species basis worldwide, a shift towards
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first structured into a (a) multi-level hierarchy then (b) flattened into a single level.

Table 4. Possible Kent scale to relate linguistic terms to degrees of
trueness

Expression Score Truth value

Absolutely true 9 100% true
Almost completely true 8 75% true
Half true 7 50% true
Slightly true 6 25% true
Neutral 5 Undetermined
Slightly false 4 25% false
Half false 3 50% false
Almost completely false 2 75% false
Absolutely false 1 100% false

EAF will require an adaptive management framework, which
will rely on rapid monitoring and assessment methods (FAO
2003; Degnbol and Jarre 2004). Such methods depend on good
data collection based on key indicators that have been agreed
upon by stakeholders (Fairweather et al. 2006a). The fuzzy-logic
knowledge-based system presented here provides a tool to mon-
itor and evaluate the performance, in the ecosystem context,
of the South African pelagic fishery, directed at sardine. Such
an evaluation requires that many different aspects are taken into
account, such as the impacts of the fishery on the target resource,
as well as impacts on the wider ecosystem. Ecosystem impact is

not only at the level of marine predators or competing species,
but also includes the human dimension of the fishery, that is
the resource users and the managers of the resource base. The
knowledge-based system provides a structured representation of
the key indicators that determine the successful implementation
of EAF in the sardine fishery. The model integrates indicators
for all three dimensions of EAF and includes not only those indi-
cators for which data are currently available but also specifies
knowledge needs. A monitoring system such as this is necessary
to keep track of the status of the stock within an ecosystem, the
status of the ecosystem itself, and to pick up signals that indicate
negative trends that require management intervention.

Fisheries evaluation in terms of ecosystem performance
based on indicators has been undertaken in Western Australia
(Fletcher and Head 2006). We have extended this approach in
the Benguela region. In an attempt to provide a means of gauging
progress towards implementing an EAF in the Benguela region,
Nel et al. (2007) synthesised the eight ecological risk assess-
ments undertaken in South Africa and Namibia into a generic
checklist of broad operational objectives with corresponding
management indicators. The present study complements this in
further detail by integrating the performance indicators identi-
fied in the risk assessment analysis into a coherent framework
where the influence of alternative indicator values can be
explored to assess their influence on the overall result, that is the
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overall assessment of the performance of the particular fishery
under consideration with respect to the ecosystem approach to
fisheries. The model allows inter-annual comparison, which can
provide useful insights by showing how indicator values influ-
ence the fulfilment of objectives and thus the evaluation of the
fishery. Moreover, it is possible to test existing assumptions.
For example, once the best possible representation of the factors
involved has been found, input scenarios for the 1980s, when the
sardine fishery was very depressed, could be compiled based on
available data and expert opinion. This exercise may help to test
the assumption that a shift towards EAF is beneficial for the
resource, the ecosystem and society, despite the many trade-offs
that are likely to be required to balance the often contrasting
objectives of ecological wellbeing, human wellbeing and good
governance.

Multi-criteria decision making
Integrating the many different and diverse aspects of EAF is a
complex task that involves balancing multiple objectives and val-
ues.Although the usefulness of Multi-Criteria DecisionAnalysis
(MCDA) techniques to fisheries management has been demon-
strated (e.g. Stewart 1988; McDaniels 1995; Mardle et al. 2000),
the methodology is not widely used in this field (Mardle and Pas-
coe 1999; de Steiguer et al. 2003; Kiker et al. 2005; Leung 2006;
Linkov et al. 2006).A study similar to ours, evaluating a fishery’s
performance based on multiple criteria, has been undertaken for
the shrimp fishery inTrinidad andTobago (Soma 2003) using the
MCDA technique of the Analytical Hierarchy Process (AHP).
AHP has been used to balance key management objectives for
the English Channel fisheries based on stakeholder preference
(Mardle et al. 2004).

MCDA is a collection of formal approaches that seek to
take explicit account of multiple criteria in helping individu-
als or groups explore decisions that matter (Belton and Stewart
2002). Knowledge-based systems represent one such approach.
The close links between knowledge-based systems and classical
MCDA systems have been described (e.g. Finlay 1994). Often,
knowledge-based systems are implemented using decision rules
(e.g. Goodwin and Wright 2004), but the approach we use here,
and which is implemented in NetWeaver, is somewhat closer to
methods of classical MCDA.

The problem of the routine evaluation of the ecosystem per-
formance of a fishery involves considerable uncertainty (sensu
Belton and Stewart 2002). Multi-attribute theory (MAUT) is
a classical MCDA technique used in this situation, which has
a sound theoretical foundation. In MAUT, the preferences for
each criterion are projected onto a scale from 0 to 1 called utility
function. This function reflects not only the ordering of the pref-
erences, but also models the decision-makers’ attitude to risk.
Typically, the utility functions are derived by an analyst request-
ing preferences in a series of hypothetical lotteries from the
decision-makers. An aggregation function then combines pref-
erences across criteria, allowing inter-criteria comparisons, and
therefore the assessment of tradeoffs. The aggregation function
can be an additive function of the weighted utility values (e.g.
Goodwin and Wright 2004) or a multiplicative function of these
(e.g. Belton and Stewart 2003).

Because of its complexity, the process of eliciting the
utility functions for the individual criteria can be tedious and,

particularly if the decision-makers are unfamiliar with the
mathematical probability theory, potentially misleading (Bel-
ton and Stewart 2002; Goodwin and Wright 2004). Fuzzy-set
theory (Zadeh 1965, 1995, 2006) can be used to deal with
the potential pitfalls. Some advantages in practical applica-
tion of fuzzy-set theory in multi-criteria decision making have
been acknowledged even by critics (e.g. Kickert 1978). In this
case, the utility functions are replaced by fuzzy-membership
functions (e.g. Zimmermann 1987; Matthieu-Nicot 1994). The
fuzzy-membership functions as implemented in NetWeaver do
not allow for curvilinearity, but curves can be approximated by
explicitly defining the undetermined point, which is then con-
nected to the fully true and fully false points with two straight
lines, respectively. With respect to aggregation functions, the
NetWeaver fuzzy AND is a special case of a range of avail-
able fuzzy-set theoretical operators (e.g Zimmermann 1991)
that soften the constraints of the strict logical meaning of ‘and’
and ‘or’.

Other possibilities of dealing with risk and uncertainty have
been proposed (Stewart 2005), emphasising an overriding need
in any MCDA approach, for the model to be fully understandable
to all participants in the process. This is a potential weakness of
fuzzy-set theory, but on the other hand, successful applications
are documented (see Introduction). In assembling this first pro-
totype, we placed our emphasis on achieving broad participation
rather than on fine-tuning the decision model.

The advantages and disadvantages of different MCDA tech-
niques have been reviewed (Belton and Stewart 2002; Linkov
et al. 2006). With respect to fisheries applications, Jarre et al.
(in press) highlight that it is often appropriate to apply more
than one technique to a given problem. In this case the choice of
the technique may ultimately depend on stakeholder preference.
Placing a problem structure such as the one presented here into
an expert system-shell links the decision process to the underly-
ing database and allows exploration of alternative values without
having to leave the coherent and transparent framework.

Conclusion

The present study describes a prototype decision-support sys-
tem. Although the usefulness of the method to address the
ecosystem performance of a fishery has been demonstrated,
the prototype requires further refinement in continued collab-
oration with stakeholders. In parallel, research is being carried
out in the southern Benguela region to refine the underlying
indicators (e.g. Fairweather et al. 2006a, 2006b) as well as
the database (e.g. Shannon et al. 2006). At the outset of the
present study the complexity and the multidisciplinary challenge
appeared overwhelming. However, the present study confirmed
that problem structuring is an important part of the decision-
making process (Belton and Stewart 2002). Representing the
complex problem in a coherent structure helped stakeholders to
understand their particular role in solving the problem at hand
and facilitated knowledge elicitation from experts. Breaking the
high-level goals (e.g. high human wellbeing) into operational
objectives (e.g. high employment in coastal communities) and
indicators (e.g. fraction of casual employment) improved our
understanding of the breadth of the issues. At the same time,
the structure ties the various issues into a coherent context and
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helps to communicate the management problem among stake-
holders. A particular strength of the approach is that it facilitates
the use of both quantitative and qualitative indicators in a sin-
gle framework for management purposes, thereby enabling both
ecological and socio-economic inputs and criteria to be con-
sidered simultaneously – exactly what is envisaged and what is
needed for an EAF.
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