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ABSTRACT

Despite being one of the world’s oldest deserts, and the subject of 

decades of research, evidence of past climate change in the Namib Des-

ert is extremely limited. As such, there is significant debate regarding 

the nature and drivers of climate change in the low-latitude drylands 

of southwestern Africa. Here we present data from stratified accu-

mulations of rock hyrax urine that provide the first continuous high-

resolution terrestrial climate record for the Namib Desert spanning the 

past 50,000 yr. These data, spanning multiple sites, show remarkably 

coherent variability that is clearly linked to orbital cycles and the evo-

lution and perturbation of global boundary conditions. Contrary to 

some previous predictions of southwestern African climate change, we 

show that orbital-scale cycles of hydroclimatic variability in the Namib 

Desert region are in phase with those of the northern tropics, with in-

creased local summer insolation coinciding with periods of increased 

aridity. Supported by climate model simulations, our analyses link this 

to variations in position and intensity of atmospheric pressure cells 

modulated by hemispheric and land-sea temperature gradients. We 

conclude that hydroclimatic variability at orbital time scales is driven 

by the combined influence of direct low-latitude insolation forcing and 

the influence of remote controls on the South Atlantic anticyclone, with 

attendant impacts on upwelling and sea-surface temperature variations.

INTRODUCTION

Past climate change at low latitudes in Africa is generally considered to 

be driven at orbital time scales by precessional variations in summer inso­

la tion (Collins et al., 2014; Kutzbach and Street­Perrott, 1985; Partridge 

et al., 1997), which affect the position and extent of the tropical African 

rain belt (Partridge et al., 1997; Schefuß et al., 2011). In the northern 

and eastern African tropics, the influence of direct orbital forcing is well 

documented (Chevalier and Chase, 2015; Kutzbach and Street­Perrott, 

1985; Partridge et al., 1997; Schefuß et al., 2011; Shanahan et al., 2015; 

Tierney et al., 2017; Tierney et al., 2008). In southwestern Africa (defined 

here as between ~17°S and 30°S, and extending eastward from the coast 

to ~20°E), where the influence of the South Atlantic anticyclone (SAA) 

and Benguela upwelling system play a significant role in driving regional 

aridity, the influence of orbital forcing is unclear (Chase et al., 2009; Col­

lins et al., 2014; Lim et al., 2016). Here, low precipitation and strongly 

seasonal rainfall regimes have restricted the development of lakes and 

wetlands that could provide longer­term records of climate change. Long 

marine sediment records from the adjacent southeast Atlantic have been 

interpreted as indicating a strong positive relationship between summer 

insolation and precipitation in southwestern Africa (Collins et al., 2014) 

and across the wider subcontinent (Daniau et al., 2013). These findings, 

however, contrast with interpretations based on the limited terrestrial 

paleo envi ronmental evidence from the Namib Desert (Fig. 1; Chase et al., 

2010; Lim et al., 2016; Scott et al., 2004), and, as a result, there is no 

clear understanding of the nature of orbital­scale climate change and its 

underlying drivers in one of the world’s most arid regions.

MATERIALS AND METHODS

To study past climate change in the Namib Desert, we have employed 

a unique paleo envi ronmental archive: rock hyrax middens, the strati­

fied accumulations of the petrified urine (hyraceum) of the rock hyrax 

(Procavia capensis). From these, we have derived a 50,000 yr terrestrial 

record of paleoclimate for southwestern Africa. Optimally preserved in 

dryland environments, hyrax middens provide unprecedentedly detailed 

hydroclimate evidence in their stable isotope records (Chase et al., 2015a, 
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2017, 2009, 2012). For this study, we consider three sites (Spitzkoppe: 

15.20°E, 21.83°S; Zizou: 15.97°E, 24.07°S; Pella: 19.14°E, 29.00°S) along 

a 900 km north­south transect of the  Namib Desert (Fig. 1). Situated along 

the steep zonal hydroclimate gradient that forms a continuum from the arid 

to hyperarid Namib Desert in the west to the semiarid to dry subhumid 

environments to the east (Fig. 1), the sites were selected to assess climate 

change trends and events at a regional scale. Combined, eight middens 

from the three sites comprise a total of 208 cm of hyraceum accumulation, 

from which 1792 samples were analyzed for their stable nitro gen isotope 

composition (δ15N). To achieve a more comprehensive understanding of 

regional hydroclimates, plant leaf wax n­alkanes were also extracted from 

the Spitzkoppe middens (93 samples spanning 32,500 yr) and analyzed for 

their hydrogen isotope composition (δD). A chronology was established 

with 86 14C accelerator mass spectrometry ages from the hyraceum to 

build a composite sequence (Fig. 2; Figs. DR1 and DR2 in the GSA Data 

Repository1). For details on these methods, see the Data Repository.

Over the past 50,000 yr, significant variability (13.5‰) is apparent in 

the hyraceum δ15N values (Figs. DR1 and DR2). Despite the spatial range 

of the sites and the differences in accumulation rates, strong orbital­scale 

similarities are apparent between the trends in the records obtained (Figs. 

DR2 and DR3), and a regional composite was created using Gaussian  kernel 

smoothing (Rehfeld et al., 2011) on the combined data sets (Fig. DR2).

Hyraceum δ15N has been shown—through observation of modern mid­

dens and plants (Carr et al., 2016; Murphy and Bowman, 2006), as well 

as comparison with independent records and other proxies obtained from 

the same midden samples—to reflect environmental water availability, 

with higher δ15N values occurring during more arid periods (Chase et al., 

2015a, 2015b, 2009). At low latitudes, δD variability is often predomi­

nantly controlled by precipitation amount and/or intensity (Collins et al., 

2014; Garcin et al., 2012; Niedermeyer et al., 2016), consistent with the 

similarities between the δDwax and δ15N records presented here (Fig. 2) 

(for a fuller discussion, see the Data Repository).

DISCUSSION

Overall, our δ15N record indicates that the last glacial period was 

 generally more humid than the Holocene (Fig. 2). We consider tempera­

ture to be an important factor in defining this trend, with lower tem­

peratures during the last glacial period limiting potential evapotranspira­

tion and increasing water availability (Chevalier and Chase, 2016; Lim 

et al., 2016). Orbital­scale variability within and across the Holocene and 

Late Pleistocene in both the δ15N and δD records conforms to precessional 

cycles, particularly during the last 36,000 yr (Fig. 2). Our composite 

record indicates that humidity in the Namib Desert region is generally 

negatively related to summer insolation. This contrasts with an inferred 

positive relationship between summer insolation and southern African 

precipitation (through the invigoration of tropical atmospheric circula­

tion systems) from records obtained from marine archives from off the 

Namibian coast (Collins et al., 2014; Daniau et al., 2013). Comparing 

our results with climate model simulations (He et al., 2013) (Fig. 3) and 

evidence for intensifications of the SAA from wind and upwelling proxies 

(Fig. 2), we conclude that this cycle of variability is determined by two 

inter related factors. The first is the inverse influence of high­northern­

latitude summer insolation. Austral summer insolation maxima correlate 

with  boreal summer insolation minima, which induces phases of global 

cooling, increasing latitudinal intra­hemispheric temperature gradients 

(Rind, 1998) and intensifying the SAA and related Benguela upwelling 

(Farmer et al., 2005; Little et al., 1997b; Pichevin et al., 2005; Stuut et al., 

2002). This serves to limit regional atmospheric convection, block the 

incursion of moisture­bearing systems, and promote the advection of dry 

air eastward. The second is the influence of austral summer insolation on 

land­sea temperature and pressure gradients in southwestern Africa (Fig. 

3). While global temperatures cool during periods of low boreal summer 

insolation, coeval increases in austral summer insolation raise summer­

time continental temperatures and enhance the land­sea pressure gradient, 

further increasing southerly air flow and augmenting coastal upwelling 

(Fig. 3). This combined influence of high­ and low­latitude precessional 

forcing results in interhemispheric synchrony in orbital­scale patterns of 

climate change between the Namib Desert and the northern and eastern 

African tropics across the past 50,000 yr (Fig. 2).

The apparent contradiction between the rec ords from marine (Collins 

et al., 2014; Daniau et al., 2013) and terrestrial archives from the region 

(compare Figs. 2B, 2C, and 2G) may reflect either (1) regional differ­

entiation of climate signals, with marine records being predominantly 

influenced by sediment sourced in central southern Africa, as suggested 

by Collins et al. (2014) and Daniau et al. (2013), or (2) the role of eolian 

transport in determining the distinct patterns of variability in the marine 

records. As a significant vector for the deposition of terrestrial components 

in marine rec ords (Dupont and Wyputta, 2003; Stuut et al., 2002), the 

extent and strength of the SAA has the potential to significantly change 
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1GSA Data Repository item 2019314, the hyraceum δ15N, leaf wax δD, and 
radiocarbon and sampling data that support the findings of this study, is avail­
able online at http:// www .geosociety .org /datarepository /2019/, or on request from 
editing@ geosociety .org.

Figure 1. Modern hydroclimate and dominant circulation patterns 
of southern Africa. Rock hyrax midden sites at Spitzkoppe, Zizou, and 
Pella and limits of Namib Desert are indicated. Aridity index shown is 
that of Trabucco and Zomer (2009). Major ocean currents are indicated 
with bold arrows, and austral summer atmospheric circulation is 
indicated in white. Below: Distribution of major Southern Hemisphere 
high-pressure cells (H) (Collins et al., 2006).
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the source area of these components. This is implied by the inclusion of 

pollen from increasingly remote sources during periods of intensified 

upwelling (Lim et al., 2016; Shi et al., 2001). Regional climate gradients 

are such that any expansion of the source area away from the arid con­

tinental margin would promote the inclusion of material from relatively 

more humid areas (Fig. 1). Thus, inferred positive correlations between 

precipitation and regional summer insolation may reflect the response of 

regional wind fields to orbital forcing rather than hydroclimatic conditions 

in the Namib Desert itself (Fig. 2).

During the Holocene, the influence of Northern Hemisphere ice sheets 

and ice rafting events (Chase et al., 2015a) on the position of the African 

rain belt (apparent in the midden record as the discrete humid episodes 

during Heinrich stadials 1–3; Fig. 2; see the Data Repository, and Fig. 

DR2 therein) diminished. Direct insolation forcing became the dominant 

control on multimillennial variability of precipitation in the eastern tropics 

of southern Africa, resulting in a progressive increase in summer rainfall 

(Che valier and Chase, 2015; Schefuß et al., 2011) (Fig. 2). In contrast, 

conditions in the Namib Desert are characterized by progressive aridifica­

tion (with the late Holocene being the driest period of the last 50,000 yr). 

This is consistent with patterns of change observed in the western (Collins 

et al., 2010; Garcin et al., 2018; Schefuß et al., 2005; Shanahan et al., 2015; 

Weldeab et al., 2007) and northern (Stager et al., 2003; Tierney et al., 2017) 

tropics. Similar to the dynamics described for the Late Pleistocene, model 

simulations indicate that orbital­scale hydroclimatic variability during the 

Holocene was determined by the combined influences of reduced high­

northern­latitude insolation and increased southern low­latitude summer 

insolation (Fig. 3). This has broader implications: from the early Holocene 

Northern Hemisphere summer insolation maximum, substantial cooling is 

observed in both the northern (Sachs, 2007), eastern equatorial (Weldeab 

et al., 2007), and southeastern Atlantic (Farmer et al., 2005), resulting in 

a progressive aridification of the whole western tropical margin, from the 

Namib Desert through the Gulf of Guinea (Garcin et al., 2018; Schefuß 

et al., 2005; Shanahan et al., 2015; Weldeab et al., 2007). In southwestern 

Africa, the impact was intensified by insolation­driven warming of the 

continental interior, which enhanced the land­sea temperature gradient, 

Figure 2. Records of environmental variability over the past 50,000 
calibrated yr B.P. Holo cene, last glacial-inter glacial transition, and 
glacial periods are indicated with red, purple, and blue shading, re-
spectively. Timing of the Last Glacial Maximum (LGM) is indi cated, 
as are Heinrich stadials (HS) 1–5, which are more darkly shaded. For 
comparison or combination, some records have been normalized 
(norm.) using standard scores. (A) Cycles of boreal (65°N) and 
austral (25°S) insolation. JJA—June, July, August; DJF—Decem-
ber, January, February. (B)  Composite δ 15N rec ord from the Namib 
Desert (southwestern Africa) rock hyrax middens, with white zone 
indicating uncertainties associated with the creation of the regional 
composite record using Gaussian kernel smoothing (see the Data 
Repository [see footnote 1]; Rehfeld et al., 2011). ( C) Leaf wax δD 
record from the Spitzkoppe rock hyrax midden (VSMOW— Vienna 
standard mean ocean water). (D,E) Namib Desert paleotemperature 
estimates from noble gases from the Stampriet aquifer (Stute and 
Talma, 1998) and a pollen-based temperature index (values in un-
calibrated degrees Celsius) from the Pella rock hyrax midden (Lim 
et al., 2016). (F) Composite record for wind strength in the Benguela 
upwelling region, derived from sediment and forami nifera records 
(Farmer et al., 2005; Little et al., 1997a; Pichevin et al., 2005; Stuut 
et al., 2002). (G) Leaf wax δD record from Namibian coastal marine core 
MD08-3167 (drilled during IMAGES cruise MD167/RETRO; Collins 
et al., 2014). (H) Leaf wax δD record from Lake Tanganyika, East 
Africa (Tierney et al., 2008). (I) Leaf wax δD record from marine 
core GeoB 6518-1 (drilled during RV Meteor Cruise M47/3; Schefuß 
et al., 2005).( J) Leaf wax δD record from Lake Barombi, Cameroon 
(Garcin et al., 2018). (K) Leaf wax δD record from Lake Bosumtwi, 
Ghana (Shanahan et al., 2015). Records of hydroclimate have been 
oriented with the y-axis indicating increases or decreases in  humidity 
and/or precipitation.
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resulting in stronger coastal upwelling (Fig. 3). Thus, this mechanism is 

shown to influence southwestern African climate under both glacial and 

interglacial boundary conditions.

Our results show that low­latitude direct insolation forcing does not 

operate alone to produce a positive relationship between summer insola­

tion and precipitation. Rather, the resulting low pressure that develops over 

the subcontinent reinforces the development of a strong east­west dipole. 

Enhanced tropical northerly flow increases precipitation over southeast­

ern Africa, but coeval intensification of the South Atlantic anticyclone 

and Benguela upwelling system result in the transport of dry air across 

southwestern Africa, resulting in markedly drier conditions. Contrary to 

previous postulations, long­term hydroclimatic variability in the Namib 

Desert is in phase with and strongly linked to high­latitude Northern 

Hemisphere controls. These results provide a new benchmark for the 

evaluation of records obtained from southwestern Africa, offering a new 

perspective on past climate dynamics in the Southern Hemisphere low 

latitudes and a novel model for understanding past climate dynamics in 

the southern subtropics.
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