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Abstract 

 

The Nile crocodile has experienced numerous stages of illegal hunting pressures in the mid-20th-

century across most of the species’ distribution. The reduced Nile crocodile populations have shown 

partial recovery and it is currently considered as a “lower risk” / “least concern” species on the Red List 

of International Union for Conservation of Nature. In Namibia, however, the Nile crocodile is recognised 

as a protected game species under the Nature Conservation Ordinance No 4 of 1975, allowing trophy 

hunting of the species only with the issuing of a hunting licence. Census and genetic data of the Nile 

crocodile is limited or non-existing in Namibia and the country has recently developed a species 

management plan to conserve the wild populations. During 2012 an aerial survey was conducted along 

the Lower Kunene River to estimate the abundance and distribution of the Nile crocodile population, by 

the use of a recently developed N-mixture model. Within the Lower Kunene River system a direct count 

revealed 562 crocodiles regardless of size, and an estimated population size of 806 individuals, after bias 

correction. The analyses suggested the class-structured model produced unbiased estimates of the Nile 

crocodile population in the Lower Kunene River system. To contribute to the conservation efforts of the 

Nile crocodile in the Lower Kunene River, the study also assessed the genetic diversity and structure 

within the Kunene and Okavango River system in comparison to neighbouring river basins. This study 

aimed to develop molecular markers, to assess the patterns of genetic diversity and population structure 

generated from 11 Short Tandem Repeats and the mitochondrial DNA, control region. The Lower 

Kunene and Okavango populations indicated a recent divergence with a single haplotype shared among 

the 64 samples sequenced and interestingly the haplotype was shared with populations in Gabon and 

Uganda. Moreover, there was no sharing of haplotypes found between the Lower Kunene and Okavango 

and the Lower Shire River system. Estimated for pairwise population differentiation, F-statistics, 

AMOVA and factorial correspondence analysis (FCA), based on Short Tandem Repeats, indicated 

significant structuring among the populations. Additionally, Bayesian clustering analyses detected three 

putative ancestral gene pools, of which two were present in the Okavango River population, supporting 

the findings of the Nile crocodile to be structure according to river basin formation. Despite no expansion 

or population bottleneck detected in the Nile crocodile populations, a contemporary genetic bottleneck 

may have gone undetected due to the crocodile’s long-life span and breeding between overlapping 

generations. The contemporary restriction of gene flow and historical river topography are the most likely 

cause of genetic structure in the Nile crocodile populations of today. Even though the Kunene and 

Okavango Nile crocodile populations are experiencing different environmental and evolutionary 

pressures, the genetic data suggest a single evolutionary significant unit, with two management units. The 

Okavango River had a broad sampling range for the study, however both river populations will require 

more samples to validate fine-scale genetic structure.  
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Opsomming 

Die Nyl krokodil het talle fases van onwettige jag ervaar in die middel van die 20ste eeu oor 

meeste van die spesie se verspreidingsgebied. Die verminderde Nyl krokodil bevolking het gedeeltelike 

herstel en word tans beskou as 'n laer risiko / minste kommer spesie op die rooi lys van die Internasionale 

Unie vir die Bewaring van die Natuur. In Namibië, is die Nyl krokodil erken as 'n beskermde wildsoort 

onder die Natuurbewaring Ordonnansie Nr. 4 van 1975, sodat trofeejag van die spesie net met die 

uitreiking van 'n jaglisensie uitgevoer mag word. Sensus en genetiese data vir die Nyl krokodil is beperk 

of nie-bestaande in Namibië en die land het onlangs 'n spesie bestuursplan, om die wilde bevolkings 

bewaar, ontwikkel. Gedurende 2012 is 'n lug telling opname langs die ‘Lower’ Kunene Rivier gedoen om 

die digtheid en verspreiding van die Nyl krokodil bevolking te skat, deur die gebruik van 'n onlangs 

ontwikkelde ‘N-mixture’ model. Die ‘Lower’ Kunene Rivier direkte telling, skat ongeveer 562 krokodille 

ongeag die grootte, en 'n geskatte bevolkingsgrootte van 806 individue na sydigheidskorreksie. Die 

analise blyk dat die klas gestruktureerde model kan onbevooroordeelde ramings van die Nyl krokodil 

bevolking in die ‘Lower’ Kunene Rivier stelsel produseer. Om verder by te dra tot die bewaringspogings 

van die Nyl krokodil in die ‘Lower’ Kunene Rivier, poog die studie om die genetiese diversiteit en -

struktuur binne die Kunene- en Okavango Rivier stelsel, in vergelyking met die naburige rivierbekkens, te 

ondersoek . Elf mikrosatelliet merkers en mitochondriale DNA is vir die doel aangewend. Die ‘Lower’ 

Kunene en Okavango bevolkings dui op 'n onlangse divergensie met 'n enkele haplotipe wat gedeel word 

tussen die 64 monsters. Die haplotipe word interessantlik gedeel met bevolkings in Gabon en Uganda. 

Verder was daar twee takke van haplotiepes gevind tussen die ‘Lower’ Kunene en Okavango en die 

‘Lower’ Shire-rivier stelsel. Na raming van paarsgewyse bevolking differensiasie, F-statistieke, AMOVA 

en faktoriaal korrespondensie analise (‘FCA’), gebaseer op mikrosatelliete, is daar beduidende genetiese 

strukturering tussen verskeie bevolkings. Daarbenewens, bevind ‘Bayesian’ groeperingsanalise dat daar 

drie vermeende voorvaderlike geen poele bestaan, waarvan twee teenwoordig was in die Okavango Rivier 

bevolking. Hierdie data ondersteun vorige waarneming dat Nyl krokodil populasiestruktuur beïnvloed 

word deur rivier vorming. Ten spyte van die beraamde afwesigheid van bevolkingsuitbreiding of 

bevolkingsbottelnekke in die Nyl krokodil, kan 'n kontemporêre genetiese bottelnek ongemerk gegaan het 

as gevolg van die krokodil se lang lewensduur en teling in oorvleueling generasies. Die kontemporêre 

beperking van genevloei en historiese rivier topografie is die mees waarskynlike oorsaak van die 

beskryfde genetiese struktuur in die Nyl krokodil bevolking. Selfs ervaar die Kunene en Okavango Nyl 

krokodil bevolkings verskillende omgewings- en evolusionêre druk, is daar slegs ŉ enkele evolusionêre 

beduidende eenheid, met moontlik twee bestuurseenhede. Die Okavango Rivier het 'n breë 

monsterneming reeks vir die studie; Maar beide rivier bevolkings sal meer monsters benodig om fyn skaal 

genetiese struktuur te ondersoek. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



iv 
 

Acknowledgement 

 

I would like to extend my gratitude to the following institutions for financial support (in 

alphabetical order): the Crocodile Specialist Group, the Go Green Fund of Namibia Nature Foundation 

and NEDBANK Namibia, the Melon Foundation, The Russel E. Train Education for Nature Program 

World Wildlife Fund–US and Stellenbosch University. I would also like to thank the following persons 

and institutions for aiding in the acquisition of biological specimens (in alphabetical order): Ministry of 

Environment and Tourism of Namibia (Mrs Chantel Louw, Mr Chris Eyre, Mr Hans Swartbooi, Mr Ita 

Matheus, Mr Piet Beytell, Oom Pierre du Preez), Okavango Research Group of Botswana, Shire River 

Crocodile Ltd of Malawi (Mr Bruce Carruthers and Mr Mike Fuller), Onderstepoort (Dr Jan Myburg), 

Otjiwarongo Crocodile Farm (Mr Dieter Noelle and Mr Victor Smith) and Wilderness Safaris (Dr Conrad 

Brain and Mr Jack Chakanga). I wish to thank the assistance from Kamutjonga Inland Fisheries Institute 

(Mr Renier Buger and Mrs Kaviva) for the accommodation during field work along the Okavango River 

and Mr Arnaud Lyet (World Wildlife Fund–US) for the statistical analyses and modelling of population 

estimation. 

I must also extend my gratitude to the following squadron who assisted with keeping the sanity 

and handling the frustration, Mrs BVS Green, Dr B van Asch, Dr D Guzha, Luke Meyer and Marcus 

Meyer. Also to the fellow peeps in the Molecular Breeding and Biodiversity Laboratory (R Badenhorst, D 

Bitalo, R Dale Kuys, F Jenkins, J Kazemba, N Kitchen, G Kuguru, S Lesch, S Maduna, M Niemandt, S 

Ntladi, C Rossouw, T Sanudi and J Vervalle, especially S Lesch) and the Namibian Support Team (Oom 

Hanjo Bohmë and company). 

To my family in Namibia I would like to thank for doing my errands in Namibia when I was down 

in Stellenbosch, to my Mom I would like to thank for all the care packages sent during my studies and for 

the field work expeditions. To my dad your knowledge of field work has been a great support to my 

encounters and a lot of it would not have been accomplished without having learned some of your 

knowledge over the years. Hopefully one day I will be able to find excitement in my work and experience 

wild life the way you have. 

Last but not least, to my supervisors (Dr Ruhan Slabbert, Dr Clint Rhode and Dr Alison Leslie) it 

was not an easy task to adjusting to a continuously changing environment. I would like to thank you for 

your time, patients, understanding and support with advice and helping me to stay safe during field work 

and genetic data analyses encounters.  

Stellenbosch University  https://scholar.sun.ac.za



v 
 

Table of Contents 

DECLARATION ............................................................................................................................................................ I 

ABSTRACT ................................................................................................................................................................... II 

OPSOMMING ............................................................................................................................................................. III 

ACKNOWLEDGEMENT .......................................................................................................................................... IV 

TABLE OF CONTENTS .............................................................................................................................................. V 

LIST OF TABLES ..................................................................................................................................................... VII 

LIST OF FIGURES ................................................................................................................................................ VIIX 

LIST OF ABBREVIATIONS ..................................................................................................................................... XI 

CHAPTER 1 - INTRODUCTION: LITERATURE REVIEW, RESEARCH AIMS AND OBJECTIVES ........... 1 

1.1 INTRODUCTION TO THE STUDY ANIMAL .................................................................................................................. 1 

1.2.1 Crocodilian fossil evidence and origin of the species ......................................................................................... 3 

1.2.2 Crocodilian conservation ecology ...................................................................................................................... 4 

1.3. POPULATION DYNAMICS ........................................................................................................................................ 6 

1.3.1 Historical population dynamics .......................................................................................................................... 6 

1.3.2 Contemporary population dynamics ................................................................................................................... 7 

1.4 POPULATION GENETICS FOR CROCODILE CONSERVATION AND STUDY RATIONALE ................................................. 9 

1.5 AIMS AND OBJECTIVES .......................................................................................................................................... 11 

CHAPTER 2 - NILE CROCODILE POPULATION ESTIMATION IN THE LOWER KUNENE RIVER, 

NAMIBIA CALCULATED USING A BINOMIAL MIXTURE MODEL ............................................................. 13 

ABSTRACT .................................................................................................................................................................. 13 

2.1 INTRODUCTION ..................................................................................................................................................... 14 

2.2 MATERIALS AND METHODS .................................................................................................................................. 16 

2.2.1 Study Area .................................................................................................................................................... 16 

2.2.2 Survey design and effort ............................................................................................................................... 17 

2.2.3 Data Recording Survey ................................................................................................................................ 18 

2.2.4 Site and sampling covariates ........................................................................................................................ 19 

2.2.5 Description of the model .............................................................................................................................. 24 

2.3 RESULTS ............................................................................................................................................................... 26 

2.3.1 Model fit and performance ........................................................................................................................... 26 

2.3.2 Mean detection probability and total population size .................................................................................. 27 

2.3.3 Covariate effects on detection probability and local abundance ................................................................. 27 

2.4 DISCUSSION .......................................................................................................................................................... 28 

2.4.1 Total abundance ........................................................................................................................................... 28 

2.4.2 Local abundance and covariates effects ....................................................................................................... 29 

2.4.3 Detection probability .................................................................................................................................... 30 

2.5 CONCLUSION ........................................................................................................................................................ 31 

CHAPTER 3 - GENETIC DIVERSITY AND POPULATION GENETIC STRUCTURE IN THE LOWER 

KUNENE, OKAVANGO AND LOWER SHIRE RIVER SYSTEM NILE CROCODILE (CROCODYLUS 

NILOTICUS) POPULATIONS IN SOUTHERN AFRICA. ..................................................................................... 32 

ABSTRACT .................................................................................................................................................................. 32 

3.1 INTRODUCTION ..................................................................................................................................................... 33 

3.2 MATERIAL AND METHODS .................................................................................................................................... 35 

3.2.1 Sample collection and DNA extraction ........................................................................................................ 35 

3.2.2 MtDNA sequences ........................................................................................................................................ 35 

3.2.3 MtDNA sequence analysis ............................................................................................................................ 36 

3.2.4 STR selection, multiplexing and genotyping ................................................................................................. 37 

3.2.5 STR population genetic analyses .................................................................................................................. 37 

3.3 RESULTS ............................................................................................................................................................... 39 

3.3.1 Mitochondrial Analysis ................................................................................................................................ 39 

3.3.2 Genetic diversity and effective population size based on STR analysis ........................................................ 42 

3.3.3 Contemporary genetic connectivity and genetic structure ........................................................................... 43 

 

3.4 DISCUSSION .......................................................................................................................................................... 47 

3.4.1 Divergence in the southern Africa crocodilian population .......................................................................... 48 

3.4.2 Genetic diversity contemporary population dynamics ................................................................................. 49 

3.4.3 The Split of Namibian Nile crocodile populations ....................................................................................... 49 

Stellenbosch University  https://scholar.sun.ac.za



vi 
 

3.5 CONCLUSION ........................................................................................................................................................ 51 

CHAPTER 4 - CONCLUDING REMARKS, SHORT COMINGS AND FUTURE RECOMMENDATIONS .. 52 

4.1 OVERVIEW OF THE STUDY FINDINGS ..................................................................................................................... 52 

4.2 CONTRIBUTION TOWARDS CONSERVATION EFFORTS............................................................................................. 53 

4.3 LIMITATIONS AND FUTURE RESEARCH .................................................................................................................. 54 

REFERENCES ............................................................................................................................................................. 55 

APPENDIX A ............................................................................................................................................................... 70 

APPENDIX A1 ............................................................................................................................................................. 70 

APPENDIX A2 ............................................................................................................................................................. 71 

APPENDIX A3 ............................................................................................................................................................. 73 

APPENDIX B ............................................................................................................................................................... 75 

  

Stellenbosch University  https://scholar.sun.ac.za



vii 
 

List of Tables 

Table 2.1 Description of the environmental factors used as covariates in the statistical analysis. See also Appendix A2, Figure 

S2.1, S2.2 and S2.3.. ............................................................................................................................................................ 20 

 

Table 2.2 Summary of the N-mixture analysis for crocodiles in group 1 (crocodile size from 1.0-3.0 m). The table shows the 

Bayesian posterior mean, standard deviation and 95% credibility interval for each parameter included in the model as 

described in the text. Rhat < 1.05 indicates that the chains have converged. ...................................................................... 23 

 

Table 2.3 Summary of the N-mixture analysis for crocodiles in group 2 ( > 3 meters in size). The table shows the Bayesian 

posterior mean, standard deviation and 95% credibility interval for each parameter included in the model as described in 

the text. Rhat < 1.05 indicates that the chains have converged ........................................................................................... 24 

 

Table 2.4 Total population size and number of crocodiles in each size-class.............................................................................. 27 

 

Table 3.1 Genetic divergence among populations of the Nile crocodiles in Kunene, Okavango (Bwabwatwa National Park, 

Okavango Delta and Otjiwarongo Crocodile Farm), Lower Shire populations (Lower Shire (North) and Lower Shire 

(South)) populations and South Africa commercial population. Pairwise Fst-values using STRs below diagonal line and 

pairwise Φst-values using mtDNA above diagonal line. N/A = No amplification. ............................................................. 40 

 

Table 3.2 AMOVA results for standard computations (haplotype format) of the control region, excluding South African 

samples. Two separate analyses were conducted, namely populations clustered in two groups. Group 1: West (Lower 

Kunene and Okavango) vs east (Lower Shire), Group 2: Lower Kunene vs Okavango populations.. ................................ 40 

 

Table 3.3 Genetic diversity in the Nile crocodile populations genotyped in this study for mean values of Panmixia of Southern 

Africa populations, Lower Kunene population, Okavango populations (Bwabwatwa National Park, Okavango Delta and 

Otjiwarongo Crocodile Farm), Lower Shire populations (Lower Shire (North) and Lower Shire (South) and South 

African commercial population. For complete table refer to Appendix B: Table S3.4. N - number of individuals, An - 

number of alleles, He - expected heterozygosity, Ho - observed heterozygosity, HWE - Hardy Weinberg Equilibrium test 

(P-value), Rs - mean allelic richness, Fis - mean frequency of inbreeding coefficient.t...................................................... 43 

 

Table 3.4 Estimates of contemporary Ne size based on the Linkage Disequilibrium method [95% CI], combined Ne of the 

Okavango and Lower Shire populations are in the shaded areas.. ....................................................................................... 47 

 

Table 3. 1 Results from the BOTTLENECK test of Short Tandem Repeats from the seven populations tested across the three 

different models Infinite Allele Model (IAM), Two-Phase Modeal (TPM) and Single Mutation Model (SMM). Combined 

test for all three models of the Okavango and Lower Shire populations are in the shaded areas. ....................................... 48 

 

Table S2.1 The 10 sessions flown along the Kunene river system during the aerial survey. Shown for each day flown along the 

river and the distances covered on every single day. The river mouth was considered 0km and the Ruacana dam 352km. 

 ............................................................................................................................................................................................. 70 

 

Table 2.2 Sample of the count data recorded on the Kunene River at site #71. Figures indicate the number of crocodiles 

observed at the site on a particular sampling occasion. NA indicates that this site was not surveyed on this particular 

occasion. Occ = occasion / session ...................................................................................................................................... 70 

 

Table S3.1 Origin of Nile crocodile individuals used within the study for phylogeographic analyses for comparison of Nile 

crocodile distribution in Africa, using mtDNA control region. Indicating country of origin, river system, latitude, 

longitude, sample type and accession number. .................................................................................................................... 75 

 

Table S3.2 Additional samples of Nile crocodile mtDNA control regions of publically available sequences. Geographic 

location, River System Locality, N – Number of samples, Accession Number and Source. ............................................... 77 

 

Table S3.3 Eleven STR marker panel optimised for Nile crocodile genotyping in three PCR multiplex reactions and a 

singleplex reaction with primer information, repeat motif, dye label, estimated allele ranges, Ta - primer annealing 

temperature and PCR conditions of primers used. Loci were selected from 1(Miles et al. 2009a) and 2 (Bishop et al. 

2009). ................................................................................................................................................................................... 79 

 

Table S3.4 Genetic diversity for the Nile crocodile, Crocodylus niloticus, integrated over all mtDNA control region haplotypes 

from each sampling location. N - number of samples, H - number of haplotypes (unique haplotypes), h - haplotype 

diversity, π - nucleotide diversity, k - mean number of nucleotide differences between haplotypes. .................................. 81 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



viii 
 

Table S3.5 Eleven STR markers optimised for the Nile crocodile populations genotyped in the study, a) over all populations, 

b) Kunene population, c) Okavango populations (Bwabwatwa National Park, Okavango Delta and Otjiwarongo Crocodile 

Farm), d) Shire populations (Shire (North) and Shire (South) and e) South Africa commercial samples. N - number of 

individuals, An - number of alleles, He - expected heterozygosity, Ho - observed heterozygosity, HWE - Hardy Weinberg 

Equilibrium test (P-value), Rs - mean allelic richness, Fis - mean frequency of inbreeding coefficient, Null Alleles – 

Brookfield 1, Ewens-Watterson homozygosity test Frequencies (P-value) and PIC - polymorphic information content. .. 82 

 
Table S3.6 Nile crocodile populations (Lower Kunene, Bwabwatwa, Okavango Delta, Otjiwarongo Crocodile Ranch, Lower 

Shire  (North), Lower Shire (South) and South Africa Commercial samples) allele frequencies for 11 STR loci (N = 139), 

including; Allelen = mean allele size and N = number of individuals. ................................................................................ 85 

  

Stellenbosch University  https://scholar.sun.ac.za



ix 
 

 

List of Figures 

Figure 1.1 Figure 1.1 Exterior marker identification of the Nile crocodile (C. niloticus) for their identification in the wild and 

the distribution in Africa and its surrounding islands. Modified from CITES (1999). .......................................................... 2 

 

Figure 1.2 Phylogenetic tree with karyotype insert to illustrate the lineage separation of the western (light grey) and eastern 

(red) Nile crocodile populations and the difference in chromosome pairs. The phylogenetic tree and karyotype analyses 

support a paraphyletic Nile crocodile with the predominantly western clade (light grey) as sister to a monophyletic New 

World and eastern Nile crocodile clade. Posterior probability (PP) are indicated above the branches with significant 

support indicated by PP > 0.90. Karyotype inserts displayed are those of individuals SAAF_1, SAAF_P (western) and 

SAAF_2 (eastern). Drafted from Hekkala et al. (2011) ........................................................................................................ 3 

 
Figure 1.3 The Northern river system basins of Namibia, originating in the Bie Highland of central Angola. Depicting the 

separation of the Kunene (Blue) and Okavango (Green) river systems by the Cuvelai basin (Red), historically considered 

a Paleo-lake system. Modified from Miller et al. (2010)  .................................................................................................... 11 
 

Figure 2.1 A map showing the lower Kunene River surveyed during the study. The Kunene river mouth is situated at the 

left/west (0km) and Ruacana dam at the right/east (352km) (See Appendix A1 Table S2.1).. ......................................... 177 

 

Figure 2.2 Observations of Nile crocodiles on the Lower Kunene River during the 2012 aerial survey. Green dots indicate 

animals between 1 and 3 meters in length, red dots indicate animals greater than 3 meters. The size of the circle is 

proportional to the number of individuals observed at the location (see Fig. 2.1.) .............................................................. 19 

 

Figure 2.3 Predictions of the covariate relationships that account for estimation uncertainty, 1-3 meters crocodile class (group 

1). (a) relationship between covariate and the detection probability. (b), (c) and (d) relationship between site covariates 

and predicted population size. The blue line shows the posterior mean, and grey lines show the relationships based on a 

random sample of 500 to visualize estimation uncertainty.. ................................................................................................ 21 

 

Figure 2.4 Predictions of the covariate relationships that account for estimation uncertainty, 3+ meters crocodile class (group 

2). (a), (b), (c) and (d) relationship between the site covariates and the population size. Blue line shows the posterior 

mean, and grey lines show the relationships based on a random sample of 500 to visualize estimation uncertainty. ......... 22 

 

Figure 2.5 Posterior predictive check of model fit by a scatter plot of the discrepancy measure for replicate (simulated) versus 

actual (observed) data in an N-mixture model. The Bayesian p-value is the proportion of points above the 1:1 line......... 25 

 

Figure 3.1 (a) The Medium-Joining haplotype Network depicting two groups of haplotypes, namely the Western and Eastern 

clades. Haplotype colours correspond to the countries where the samples were collected. Circles represent mtDNA 

haplotypes, lines connecting haplotypes represent a single substitution step, and black dots represent hypothetical 

haplotypes. // represents 15 mutational steps. (b), indication of the 12 haplotypes found within the Nile crocodile 

portrayed for each country of origin in Africa. Then samples within the study from the Lower Kunene and Okavango 

share the same haplotype with Gabon and Uganda. Furthermore, the populations of Southern Africa show two different 

haplotypes among each other separating those of Lower Kunene and Okavango from the Lower Shire population, which 

shares haplotypes with the surrounding countries.. ............................................................................................................. 41 

 

Figure 3.2 LOSITAN results indicating outlier loci as candidate loci under positive (red) and balancing (yellow) selection. All 

loci (indicated in blue dots) were considered to be neutral. ................................................................................................. 43 

 

Figure 3.3 Genetic structure of Crocodylus niloticus populations based on Bayesian clustering analyses [Structure software 

v2.3.4 (Pritchard et al. 2000)] a) Genetic clusters in Southern Africa (complete dataset) , K = 2 and (b) Genetic clusters  

in the Kunene and the Okavango samples. Populations: (1) Okavango, (2) Kunene, (3) South Africa Commercial and (4) 

Lower Shire. ........................................................................................................................................................................ 44 

 

Figure 3.4 Locus by locus AMOVA results with populations clustered (a) in two geographical groups, Lower Kunene and 

Okavango river populations vs. Lower Shire River population and (b) two river groups, Lower Kunene river population 

vs. Okavango River population (*significance as the 0.01% nominal level). ..................................................................... 45 

 

Figure 3.5 Factorial Correspondence Analyses plots. (a) Four Crocodylus niloticus populations grouped into their various river 

systems(Dark Blue indicates South Africa and Lower Shire populations and Light Blue indicates Lower Kunene and 

Okavango populations). Heterogeniety (b) within South Africa and the Lower Shire along factor 1 and 2, (c) within 

Lower Kunene and Okavango along factor 1 and 2............................................................................................................. 46 

 

Figure S2.1 Covariates description for river segments 371-380. ................................................................................................. 71 

 

Figure S2.2 Covariate description segments for river segments 518 to 524 ................................................................................ 72 

Stellenbosch University  https://scholar.sun.ac.za

file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224227
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224227
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224228
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224228
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224228
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224229
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224229
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224229
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224229
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224230
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224230
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224230
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224231
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224231
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224376
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224376
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224376
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224376
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224376
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224376
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224376
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224376
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224377
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224377
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224378
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224378
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224378
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224378
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224379
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224379
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224379
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224380
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224380
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224380
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224380
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224910
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224910


x 
 

 

Figure S2.3 Covariate description ............................................................................................................................................... 72 

 

Figure S3.1 Map of Southern Africa river system indicating crocodile capturing sites. Within each of the three different river 

systems, Fig. 3.1b Kunene River, Fig. 3.1c Okavango River and the Lower Shire River  .................................................. 88 

 

Figure S3.1b Map of the Lower Kunene River system and crocodile capturing sites. On the left (green square) capturing site 

Serra Cafema and on the right (blue sqaure) capturing site East of Swart Boois drift. Blue dots indicate sampling location 

of Nile crocodile individuals used within this study. ........................................................................................................... 89 

 

Figure S3.1c Map of the Okavango river system from Namibia and the Okavango Delta in Botswana. Blue dots indicate 

sampling location of Nile crocodile individuals used within this study. ............................................................................. 90 

 

Figure S3.2 Scute cut removal system for Nile crocodile individual identification in the wild, with modification form Leslie et 

al., 1997 ............................................................................................................................................................................... 91 

 

Figure S3.3 An Unweighted Pair Group Method with Arithmetic Mean (UPGMA) phylogenetic tree of mtDNA control region 

sequences used within the study for the Lower Kunene, Okavango, Lower Shire and publically available sequences 

(Hekkala et al. 2011) for the Nile crocodile in Africa, considering Alligator mississipiensis as the outgroup. Redlines 

indicate the separation of the western Nile crocodile clade as described by Schmitz et al. (2003) and the black lines the 

eastern clade.  Of which the eastern clade consist of a further two lineages within Southern and eastern Africa. Lineage 1: 

Green and Lineage 2: Blue for Southern Africa. ................................................................................................................. 92 

 
Figure S3.4 Delta K vs K for number of population detection without prior assumption of populations in Southern Africa 

rivers, Kunene, Okavango, Shire and South Africa Rivers. Results indicate two distinct populations present within 

Southern Africa ................................................................................................................................................................... 93 

 

Figure S3.5 Delta K vs K for number of population detection without prior assumption of populations in the Kunene and 

Okavango river populations. Results indicate two distinct populations present within the Kunene and Okavango river 

systems in Northern Namibia. ............................................................................................................................................. 93 
  

Stellenbosch University  https://scholar.sun.ac.za

file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224910
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224910
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224910
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224926
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224926
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224926
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437225105
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437225105
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224911
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2017.docx%23_Toc437224911
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2018.docx%23_Toc437246261
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2018.docx%23_Toc437246261
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2018.docx%23_Toc437246261
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2018.docx%23_Toc437246262
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2018.docx%23_Toc437246262
file:///K:/This%20is%20apparently%20it/Complete%20thesis%20draft%2018.docx%23_Toc437246262


xi 
 

List of Abbreviations 

λ Mean abundance 

μL Microlitre 

μM Micromole 

π Nucleotide diversity 

CI Confidence interval 

CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora 

CTAB Cetyltrimethylammonium Bromide [((C16H33)N(CH3)3Br] 

DNA Deoxyribonucleic Acid 

DSS Division Support System 

ESU Evolutionary Significant Units 

FAM 5-carboyfluirescein (ABI-fluorescent label) 

FCA Factorial Correspondence Analysis 

Fct Derivative of Wright’s Fixation Index adapted for hierarchical AMOVA (group of 

populations relative to the total population) 

Fis Wright’s Fixation Index (individual relative to the sub-population, equal to the 

inbreeding coefficient - f) 

Fsc Derivative of Wright’s Fixation Index adapted for hierarchical AMOVA (sub-population 

relative to the group of populations) 

Fst Wright’s Fixation Index (subpopulation relative to the total population) 

GPS Global Positioning System 

H Number of haplotypes 

h Haplotype diversity 

He Expected Heterozygosity 

Ho Observed Heterozygosity 

HWE Hardy-Weinberg Equilibrium 

IAM Infinite Allele Model 

IUCN International Union for Conservation of Nature and Natural Resources 

k Mean number of nucleotide differences between haplotypes 

km Kilometre 

LD Linkage Disequilibrium 

MCMC Markov Chain Monte Carlo 

MET Ministry of Environment and Tourism 

mtDNA Mitochondrial Deoxyribonucleic Acid 

MU Management Units 

MUSCLE Multiple Sequence Comparison by Log-Expectation 

mya Million years ago 

N Realised abundance 

Ne Effective population size 

PIC Polymorphic Information Content 

Rand Random Survey effect 

Rs Allelic Richness 

S# Session Number 

Stellenbosch University  https://scholar.sun.ac.za



xii 
 

SD Standard Deviation 

sec Second 

SMM Stepwise Mutation Model 

Spp. Several Species 

STRs Short Tandem Repeats 

SVL Snout Vent Length 

Ta Annealing Temperatures 

TM 
Trademark 

TPM Two-Phased Model 

 

Stellenbosch University  https://scholar.sun.ac.za



1 
 

Chapter 1 

Introduction: Literature Review, Research Aims and 

Objectives 

1.1 Introduction to the study animal 

The crocodile family, Crocodylidae, is considered part of the class Reptilia and 

consists of three genera, Crocodylus, Ostelaemus and Tomistoma (Britton 1995). The 

Crocodylus genus consists of 11 different crocodilian species including, but not limited to the 

Nile crocodile (C. niloticus), Morelet’s crocodile (C. moreletii) (Platt et al. 2010) and 

Saltwater crocodile (C. porosus) (Webb et al. 2010). The Crocodylidae family is distributed 

worldwide with six genera residing in Asia and four in America (Britton & Ferioli 2012). 

Three distinct crocodilian species populate the fresh water river, lakes and/or swamps of 

Africa, however the status of the populations have only been reported in a few incidents 

(Graham 1968; Parker 1970; Hutton 1989; Leslie 1997; Platt & Thorbjarnarson 2000; 

Bourquin 2007; Chase 2009; Ferreira & Pienaar 2011; Wallace et al. 2013; Combrink 2014). 

The crocodile family feature as an apex predator in its natural environment and has been 

deemed important for conservation intentions as a keystone species (Musambachime 1987; 

Bourquin 2007; Aust 2009; Ashton 2010).  

The limited research on crocodilians, in Africa, has highlighted the need to investigate 

the population dynamics of these species. The three crocodilian species are the Nile crocodile 

(C. niloticus) (Schmitz et al. 2003; Fergusson 2010), Dwarf crocodile (Ostelaemus tetraspis) 

(Schmitz et al. 2003; Eaton 2010) and Slender-snouted crocodile (Mecistops cataphractus) 

(Meredith et al. 2011; Shirley 2010). The distributions and greater localization of the species 

are found, but not limited to central and western Africa and in addition the Nile crocodile is 

widely dispersed over sub-Saharan Africa (Cites 1999 Figure 1.1). The Nile crocodile is 

easily identifiable by several exterior markers, namely two nuchals smaller than the other 

four, one row of post-occipitals and protuberance behind each of the eyes (Cites 1999; Figure 

1.1). 

The Nile crocodile has experienced numerous stages of illegal hunting pressures in 

the mid-20
th

-century across most of the species’ distribution (Ross 1998). The reduction of 

the Nile crocodile in the meantime has shown partial recovery and it is currently considered a 

lower Risk / least Concern on the Red List of International Union for Conservation of Nature. 

Notwithstanding the difficulty of evaluating the total wild population size, rough estimates 

have been provided for 250 000 to 500 000 individuals (IUCN 2014). It has been noted that 
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wild Nile crocodile populations have shown partial recovery, but are currently still under 

threat due to habitat loss caused by anthropogenic actions. As such, crocodiles are considered 

peripherally endangered in developing countries, including Namibia (Griffin 2003). In order 

to aid the future survival of the affected populations, conservation efforts are required to 

identify different managements units of the Nile crocodile populations, making use of 

behavioural, biological and genetic analyses. 

The Nile crocodile is regarded as a long lived species; reaching an average age of 45 

years in the wild. Moreover, age estimates of the Nile crocodile in the wild are difficult to 

determine accurately and thus it is considered a function of total animal length (with the 

average length to being five meters) (Groombridge 1987).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recent work conducted on crocodiles have brought about significant molecular and 

morphometric evidence, endorsing two lineages in the Slender-snouted crocodile (Shirley et 

al. 2014). Schmitz et al. (2003) reported that the Nile crocodile similarly shows a molecular 

lineage separation between the Eastern and Western Nile crocodile, namely paraphyletic East 

(Madagascan populations) and monophyletic West (Central African population) clades. A 

Figure 1.1 Exterior marker identification of the Nile crocodile (C. niloticus) for their 

identification in the wild and the distribution in Africa and its surrounding islands. 

Modified from CITES (1999). 
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study by Hekkala et al. (2010) supported these findings with further evidence for genetic 

divergence between the Eastern and Western African clades. Additionally, Nile crocodile 

karyotype differences exist between the two clades and current emerging evidence suggests 

the western clade is a historically extinct Crocodylus species, C. suchus (Figure 1.2). These 

findings provide important information regarding the conservation of the wild Nile crocodile 

populations. Nevertheless, the Crocodile Specialist Group currently recognizes the Nile 

crocodile as a single species (Crocodie Specialist Group 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.1 Crocodilian fossil evidence and origin of the species 

The origin of Crocodylus is unclear, however, the genus is thought to have originated 

in Africa during the Cretaceous period 65 million years ago (mya) (Sill 1968), owing their 

global distribution to continental drift (Brooks & O’Grady 1989). The oldest fossils 

recovered for the Crocodylus genus, C. palaeindicus, was found on the Indian subcontinent 

(South East Asia) dated to have lived during the late Miocene period (11 – 5.2 mya) (Brochu 

2000). Additional Crocodylus fossils were discovered and dated in Australia (4.5-4 mya) 

(Willis 1997), Neotropics (Central-America) (+/- 4mya) (Miller 1980) and Africa (3-2 mya) 

Figure 1. 2 Phylogenetic tree with karyotype insert to illustrate the lineage separation of the western (light grey) 

and eastern (red) Nile crocodile populations and the difference in chromosome pairs. The phylogenetic tree and 

karyotype analyses support a paraphyletic Nile crocodile with the predominantly western clade (light grey) as 

sister to a monophyletic New World and eastern Nile crocodile clade. Posterior probability (PP) are indicated 

above the branches with significant support indicated by PP > 0.90. Karyotype inserts displayed are those of 

individuals SAAF_1, SAAF_P (western) and SAAF_2 (eastern). Drafted from Hekkala et al. (2011) 
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(Tchernov 1986). Fossil evidence suggests that continental separation and long distance 

travel may explain the current global species distribution of crocodilians. Long distance 

traveling has been reported for crocodile populations over a large geographical range. 

Evidence has been supportive of Crocodylus utilizing ocean currents for long distance travel. 

For example, C. porosus have been found to make use of ocean currents (Campbell et al. 

2010) and reportedly travelled 800km (Bustard & Choudhury 1982) and 1360 km (Allen 

1974) from land. The long distance migration of crocodiles allowed for the emergence of a 

new hypothesis to be considered for their global distribution. 

Oaks (2011) formulated a hypothesis based on the origin and global distribution of the 

Crocodylus genus, with the genus nested with a common ancestor in the Tortonian Indo-

Pacific 13.6-8.3 mya (Mekosuchinae, a sub-family of crocodiles), which shows the 

distribution relative to a time of mass extinction. If there is merit in the evidence presented by 

Oaks (2011) and the origin of Crocodylus as per the fossil evidence, then this can be used in 

support of Crocodylus and its movement into Africa during the post extinction period.  

The location of Crocodylus entry into Africa has not been defined, however the 

Congo Basin has been considered as a point likely of origin (Hekkala et al. 2011). The 

probability of the Congo Basin origin is plausible, as several fish species have also been 

described as having originated from the Basin (Skelton 1975). The separation of riverine 

species in Africa has been considered relative to rift valley formation and topographic 

changes (Skelton 1975; Bell-Cross 1968; Salzburger et al. 2005; Eaton et al. 2009; Hekkala 

et al. 2011). The separation of the various isolated species are required to be evaluated for 

conservation management, as different conservation plans are required for diverged 

populations. The structuring of these populations are required and has previously been found 

for the Nile crocodile to be structured according to river basin formation (Hekkala et al. 

2010). 

 

1.2.2 Crocodilian conservation ecology 

Census estimates of Crocodylus species have been conducted on various river systems 

(Graham 1968; Parker 1970; Hutton 1989; Platt & Thorbjarnarson 2000; Bourquin 2007; 

Chase 2009; Ferreira & Pienaar 2011; Wallace et al. 2013; Combrink 2014). Evidently, it is 

difficult to compare the various river system population sizes to one another due to different 

habitat types. Common methods of crocodile population estimations are achieved via 

spotlight boat, or helicopter surveys. Furthermore, these means of prediction provide good 

estimates for crocodile abundance, however each is not without its own bias (Bayliss 1987; 
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Pollock & Kendall 1987; Cherkiss et al. 2006; Bourquin 2007). Bias factors are considered 

different for boat surveys and aerial surveys. 

Boat surveys are affected by the limited access to parts of a river, observer skill, boat 

speed (Cherkiss et al., 2006), water level, water temperature, time of day and crocodile 

behaviour (Hutton & Woolhouse, 1989). Aerial surveys allow for a greater field of view, 

however is affected by dense vegetation, bad weather conditions and observer fatigue 

(Bayliss, 1987; Pollock & Kendall, 1987; Bourquin, 2007). Models have been proposed to 

limit and correct these bias factors for each of the counting methods. Even though aerial 

surveys have shown a lower detection rate for crocodilian counts compared to boat surveys 

(Woodward et al., 1996; Stirrat, et al., 2001), the acknowledgement of statistical bias 

correction has shown, for both methods, to estimate similar results (Woodward et al. 1996; 

Stirrat et al. 2001; Ferreira & Pienaar 2011). 

The predictive data generated from the various abundance estimates may be beneficial 

towards conservation efforts for establishing more effective management plans. Furthermore, 

comparison of census data within river systems over time requires surveys to be consistent 

every year. For example, conducting a census estimate during the rainy season (high water 

levels) during a single year should be repeated the following year during the same seasonal 

time. In support of the previous, encounter rates of crocodiles have been reported to differ 

between seasons (Woodward & Marion 1978; Messel 1979; Webb et al. 1990; Ron et al. 

1998; Bourquin 2007). Comparisons of crocodile populations between river systems are 

problematic due to different habitats, therefore genetic variation can be considered for 

additional comparisons between populations (Hare et al. 2011) and in the same way genetic 

variation has been correlated to population size (Reed & Frankham 2003). 

An estimate of genetic variation within a population is expressed as a function of 

effective population size (Ne) (Franklin 1980; Waples & Do 2010; Hare et al. 2011). The Ne 

provides an estimate for the potential numbers of breeders, which contribute to the following 

generation and in addition the contribution of genetic variation between generations (Waples 

& Do 2010; Hare et al. 2011). The influence of genetic drift on a small population is 

considered to be greater in comparison to a larger population (Franklin 1980). Effective 

population size indicates the loss of genetic variation between populations as the result of 

genetic drift over time, whereas the census size provides an estimate for the total population 

only.  

The use of Ne has been considered a viable option for the monitoring of wild 

populations (Rieman & Allendorf 2001; Wang 2005; Palstra & Ruzzante 2008; Harmon & 
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Braude 2010). Long-lived species tend to have a delayed onset of sexual maturity and an 

overlap of individual mating between several generations, which allows for population 

recovery and relative maintenance of genetic diversity of the historical population. Effective 

population size estimates in the Okavango Delta (Bishop et al., 2009) supported populations 

to be considered under no threat of extinction, Ne > 50 (Franklin 1980), however populations 

may have been reduced by five-fold since the historical exploitation of the population in the 

mid-20
th

 century. Further, the Ne of the Okavango Delta population has decreased, with 

genetic diversity remaining at moderate levels. In addition, the population sizes in West 

Africa have also decreased, with genetic diversity maintained among the populations. The 

above contrasting examples could be indicative that the loss of genetic diversity may not be 

exclusively dependant on Ne. 

 

1.3. Population dynamics 

Estimating genetic diversity parameters have been considered valuable for the 

management of species. Several different techniques exist to monitor the historic and 

contemporary diversity and structure among populations namely, mainly through using 

different genetic markers, such as mitochondrial DNA and Short Tandem Repeats. 

 

1.3.1 Historical population dynamics 

Mitochondrial DNA (mtDNA) is a double stranded molecule and inherited maternally 

(Avise et al. 1987). Haplotypes may differ between individuals of the same species, although 

sharing of a haplotype is considered when individuals share a common ancestor. The 

differences seen among haplotypes are due to mutations within the various mtDNA regions. 

The rates of mutation have been shown to vary between different species of vertebrates and 

each mtDNA region. For instance, the mtDNA control region have shown a high frequency 

of polymorphisms (Quinn 1992; Stewart & Baker 1994; Baker & Marshall 1997) and little to 

no variation (Baker et al. 1994; Walker & Avice 1998) between different species. 

Mitochondrial DNA has been used to evaluate historical information of species and elucidate 

their geographical distribution (phylogeography) (Ciofi 2005; Luzhang et al. 2010; Valtonen 

et al. 2014; Velo-Antón et al. 2014). The historical evaluation of Galapagos tortoises (Ciofi 

2005), Himalayen snowcock (Luzhang et al. 2010), fresh water seal (Valtonen et al. 2014) 

and Nile crocodile (Hekkala et al. 2011; Velo-Antón et al. 2014), demonstrates separate 

lineages between populations across a large areas and their most likely means of distribution. 
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The changes of environmental condition that effect crocodiles are the consequence of 

landscape changes by the formation of rift valleys or the aridification of the landscape. 

Landscape changes in Africa are those of the East African Rift Valley formation spanning 

from Mozambique into Asia (Wichura et al. 2011) and in addition the lesser known 

aridification of the Cuvelai basin in Northern Namibia (Hipondoka 2005; Hipondoka et al. 

2006; Mendelsohn et al. 2013; Miller et al. 2010; Pickford 2013). The changes in the 

landscape formation have indeed diverged populations of fauna (de Menocal 2004; Moodley 

& Bruford 2007), including fish (Ribbink 1988) and crocodiles (Hekkala et al. 2011). The 

divergence among the populations requires conservation efforts to maintain their respective 

diversities and adaptability. 

To combat and effectively assist the conservation crisis present with segregated 

populations, species specific management plans have been proposed by Moritz (1994), of 

which Evolutionary Significant Units (ESU) and Management Units (MU) have both been 

regarded as long- and short-term conservation solutions. Classification of the ESU relies on 

significant divergence of a species based on historically geographical isolated populations 

with restricted gene flow. To demonstrate, Bowen et al., (1992) evaluated the green turtle 

global distribution, based on mtDNA, and found two ESUs for the population, namely Indo-

Pacific and Atlantic-Mediterranean. Even though two ESUs were found several MUs, based 

on nuclear loci, were visible within each of the ESUs. The management of each MU ensures 

the contemporary maintenance of diversity within the meta-population (Funk et al. 2012). 

Even though it is ideal to maintain ESUs separate based on historical isolation, it should be 

considered best to maintain adaptive diversity within a population (Crandall et al. 2000). 

The incorrect management of populations have previously resulted in the extinction of 

many species or populations. (Wolf et al. 2001. Loss of genetic diversity, due to the 

introduction of farm bred individuals, and hybridization within populations have been 

observed in the brown hare, Lepus europaeus  (Mamuris et al. 2001), the wild boar, Sus 

scrofa, (Vernesi et al. , 2003) and the red-legged partridge, Alectoris rufa, (Negro, Torres & 

Godoy, 2001). 

 

1.3.2 Contemporary population dynamics 

Short tandem repeats (STRs) are found to be evenly spread within the non-coding 

region of the nuclear genome (Guichoux et al. 2011). The markers are widely used for 

population diversity and -structure analyses, genetic mapping, individual identification and 

pedigree inference in wild species (Arif & Khan 2009). The selection of STR markers for 
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population genetics is commonly preferred, since they are considered to be highly 

polymorphic and have the ability to be easily amplified at a low-cost (Guichoux et al. 2011). 

Short Tandem Repeat markers are cross-species amplifiable (Rico et al. 1996), however the 

level of polymorphisms might be negatively impacted (Primmer et al. 1996; Hughes et al. 

1998; Dallimer 1999; Galbusera 2000). Non-amplifications may also result from cross-

species amplification due to polymorphisms (indels and SNPs) within the primer binding 

sites and enzyme slippage resulting in incorrect allele scoring. Comparisons of STRs between 

different laboratories are also problematic as no well-established evolutionary model is 

available for STR marker comparisons (Beaumont & Bruford 1999). Polymorphisms within a 

population has shown correspondence to population fitness and diversity (Reed & Frankham 

2003). 

The number of alleles within a population is a good indication of the genetic diversity 

present and may be maintained in a population with the presence of gene flow. In the same 

way, the presence of gene flow between populations have been associated, but not limited to 

migration (Slatkin 1985). Gene flow may be described by several proposed models, namely 

the island model (Wright 1931) , the isolation by distance model (Wright, 1943) which was 

later attributed by Slatkin (1993) and the Stepping-stone model (Kimura 1953). The 

maintenance of gene flow between populations could increase their chance of survival as 

single alleles can play a crucial role towards adaption in a changing environment (Allendorf 

1986; Fuerst & Muruyama 1986; Spielman et al. 2004). In the case of restricted gene flow 

and migration, populations may experience a loss in diversity. 

For riverine populations, restricted gene flow is influenced by topographic changes 

and seasonal isolation of species, thereby impacting upon genetic drift between isolated 

populations (McElroy et al. 2012; Willet et al. 2014). Equally important is the population 

size as the magnitude of genetic drift is considered greater among small isolated populations 

(Huettel et al. 1980; Falconer & Mackay 1996). The size of the population has been noted to 

be supportive of diversity in the populations (Reed & Frankham 2003). On conditions that 

populations have been isolated over an extensive period of time, specific allelic frequency 

may reduce due to the potential increased likelihood of inbreeding and drift (Frankham 

2005). Inbreeding has been found to be most prominent in small isolated populations as the 

chance of consanguineous mating is more likely, evidently increasing the expression of 

deleterious recessive alleles (Charlesworth et al. 2009). Small isolated populations with 

restricted gene flow are able to survive in their newly environment, unless the founding 

population size is very small or the populations has experienced a large population decline. 

Stellenbosch University  https://scholar.sun.ac.za



9 
 

The translocation of populations between groups have been considered (De Smet 1998) and 

in addition the new genetic material will reduce lethal recessive allele expressions (Slatkin 

1985). 

Furthermore, the absences of gene flow between populations provide genetic 

structure. The presence of private alleles within a sub-population may demonstrate genetic 

adaptability towards the environmental pressure and provide structure within the meta-

population. Classifying structure among populations require a broad range of sampling across 

the various environments of a species to identify the presence of exclusive alleles. In brief, 

gene flow is limited within riverine populations due to topographic or seasonal changes and is 

responsible for restricting gene flow between populations (Giodarno et al. 2007; Valtonen et 

al. 2014). The evaluation of structure among populations may demonstrate the genetic 

contribution between neighbouring populations. In contrast, sampling seasons have been 

noted to impact the structure of fish species to be sampled during the spawning season as 

compared to the non-spawning season (Sanches et al. 2012). Furthermore, natal philopatry 

have impacted gene flow between independent structured populations (Hekkala et al. 2010). 

For conservation management it is important to maintain gene flow and determine structure 

among populations to maintain diversity. 

 

1.4 Population genetics for crocodile conservation and study rationale 

Mitochondrial DNA primers have previously been developed for the Nile crocodile 

(Ray & Densmore 2002; Velo-Antón et al. 2014). Various regions have determined separate 

lineage formation in Nile crocodile populations (Schmitz et al. 2003; Meredith et al. 2011; 

Hekkala et al. 2011; Velo-Antón et al. 2014) and the phylogenetic tree constructed by 

Hekkala et al. (2011) (Figure 1.2) is considered to be the most informative. The findings 

observed in the previous mentioned studies gave reason for evaluating the extent of the 

divergence within the Nile crocodile population. Eastern Africa crocodile populations, as 

examined by Hekkala et al. (2011) showed two lineages, which is of interest to this study. 

However, divergence of the lineages in the aforementioned study could be described with 

more merit if the sample set were larger. The lack of sampled individuals from Southern 

African countries leaves curiosity of the lineage separation proposed and room for more 

efficient means of interpreting data from larger sample sets. 

Lineage structures have been observed for Crocodilian species in the Neo-tropics, 

making use of various mtDNA regions, and the evaluation of C. acutus in Columbia alone 

revealed two lineages within the population (Bloor et al. 2015). Similarly, Caiman 

Stellenbosch University  https://scholar.sun.ac.za



10 
 

crocodylus was also found to consist of significant genetic structuring over small geographic 

regions in Central America (Venegas-Anaya et al. 2008). 

Short Tandem Repeat (STR) markers have not been designed for the Nile crocodile 

specifically, however success has been shown for cross-species amplification in other studies 

(Bishop et al. 2009; Hekkala et al. 2010; Velo-Antón et al. 2014). 

Extensive genetic work has been conducted for various species in parts of southern 

Africa; but there is still a great lack of information concerning the Nile crocodile. Even 

though the estimates of diversity have shown to be informative (Bishop et al. 2009; Hekkala 

et al. 2010; Velo-Antón et al. 2014) there is still room for improvement for developing 

species specific STR markers. 

In order to validate the separation of the lineages, further empirical evidence needs to 

be collected to support the trends observed amongst the Nile crocodile, with respect to its 

genetic diversity. As discussed earlier, sequencing data derived from mtDNA control regions 

as well as STR would be of greater significance should this analysis have access to a larger 

sample set. Additionally, publically available sequence may add value by their contribution 

toward a haplotype network, having taken into account the environmental impact factors 

proposed on the likelihood of dispersal in southern Africa, and more specifically Namibia.  

Within northern Namibia the Cuvelai basin has been noted to house several wetland 

species (Hipondoka et al. 2006; Pickford 2013). The evaluation of sediment analyses in the 

Cuvelai basin demonstrated the Upper Kunene River to have been a contributory inflow. The 

Lower Kunene River corroded inland from the Atlantic ocean and redirected the Upper 

Kunene River basin catchment (Hipondoka 2005; Mendelsohn et al. 2013). The consequence 

of the Upper Kunene water being redirected towards the Atlantic Ocean, changed the 

environmental conditions of the Cuvelai basin. Even though the Upper Kunene was pirated 

during the Pliocene/Pleistocene, a great Paleo-lake persisted in the basin until 35 000 years 

ago after which aridification followed (Hipondoka 2005) (Figure 1.3). 

The aridification of the Cuvelai basin has separated the Kunene and Okavango River 

systems from one another. Equally important to the separation of the river systems is the 

separation of the same species inhabiting these environments (Curtis et al. 1998). 

Geographical restriction of gene flow among these separated populations will allow for the 

populations to adapt to their newly formed environments. Limited genetic studies have been 

published on the presence of population divergence for the Kunene and Okavango River, 

however restricted gene flow between the same species within the Lower Kunene and 

Okavango River systems could be hypothesised. In other words, the restriction of gene flow 
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may have led to population divergence over time (Slatkin 1985). It is important to estimate 

species diversity and extent of divergence to incorporate into local management plans. 

 

 

1.5 Aims and objectives 

The Nile crocodile (Crocodylus niloticus) is understudied in terms of population 

genetic analyses and much work can still be done across the continent, by the use of STR and 

mtDNA to elucidate population structure and divergence. The study focuses on the genetic 

diversity and structure of the Lower Kunene, Okavango and Lower Shire River Nile 

crocodile populations. The populations within the previously mentioned river systems are 

compared to publically available data on Nile crocodile populations within the African 

continent. 

The study objectives were to (1) estimate the total abundance of the Nile crocodile 

population within the Lower Kunene River system, (2) determine phylogeography of the Nile 

crocodile populations in selected Southern African river systems (including comparisons with 

to publically available data), (3) estimate the degree of polymorphisms of selected cross-

species amplification STRs in the Nile crocodile and (4) estimate C. niloticus genetic 

Figure 1. 3 The Northern river system basins of Namibia, originating in the Bie Highland of central Angola. 

Depicting the separation of the Kunene (Blue) and Okavango (Green) river systems by the Cuvelai basin (Red), 

historically considered a Paleo-lake system. Modified from Miller et al. (2010). 
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diversity, population structure, effective population size and historical bottleneck or 

population expansion within the Lower Kunene, Okavango and Lower Shire River systems. 

In Chapter 2 a binomial mixture model and aerial count approaches were 

implemented to estimate the abundance and distribution of the Nile crocodile population in 

the Lower Kunene River, Namibia. For the binomial mixture model an N-mixture model was 

chosen as the most appropriate model as it can simultaneously estimate abundance and 

effective detection probability of animals. The Lower Kunene River system is considered a 

closed system, as it has no other permanent water bodies for crocodiles to migrate to. This 

data can be integrated to the current Namibian Nile crocodile management plan to assist with 

reducing human-crocodile conflict and the first Nile crocodile monitoring survey for the river 

system. 

In Chapter 3 the aim was to evaluate the historical distribution of the Nile crocodile in 

the Lower Kunene, Okavango and Lower Shire sampling locations by assessing the control 

region and comparing to publically available sequences from the African continent, proving 

historical structure for the Nile crocodile and its population structure in Southern Africa. 

Furthermore, STR markers were evaluated for their effectiveness in cross species 

amplification in the Nile crocodile populations of the Kunene, Okavango and Lower Shire 

populations. The successful amplification of these markers will be recorded along with their 

degree of polymorphism. The use of the markers will evaluate the extent of gene flow 

between the populations to estimate their diversity and structure between the river systems. 

Moreover, the information gathered from the study will allow for identification of 

management units for short-term conservation efforts which can be considered for the 

Namibian Nile crocodile management plan. 

Chapter 4 summarizes the findings in our study and the recommendations towards 

current management plans. Along with the short-coming experienced for the project and 

future recommendations.   
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Chapter 2 

Nile crocodile population estimation in the Lower Kunene River, 

Namibia calculated using a binomial mixture model 

Abstract 

The Nile crocodile Crocodylus niloticus is found throughout sub-Saharan Africa, 

including in countries such as Namibia, Botswana and Angola. The species was transferred 

from CITES Appendix I to Appendix II in 2004, although it is recognised as peripherally 

endangered in Namibia due to diminishing habitat availability primarily from human 

encroachment. In 2013 a species management plan was approved in Namibia to assess the 

management of the Namibian Nile crocodile populations, as the species plays an important 

role within the environment and commercial industry. The Nile crocodile population in the 

Kunene River system needs to be re-assessed as there is very little data available, primarily 

due to the logistical difficulty in accessing large parts of the river system. During 2012 an 

aerial survey was conducted to provide an estimate of Nile crocodile population in the Lower 

Kunene River. A recently developed N-mixture model for estimation of abundance and 

spatial variation was used. Detection of crocodiles from the air can be difficult and is also 

dependant on their size; however an estimated 806 individuals were counted along the 352 

km of the Kunene River system with a direct count estimate of 562 crocodiles regardless of 

size. The parameter estimates generated by the analysis suggested that the class-structured 

model can produce precise, unbiased estimates of total abundance and reliable estimates of 

local abundance for this population in the Kunene River system. 
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2.1 Introduction 

The Nile crocodile, Crocodylus niloticus, is found throughout sub-Saharan Africa, 

including countries such as Angola, Botswana and Namibia (Aust., 2009; Fergusson, 2010; 

Leslie et al., 2011) and is classified under Least Concern on the IUCN RED List of 

threatened species (IUCN, 2014). In 2004, Namibian authorities transferred the species from 

CITES Appendix I to Appendix II (CITES, 2004). This transfer was prompted in part due to 

diminishing habitat caused by human encroachment as settlements are found along the 

various river systems in Namibia (United States Fish and Wildlife Service, 1999; Griffin, 

2003; Mendelsohn et al., 2003), resulting in competition with crocodiles for both food and 

space (eg: basking and nesting areas). Crocodylus niloticus is recognised as a protected game 

species in Namibia under the Nature Conservation Ordinance No 4 of 1975, allowing trophy 

hunting of the species only with the issuing of a hunting licence. The quota for Namibia is 

assessed by the Ministry of Environment and Tourism (Ordinance No 4, 1975), with the 

current quota set at a total of 25 adult crocodiles per year, which was determined on 14 April 

2014 (CITES, 2014). CITES Appendix II allows the trade of no more than 1600 skins of Nile 

crocodiles from Namibia originating from trophy hunting and ranched specimens combined 

(Act No 9, 2008; CITES, 2014). Crocodilians play an important role within the ecosystem 

(Mazzotti et al., 2009) and they have been found to be economically beneficial towards 

tourism (Llewellyne, 2007) and trophy hunting (Lindsey et al., 2007). A Namibian species 

management plan drafted in 2012 was approved in 2013 (Species Management Plan, 2012) 

and focuses on utilization of the crocodile species, by incorporating the economically 

beneficial factors whilst maintaining their contribution towards the ecosystem. 

Human settlements are found along the Kunene River due to the limited availability 

of water in the Kunene area (Mendelsohn et al., 2003), resulting in competition with 

crocodiles for both food and space (eg: basking and nesting areas). An ontogenetic shift in the 

Nile crocodile occurs between small mammals and fish in the upper end of the juvenile size 

class (SVL ≈ 40cm) based on stomach content (Wallace & Leslie, 2008) and replicated by 

scute keratin levels (Radloff et al., 2012). Sub-adult crocodilians consume mainly fish (Snout 

Vent Length (SVL) : >66.3 cm), until they exceed 119 cm SVL and undergo a second 

ontogenetic shift (Radloff et al., 2012), most likely for large terrestrial mammals (Cott, 1961). 

Local inhabitants have large herds of goats and cattle, which are considered to be a sign of 

wealth (Comaroff & Comaroff, 1990) and these animals forage along the banks of the 

Kunene River as the larger riverine trees provide good browsing for livestock during the dry 

Stellenbosch University  https://scholar.sun.ac.za



15 
 

season (Irving & Ward, 1999). Livestock, along with local inhabitants who use the river for 

washing, swimming and water collection, form part of the prey base of larger crocodiles. 

Census data of Nile crocodiles in Namibia are very limited as population counts have 

only been conducted in the eastern Namibian river systems (Okavango, Kwando, Mamili, 

Linyanti/Chobe and Zambezi Rivers) (Brown et al., 2005; Chase, 2009). Reports of human 

crocodile conflict by Mr BM Siyanga (pers. comm.), a ranger for the Ministry of 

Environment and Tourism in Opuwo, stated that from January 2010 to March 2011 an 

estimated 44 animal deaths and one human death occurred in the Lower Kunene River 

system. The human/crocodile conflict reports only provide information on the number of 

livestock or individual human deaths and not on the exact number of crocodiles found at the 

incident site. The Lower Kunene River is situated in a very isolated area, making it difficult 

for locals to report on human/crocodile conflict and it is thus important to provide a solution 

to minimize such conflict. Establishing a crocodile management plan requires several 

parameters to be considered namely: conservation, egg harvesting and population control 

(Bayliss, 1987). These parameters will prevent over-exploitation and a possible population 

decline and additionally provide income to local communities. 

Spotlight surveys by boat have been the most commonly used survey method to 

estimate crocodilian abundance in river systems (Letnic & Connors, 2006). Spotlight surveys 

are usually only conducted on a portion of the whole river and presented as a population 

index (Bayliss, 1987; Wallace et al., 2011). These surveys are dependent on a number of 

environmental and physical factors, namely access to large parts of the river, observer skill, 

boat speed (Cherkiss et al., 2006), water level, water temperature, time of day and crocodile 

behaviour (Hutton & Woolhouse, 1989). For the Lower Kunene River an aerial survey was 

considered the most viable option, as large areas of the river are inaccessible by car or boat. 

Aerial surveys have shown lower detection rates compared to boat surveys in Crocodylia 

(Woodward et al., 1996; Stirrat, et al., 2001), however helicopter use allows greater 

manoeuvrability, controlled speeds, wider fields of view and photographic data acquisition, to 

eliminate bias for submerged animals or dense vegetation areas effecting observer visibility 

(Bayliss, 1987; Pollock & Kendall, 1987; Bourquin, 2007).  

In this study, an aerial survey was conducted to provide a population abundance 

estimate for Nile crocodiles in the Lower Kunene River to implement into a crocodile 

management plan for Namibia. The management plan will assist to mitigate human crocodile 

conflict and the utilization of crocodiles for tourism, commercial interests and trophy hunting.  
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One of primary objectives of this study was therefore to estimate distribution and 

abundance of the Nile crocodile across the study domain and understand patterns of variation 

in relation to environmental and anthropogenic factors. Detectability of individual animals is 

highly variable and nearly always < 1; and imperfect detection must be accounted for to 

reliably estimate population sizes and trends (Royle & Dorazio 2008). Due to expected 

heterogeneity in both local abundance and local detection probability in our case (due to 

environmental or sampling covariates), we considered the N-mixture model as the most 

appropriate model as it can simultaneously estimate abundance and effective detection 

probability of animals. The state process of the N-mixture model describes ecological 

mechanisms that generate spatial and temporal patterns in abundance, while the observation 

model accounts for the imperfect nature of counting individuals due to temporary immersion 

and false absences. This model also assumes sampling in a closed system, regarding 

mortality, recruitment immigration and emigration (Royle, 2004). 

 

2.2 Materials and Methods 

2.2.1 Study Area 

The Kunene River is a fresh water perennial system and is fed from the natural 

springs in the Bie Highlands in Angola (Irving & Ward, 1999) and by a limited annual 

summer rainfall. (October-March) (Hay et al., 1997),which ranges from 50 mm in the Namib 

desert, to 1500 mm in the highlands of Angola (Hay et al., 1997). There is a high level of 

endemic fauna and flora in the central and eastern Lower Kunene, including: trumpet thorn 

(Cataphractes alexandri), gum myrrh (Commiphora spp.) (Irving & Ward, 1999), black 

faced impala (Aepyceros melampus petersi) and mountain zebra (Equus zebra hartmannae) 

to name a few (Kunene River Awareness Kit, 2014). Several communal conservancies are 

situated in the Kunene area with some bordering on the Lower Kunene River, namely 

Marienfluss, Uunolonkadhi-Ruacana and the Kunene conservancy (NACSO, 2009). The 

Skeleton Coast National Park is situated on the north-western Namibian shore, through which 

the Kunene River flows; the region consists of desert vegetation with no local tribal 

inhabitants. The estimated human population of the Kunene province was 88 300 in 2011 and 

approximately 18 000 (20.4%) of these individuals live in the Epupa constituency bordering 

the Lower Kunene River (Namibian Census, 2011). 

The Kunene River system covers a total area of 110 200 km
2
 (with an upper, middle 

and lower area) of which the lower Kunene forms the border between Namibia and Angola 

(14 900 km
2
 (13.3%) (INBO, 2007). The portion considered for the aerial survey covered 352 
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km of the Kunene River from its mouth (km 0, altitude 0 meter above sea level, latitude -

17.249515 and longitude 11.752746) to Ruacana falls (km 352, altitude 775 m above sea 

level, latitude -17.403902 and longitude 14.216841) (lower Kunene, 13.3%) (Fig. 2.1). The 

aerial survey was conducted under a Ministry of Environment and Tourism Division Support 

System (DSS) approved work activity permit (Permit number: 2003/2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 Survey design and effort  

The Lower Kunene River area surveyed in 2012 was separated into two parts, namely: 

east and west. The helicopter (Bell Jet Ranger B206 and a Bell Long Ranger B206L) had a 

pilot, two to three observers (two most experienced observers with the third interchangeable 

less experienced) and a data recorder and was flown at an altitude of 24 – 27 feet at 110-130 

km/h. The western part of the river was surveyed from 24
th

 - 28
th

 April 2012 (early dry 

season) and the eastern part from 9
th

 – 12
th

 August 2012 (late dry season). Only a segment of 

each river part could be covered within a single day and flights were flown during the late 

morning or early afternoon, as the majority of crocodiles would be basking on the banks. The 

river segments were covered in 10 sessions (S#) (Fig. 2.1 and Appendix A1, Table S2.1).  

For the statistical analyses, every session as described above was considered to be a 

different sampling occasion. The river was divided into segments of equal length, with every 

segment being considered as independent sampling unit referred to as a site in the rest of the 

Figure 2.1 A map showing the lower Kunene River surveyed during the study. The Kunene 

river mouth is situated at the left/west (0km) and Ruacana dam at the right/east (352km) (See 

Appendix A1 Table S2.1). 
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paper. At the site level, one aerial sampling occasion consisted of one flight over the river 

segment. Since segments are adjacent and since crocodiles could freely move in and out of 

the segments during the repeated surveys, the independence of each segment and the closure 

assumption are clearly violated. However, one could assume that the longer the segment and 

the shorter the survey, the less the impact of non-closure would be as a lesser proportion of 

animals are expected to move between sites. In addition, if movements are random, one could 

also expect that, on average, temporarily emigration equals temporary immigration. The size 

of the site (i.e., length of the river segment) was chosen to make sure it was large enough (see 

below) to reduce movement of crocodiles between sites over the duration of the survey and 

therefore, be as close as possible to the population closure assumption (Williams et al., 2002) 

required for the statistical analysis. The sites of the river consisted of four days of flying for 

the western part and five days for the eastern part. As no GPS tracking data were available for 

the Kunene River crocodiles, we used Okavango River crocodile movement data collected by 

the Ministry of Environment and Tourism, on five adults from August 2011 to April 2013, 

assuming that animal movement patterns were similar in the two river systems (African 

Wildlife Tracking SAT collars, Iridium system). Previous studies have found that female 

crocodiles (>2.8 m) and male crocodiles (>3.2 m) tend to settle on a distinct home range 

(Modha, 1967; Hutton, 1989). The GPS data indicated that more than 90 % of the movements 

were shorter than 5 km over a five day period, with crocodiles seldom moving further than 8 

km. We therefore considered an 8-km segment to be large enough to consider the local 

populations as close. The 352 km of river was divided into 44 consecutive, non-overlapping 

8-km segments, each segment being considered as an independent site unit. The statistical 

method used to analyse the data required that all sites were surveyed at least once and a 

subsample of the sites were to be surveyed several times. In the study, two sites were 

surveyed twice, 21 sites three times, and sites 17 and 19 four times each. 

 

2.2.3 Data Recording Survey  

Data was logged as follows: each observation of a crocodile was recorded with its 

corresponding geographic coordinates (latitude and longitude), time of sighting and size 

class. The size class of crocodiles was based on its estimated length (Class 1 = 1-2m, Class 2 

= 2.1-3m, Class 3 = 3.1-4m and Class 4 = <4.1m), estimated visually. Fig. 2.2 indicates the 

distribution of all observations along the river. Every observation was assigned to the nearest 

site (shortest perpendicular distance between the observation and the river segment) using 

ArcGIS software (ESRI, 2008). Hence the number of crocodiles observed at site i on session j 
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in size class g, is noted as nijg. Appendix A1, Table S2.2 shows an example of the data 

recorded on site #71. For this site n71.Occ8.G2 = 2. 

 

2.2.4 Site and sampling covariates 

In the analyses, the first flight over a segment of the river was considered to be an 

exploratory flight (S01, S04 and S07). When the same portion of a river was flown over in a 

single day, S01; S02 and S05; S06, we modelled separately for each flight path. This was to 

account for any possible disturbance caused by the first flight, which would have made the 

crocodiles less detectable during the second flight. S07 and S08 were flown on different days. 

A subset of six predictor variables was chosen which were believed to be a potential 

contribution to the driving forces for abundance of species at the scale of this study 

(Jablonicky, 2013). Crocodiles (>3 meters) will be expected to show a preference for river 

width as they occupy large water bodies and shore steepness for crossing animals forming 

part of their diet. Crocodiles (<3 meters) are expected to correlate to number of channels as 

they seek shelter on the islands and possible nesting sites. Crocodiles feed on domestic 

animals around villages, with density of humans expected to have higher number of 

livestock. However, crocodiles are also under hunting pressure from human inhabitants. The 

predictor variables were derived from physical characteristics of the Lower Kunene River 

explained every km. Making use of high-resolution satellite imagery available on Google 

Earth, a 30 meter resolution digital elevation model based on ASTER satellite imagery, and 

Figure 2.2 Observations of Nile crocodiles on the Lower Kunene River during the 2012 aerial survey. 

Green dots indicate animals between 1 and 3 meters in length, red dots indicate animals greater than 3 

meters. The size of the circle is proportional to the number of individuals observed at the location (see 

Fig. 2.1.) 
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data from the Namibian Atlas (Mendelsohn et al., 2003). This fine description of the river 

was therefore averaged along the 8-km segment (site unit) to build the set of site covariates to 

be used in the statistical analysis. To limit the co-linearity within factors, we used a principal 

components analysis and selected a subset of non-co-linear variables. The selected predictors 

and their respective sources are shown in Table 2.1 and effects in Fig. 2.3 and Fig. 2.4. 

Table 2.1 Description of the environmental factors used as covariates in the statistical analysis. See also 

Appendix A2, Figure S2.1, S2.2 and S2.3. 

Factor 

name 
Description of the factor Source Data type and Unit  

width 

River width. Measured manually at every kilometre on 

Google earth and corresponds to the length of the 

perpendicular section of the river from one shore to the 

other after ground areas are excluded. 

Google 

earth 
Continuous, meter 

shore 

Shore steepness. Assessed visually every kilometre using 

Google earth pro software 3D imagery and Play tour mode 

to fly along the Lower Kunene River. Proxy for the 

accessibility to the river by large prey species. 

Google 

earth 

Categorical, index 

between  

0 and 5, 0 corresponding  

to a flat shore. 

channel 

Index of river complexity. The number of channels was 

assessed visually at every 1-kilometer segment on Google 

earth software. Proxy for basking and nesting site 

availability. 

Google 

earth 

1, 2, 3, 4, and 5+ 

channels.  

dis.V 

Distance to the nearest village. Measured at every 1-

kilometer segment using ArcGIS software. Proxy for 

environmental disturbance and hunting pressure. 

Atlas of 

Namibia 
Continuous, kilometer 

den.H 

Index of human population density. Assessed on an 8x10 

km strip centred on the river course using ArcGIS 

software. Proxy for environmental disturbance and hunting 

pressure. 

Atlas of 

Namibia 

Continuous, inhabitants  

per square kilometre 

Stellenbosch University  https://scholar.sun.ac.za



21 
 

  

Figure 2.3 Predictions of the covariate relationships that account for estimation uncertainty, 1-3 meters 

crocodile class (group 1). (a) relationship between covariate and the detection probability. (b), (c) and (d) 

relationship between site covariates and predicted population size. The blue line shows the posterior mean, and 

grey lines show the relationships based on a random sample of 500 to visualize estimation uncertainty. 
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Figure 2.4 Predictions of the covariate relationships that account for estimation uncertainty, 3+ meters crocodile class 

(group 2). (a), (b), (c) and (d) relationship between the site covariates and the population size. Blue line shows the 

posterior mean, and grey lines show the relationships based on a random sample of 500 to visualize estimation 

uncertainty. 
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In addition, we also considered four independent sampling covariates that could affect 

the probability of detecting crocodiles at a site. We first considered two factors related to the 

intensity of a survey effort at a site. Factor one is described by length of the helicopter GPS 

track log divided by number of channels and factor two describes number of observers in the 

aircraft (Table 2.2 and 2.3). We expect the increase of flight length to indicate an increase in 

crocodile counts and number of observers to show a positive effect toward the survey 

method.  All flights had two observers, except for flights S09 and S10 which had three 

observers aboard, in an attempt to increase the probability of detection of animals. Factors 

three and four were discovery and return flights respectively (Table 2.2 and 2.3).  

 

Table 2.2 Summary of the N-mixture analysis for crocodiles in group 1 (crocodile size from 1.0-3.0 m). The 

table shows the Bayesian posterior mean, standard deviation and 95% credibility interval for each parameter 

included in the model as described in the text. Rhat < 1.05 indicates that the chains have converged. 

Parameter  mean sd 2.50% 97.50% Rhat 

α Origin 2.227 0.187 1.863 2.595 1.001 

α1 River width 0.033 0.131 -0.227 0.284 1.001 

α2 Shore steepness -0.048 0.123 -0.284 0.195 1.001 

α3 Channels 0.363 0.184 -0.002 0.726 1.001 

α4 Distance to village -0.299 0.176 -0.652 0.040 1.001 

α44 Distance to village (quadratic) 0.041 0.093 -0.140 0.227 1.001 

α5 Density human population -0.310 0.154 -0.610 -0.010 1.002 

α55 Density human population (quadratic) 0.155 0.099 -0.035 0.356 1.001 

β Origin -0.678 0.284 -1.241 -0.128 1.002 

β1 Flight length -0.477 0.173 -0.820 -0.147 1.001 

β2 Discovery -1.107 0.278 -1.662 -0.585 1.001 

β3 Return -0.990 0.333 -1.668 -0.354 1.001 

β4 # of observers 1.444 0.378 0.749 2.217 1.001 

sd.p Random effect 0.964 0.138 0.710 1.251 1.001 
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Table 2.3 Summary of the N-mixture analysis for crocodiles in group 2 ( > 3 meters in size). The table shows 

the Bayesian posterior mean, standard deviation and 95% credibility interval for each parameter included in the 

model as described in the text. Rhat < 1.05 indicates that the chains have converged. 

Parameter  mean sd 2.50% 97.50% Rhat 

α Origin  1.669 0.188 1.290 2.037 1.001 

α1 River width 0.491 0.153 0.190 0.802 1.001 

α2 Shore -0.157 0.124 -0.402 0.079 1.002 

α3 Channels -0.246 0.255 -0.743 0.256 1.002 

α4 Distance to village 0.225 0.200 -0.171 0.618 1.001 

α44 Distance to village (quadratic) -0.256 0.110 -0.475 -0.041 1.001 

α5 Density human population -0.051 0.174 -0.388 0.286 1.001 

α55 Density human population (quadratic) 0.110 0.107 -0.100 0.311 1.001 

β Origin 0.302 0.299 -0.283 0.873 1.001 

β1 Flight length 0.132 0.269 -0.403 0.643 1.001 

β2 Discovery -0.387 0.323 -1.045 0.228 1.001 

β3 Return -0.514 0.410 -1.335 0.283 1.001 

β4 # of observers 0.628 0.362 -0.043 1.403 1.001 

sd.p Random effect 0.964 0.138 0.710 1.251 1.001 

 

2.2.5 Description of the model 

Recently developed N-mixture models allow for the estimation of abundance and 

spatial variation in abundance from count data alone for closed (Royle, 2004) and open (Dail 

& Madsen, 2011) populations. N-mixture models are a class of state-space models in which 

the ‘true’ state of the system (abundance) is observed imperfectly. The ‘true’ abundance here 

“is the (unobserved) abundance […] of individual on the spatial sample unit” (Royle & 

Dorazio, 2008) or can be defined as well as the abundance corrected for imperfect detection 

(Kéry, 2010). Unlike classical state-space models used in ecology (e.g.: de Valpine & 

Hastings, 2002, Staples et al., 2004), N-mixture models do not make unrealistic assumptions 

about the Gaussian process and sampling errors and instead assume that abundance is a 

discrete random variable (Buckland et al., 2004). Similarly, N-mixture models attribute 

observation error to a specific phenomenon, such as the inability to detect all individuals that 

are available during sampling and are referred to as imperfect detection. The N-mixture 

model for a closed population (Royle, 2004) was considered, as surveys were only conducted 

in a single year. Animals ranging in size class from 1.0-3.0 m (henceforth referred to as group 

1) and animals larger than three meters (henceforth referred to as group 2) were modelled 

separately. We used the respective frequencies of every group to estimate the total number of 

animals in each size class. A model accounting for covariate effects on abundance, both 

covariates effects and extra Poisson dispersion (extra heterogeneity) was used for detection 

probability. However, the introduction of random effects into linear predictors can be seen as 

Stellenbosch University  https://scholar.sun.ac.za



25 
 

an over dispersion correction and it increases the uncertainty in the estimates. The total 

population size and its credibility interval over the 352 km river was computed directly in 

JAGS, by summing the segment-level abundance estimates (see Appendix A3, Line 828).  

The hierarchical model is described below (Refer to Table 2.1 for complete 

description of covariates’ abbreviations).  

 

Level 1 

The realized abundance of animals for size group g at site i is: 

Ni,g ~ Poisson (λi,g) 

 

GLM for level 1: 

The mean abundance (λi,g) at site i for group g is described by the following relation 

Log(λi,g) = αg + α1,g * widthi + α2,g * shorei + α3,g * channeli + α4g + dis.Vi + α44,g * 

dis.Vi
2
 + α5,g * den.Hi + α55,g * den.Hi

2 

 

Level 2 

The observed count for group g at site i and on survey j is: 

Ci,j,g| Ni,g ~ Binomial (Ni,g,Pi,j,g) 

 

GLM for level 2: 

The detection probability at a site i for group g and survey j is described by the 

following relation 

Logit(Pi,j,g) = βg + β1,g * flighti,j +β2,g * discovi,j + β3,g * returni,j + β4,g * observi,j + 

randi,j,g 

 

Level 2b (random survey effect): 

Randi,j,g ~ Normal (0,σ) 
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A Bayesian approach to estimate the model parameters was used as this provides a 

computationally tractable method to integrate across unobserved states and quantifies the 

uncertainty of the estimates. A Bayesian analysis requires specification of prior distributions 

for parameters. We assumed vague priors in all analyses presented in this paper. We ran three 

chains of the model, each for 2,200,000 iterations after a burn-in of 200,000 and thinned by 

2000. We implemented our analyses with the program R (R Core Team, 2012) using the 

software program JAGS (Plummer, 2003) to use Markov chain Monte Carlo (MCMC) to 

approximate posterior distributions for each of the parameters. The model code for the 

analysis can be found in Appendix A3. 

 

2.3 Results 

2.3.1 Model fit and performance 

Visual inspection of the MCMC and Rhat values, all smaller than 1.05, indicated that 

chains of all parameters have mixed properly and converged (Gelman and Rubin 1992) 

(Table 2.2 and Table 2.3). In addition, the comparison of the discrepancy between the 

observed and the simulated data (Fig. 2.5) shows that they correlated, suggesting that the 

model is adequate for the data set. This is supported by a Bayesian posterior predictive p- 

value of 0.52 (Fig.2.5). This p-value quantifies the discrepancies between the data and the 

model, and a p-value near 0 or 1 indicates a lack of fit of the model (see Gelman et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5 Posterior predictive check of model fit by a scatter plot of the 

discrepancy measure for replicate (simulated) versus actual (observed) data in 

an N-mixture model. The Bayesian p-value is the proportion of points above 

the 1:1 line. 
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The parameter estimates generated by the analysis have demonstrated that the class-

structured model can produce precise estimates of total abundance and reliable estimates of 

local abundance for the Lower Kunene River population of crocodiles as shown in Fig. 2.5. 

 

2.3.2 Mean detection probability and total population size 

Mean detection probability was significantly higher for group 2 (mean: 0.55, 95% CI: 

0.454-0.626) than for group 1 (mean: 0.35, 95% CI: 0.273-0.418) and the difference can be 

considered significant as the CIs of the two estimates do not overlap. Along the 352 km 

stretch of the Lower Kunene River, the total population of crocodiles was estimated at 806 

individuals (95% CI: 674-1015) (Table 2.4). For the different size-classes the model 

estimated 239 (189-320), 340 (268-455), 149 (131-180), and 78 (68-94) individuals for class 

1, 2, 3 and 4, respectively (Table 2.4). These values are to be compared with the naïve 

population estimate which is given by the sum of the maximum number of individuals 

observed at every site on a single sampling occasion. In this survey, the naïve estimates in 

each size class, from the smallest to the largest, were 154, 199, 131 and 78 individuals with a 

total of 562 crocodiles of all sizes.  

 

Table 2.4 Total population size and number of crocodiles in each size-class. 

 Mean SD 
Bayesian Credibility Interval 95% 

Low High 

# of crocodiles [1-2m] 238.98 35.12 189 320 

# of crocodiles [2.1-3m] 340.26 50.00 268 455 

# of crocodiles [3.1-4m] 149.01 12.65 131 180 

# of crocodiles [>4.1 m] 78.12 6.63 68 94 

Total # of crocodiles 806.36 91.03 674 1015 

 

2.3.3 Covariate effects on detection probability and local abundance 

Covariate effects on both detection and local abundance were considered significant 

when the credibility interval did not contain the zero value. The covariates that were tested in 

the model showed very different responses between the two groups. None of the covariates 

had a significant effect on the detection probability of crocodiles from group 2, while all were 

significant for detection probability of group 1. The estimates and credibility intervals of the 

parameters are shown in Tables 2.2 and 2.3. Results indicated that the length of the flight 

path for the discovery and return flight mode had a negative effect on detection probability, 

while the number of observers participating in the aerial survey had a positive effect on the 
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probability of detecting a crocodile at a site. The variance for the random effect σ was 

estimated at 0.964 (0.710-1.251 95% CI), which represents the part of the variance in the 

detection probability that is not explained by the covariates. Local abundance of crocodiles 

was highly variable among sites for both size classes (Fig. 2.4), and usually higher for group 

1. The upper part of the river (segment #27 - #32) had a much higher density of crocodiles 

from group 2 than the rest of the river, while there was no such clear pattern for group 1 

crocodiles. It is also worth noting that the precision of the estimate is much higher for group 

2. Local abundance ranged from 8.30 (2-19 95% CI) individuals on segment #5 to 21.28 (15-

32 95% CI) on segment #17 for group 1, and from 0.17 (0-1 95% CI) on segment #2 to 18.46 

(14-27 95% CI) on segment #27 for group 2. The results in Tables 2.2 and 2.3 also show that 

the local abundance for the two different size classes is explained by different covariates 

namely, channels and flight length.  

 

2.4 Discussion 

The survey conducted along the Lower Kunene River, provided valuable insight into 

the abundance and distribution of the Nile crocodile. Furthermore, the accuracy of the N-

mixture model was evaluated to provide an indication of accuracy within the study and the 

possibility of using the model for future studies. 

 

2.4.1 Total abundance 

Along the Lower Kunene River, Nile crocodiles were estimated at a naive abundance 

of 562 total individuals (1.60 crocodiles per km). Final population abundance estimated at a 

total of 806 individuals after considering observer and environmental bias (2.29 crocodiles 

per km). An estimate of 2.29 crocodiles per km can be considered plentiful compared to other 

African river populations (Bourquin, 2007). This could be the result of limited poaching in 

the area in the past and very few tribal home settlements situated on the river. That result in 

fewer disturbances on the crocodile natural habitat in the Kunene River system. Ignoring 

detection probabilities of crocodilians clearly leads to an underestimate of the population 

size, in particular for animals less than 3 meters in length (Fujisaki et al., 2011). The 

underestimation for the naïve abundance could be the result of inexperienced observers, 

crocodile submergence  and/or the distance from the area/transects being surveyed (Bayliss 

1987; Hutton &Woolhouse 1989; Jablonicky, 2013), as shown in previous studies (Shirley et 

al., 2012; Jablonicky, 2013). This supports the need for detection probability in crocodilian 

counts to prevent underestimation of populations. Naïve estimates of large crocodiles can be 
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considered accurate if the river is surveyed multiple times as in this study (3.4 times on 

average per session) (see above: Survey design and effort). 

 

2.4.2 Local abundance and covariates effects 

Estimates of local abundance of crocodiles along the Lower Kunene River are highly 

variable for both size classes (Fig. 2.4) specifically for group 1. Detection probability is 

higher for larger sized crocodiles (>3 m in length) when compared to smaller crocodiles, 

similar to a study by Fujisaki et al. (2011) on Alligator mississippiensis. Local abundance of 

crocodiles from group 1 and 2 in this study were influenced by different environmental 

factors namely, number of channels and human settlements respectively. Abundance of group 

1 animals seems primarily correlated to the number of channels (Table 2.2, Fig. 2.3d) 

indicating complexity of the river system. Channel shape effect seems logical, as the islands 

that separate the channels are ideal for crocodile nesting (Leslie & Spotila, 2001; Aust, 2009). 

Vegetation and water depth in these areas further provide more shelter for animals of small to 

medium size (Group 1). This was corroborated in a study by Hutton (1989) who showed that 

Nile crocodiles smaller than 2.2 meters were restricted to nesting areas in the Ngezi River, 

with larger crocodiles occupying the lake system. Abundance of group 1 crocodiles was 

found to be greatest nearest to human settlements (monotonous negative trend; see Table 2.2, 

Fig. 2.3b) and where human density was slightly higher (positive quadratic effect; see Table 

2.2, Fig. 2.3c), but the uncertainty around the effects of human density is high. There was a 

possible impact from human population density and distance to nearest settlement, but the 

indication was low and would thus require more data for confirmation. This could be the 

result of combining two size classes and each size class responding differently to each of 

these factors. Splitting the group into two sub groups was not possible in the analysis and 

would require a larger dataset to be explored thoroughly. This is in contrast to a study along 

the lower Zambezi Valley with Nile crocodiles occurring in abundance in protected areas (3.1 

crocodiles per kilometre), when compared to human inhabited areas (1.4 crocodiles per km) 

(Wallace et al., 2011), which corresponds for group 2 crocodiles (Table 2.3, Fig. 2.4a).  

Within our study the distance for group 2 crocodile abundance increases and 

decreases again after 20 km from a village. A village can produce a positive effect on 

crocodile abundance due to the presence of large prey (cattle) farmed by tribal inhabitants. 

However, crocodiles occupying space close to villages are negatively affected due to habitat 

disturbance and hunting pressures (Musambachime, 1987; McGregor, 2005). The 

conservancies situated adjacent to the Lower Kunene River allow for trophy hunting and 
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hunting of so called problem animals (Ordinance No 4, 1975). The main environmental 

driving force for group 2 animals has been shown to be river width (monotonic positive 

trend; see Table 2.3, Fig. 2.4b), indicating that crocodiles 3 meters and above show 

preference for exploiting larger bodies of water (Fig. 2.4d), corresponding to previous studies 

for larger crocodilians (for eg: Aust, 2009). Group 2 crocodile abundance was also found to 

decrease with steepness of the bank (negative monotonous trend; see, Table 2.3, Fig. 2.4c). 

This effect may be related to the availability of large prey mammals in these areas which 

prefer accessing and crossing the river at low to mild steepness of the bank (Jarman, 1972). 

 

2.4.3 Detection probability 

As expected, the model showed that the detection of crocodiles is imperfect and 

animal size dependant. The probability of detection was slightly lower during the first flight 

when compared to the return flight. This could be the result of observer effectiveness and 

fatigue. During aerial surveys it is impossible to change observer’s mid-flight or on 30 min 

intervals as during boat survey studies (Bourquin, 2007). The loud noise from the helicopter 

also results in animals seeking shelter during the return flight. It would be recommended to 

have a 2 hour break before the return flight around midday rather than a 30 min break midday 

to refuel the helicopter as during this survey. The 2 hour break will alleviate observer fatigue 

and reduce animal disturbance for the sites counted. Surprisingly, the detection probability of 

crocodiles from group 1 decreased proportionally with the length of the flight (Fig. 2.3a), 

while it was expected to increase. The observed increase in flight length is primarily due to 

extra flight loops conducted when the course of the river was more complex due to numerous 

channels, swampy areas and more dense vegetation. These riverine areas offer more shelter 

and decrease the detection of small crocodiles when compared to more open portions of the 

river, having a negative effect on flight length. Crocodiles are able to hide under the shrubs 

and in the swampy areas to reduce chances of mortality (Woodward et al. 1987). Group 2 has 

shown to be only affected by the covariates as they are easier to detect and not covariate 

dependant. Detection probability in our case is clearly imperfect and correlates to animal size 

and environmental covariates. Therefore this parameter should not be ignored and needs to be 

modelled accordingly to obtain unbiased estimates of population size. 
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2.5 Conclusion 

The parameter estimates generated by this analysis have demonstrated that a class-

structured model can produce precise, unbiased estimates of total abundance and reliable 

estimates of local abundance for this population of crocodiles. Covering long river segments 

in short survey sessions, preventing crocodile movement between sights. This study 

represents a good benchmark for the monitoring of the population in the future. The recent 

development of open population models based on animal counts (Dail & Medsen, 2011; 

Zipkin et al., 2014), as conducted in our study, indicated sufficient information to monitor the 

trend of a population over time and perhaps estimate other demographic parameters required 

to effectively manage a population in the future. 

The abundance of Nile crocodiles in the Lower Kunene River was estimated at 806 

individuals after considering observer and environmental bias (2.29 crocodiles per km) and is 

considered plentiful, compared to other African River populations (Bourquin, 2007). Due to 

the Lower Kunene River being a mostly protected and uninhabited area, it was difficult to 

compare the distribution of the Nile crocodile to other studies (e.g. Bourquin et al. 2011; 

Wallace et al. 2013). The slight comparisons that were possible are those of adult crocodiles 

to prefer occupying areas not inhabited by human occupants.  The effectiveness of the plan 

will also require the implementation of current on-going studies and updated aerial surveys of 

the Okavango, Kwando, Linyanti, Chobe and Zambezi River systems. By estimating the total 

size of the Namibian crocodile populations, we are now able to effectively implement the 

National crocodile species management plan, together with the assessment of genetic 

diversity, determination of population structure, dietary habits and identification of locating 

nesting sites. 
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Chapter 3 

Genetic diversity and population genetic structure in the 

Lower Kunene, Okavango and Lower Shire River system Nile 

crocodile (Crocodylus niloticus) populations in Southern Africa. 

 

Abstract 

With the distribution of a species over a large area, geographical barriers are 

commonly found to separate individual geographic groups into sub-populations. Such 

isolated populations are particularly subjected to random genetic drift that may lead to 

random allele fixation or loss within populations, reducing diversity within each sub-

population. Within Namibia, the Kunene and Okavango Rivers harbour Nile crocodiles and 

little is known about the relation between the species in the river systems and their diversity. 

The Kunene and Okavango Nile crocodile populations are evaluated based on their 

mitochondrial control region and Short Tandem Repeat markers. The mtDNA sequences are 

compared to publically available sequences to evaluate their phylogeography and separation. 

The Lower Kunene and Okavango River systems showed low haplotype diversity with a 

single haplotype observed in a total of 64 individuals collected from four locations and no 

haplotype diversity observed among the two rivers (h=0; π=0). The single haplotype shared 

between the Kunene and Okavango populations indicate recent divergence between the 

populations. Short Tandem Repeat diversity was comparable to neighbouring river systems 

and effective population size estimates were high for each river system population. The Nile 

crocodile in the Kunene and Okavango Rivers share a single haplotype among all the 

sequences samples and can be considered a single ESU. However, with the present separation 

of the two river systems resulted in two Management Units.  
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3.1 Introduction 

Fresh-water species are abundant in lakes, rivers and swamps and are normally 

distributed over large areas that coincide with these water bodies. With the distribution of a 

species over a large area, geographical barriers are commonly found to separate individual 

geographic groups into sub-populations. These geographical barriers are generally 

topographic features of the landscape, such as the result of formation of rift valleys or river 

piracy (Wichura et al. 2011; Mendelsohn et al. 2013).  

Sub-populations are of interest to various studies, because limited migration creates 

isolated populations with independent evolutionary trajectories (Waples & Gaggiotti 2006). 

Such isolated populations are particularly subjected to random genetic drift that may lead to 

random allele fixation or loss within populations, reducing diversity within each sub-

population. Although loss of diversity within long lived species are often not detected, due to 

overlapping generations, the breeding population might still have decreased. This seems to be 

the case in crocodile, where numbers were reduced in the Okavango Delta and Western 

Africa Nile crocodile; however the genetic diversity within the populations are still 

maintained (Bishop et al. 2009; Brito et al. 2011; Velo-Antón et al. 2014). 

Even though these decreased populations have shown relatively high diversity, 

several crocodilian species are still poorly understood, especially with regards to population 

genetic dynamics. The few studies, which are available are those for C. acutus and C. 

moreletii (Dever et al. 2002; Ray et al. 2004). In these studies, the populations were isolated 

from one another; however genetic connectivity was detectable between the populations, 

despite the large distance separation between the populations. It is, for example, known that 

Crocodylus acutus can tolerate salt water and move large distances. Even though no genetic 

structure studies have been published for C. porosus it may be assumed that no structure is 

present amongst regional populations, due to their large migration patterns (Campbell et al. 

2010; Campbell et al. 2013). Unlike the previously mentioned species, the Nile crocodile 

(Crocodylus niloticus) is dispersed over Sub-Saharan Africa and large geographical barriers 

exist between regional populations.  

The empirical data derived from genetic studies, is supportive and pertinent for more 

efficient conservation methods and management plans of the Nile crocodile (Bishop et al. 

2009; Hekkala et al. 2010; Hekkala et al. 2011). The Nile crocodile being a least concern 

species, as described by the IUCN, raises concerns especially in developing countries where 

crocodiles suffer endangerment due to habitat loss as a result of human infringement. For 
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instance, in Namibia, Griffin (2003) documented habitat loss of the Nile crocodile to be of 

concern.  

It has been hypothesised that the Nile crocodile originated from the Congo basin 

(Hekkala et al. 2011), from where it spread, inhabiting various habitats throughout sub-

Saharan Africa. Among various factors, riverine basin topography played a crucial role in the 

distribution of the Nile crocodile as it separated the populations into an eastern and a western 

clade (Schmitz et al. 2003). Moreover, these river systems constitute a variety of 

environments, such as desert, semi-arid, grassland, woodland and tropical, however they all 

house fresh water rivers, lakes and / or swamps. The aforementioned, suggest genetic 

variation within the Nile crocodile population as a result of demographic and biogeographic 

influences (Hekkala et al. 2010), which may require independent management plans for 

conserving the various populations depending if separate lineages exist. 

To effectively assist the conservation of diverged crocodile populations, specific 

management plans have been proposed by Moritz (1994), of which Management Units (MU) 

and Evolutionary Significant Units (ESU) have both been regarded as short and long term 

conservation solutions. The classification of ESUs relies on significant divergence of 

populations within a species based on historically geographical isolation due to restricted 

gene flow; whereas MU considers the contemporary population dynamics (Crandall et al. 

2000). 

The current study aims to determine the phylogeography and diversity of the Nile 

crocodile in the Lower Kunene and Okavango sampling sites. The Lower Kunene and 

Okavango Nile crocodile populations are evaluated based on their mitochondrial (mtDNA) 

control region and Short Tandem Repeat markers to evaluate their historical and temporal 

relation to contribute to the identification of management units in the species. The mtDNA 

sequences are compared to publically available sequences to evaluate the phylogeography of 

the Nile crocodiles in Southern African river systems (Lower Kunene, Okavango and Lower 

Shire River). It is hypothesised that a single lineage within the Lower Kunene and Okavango 

River system; however two separate populations exist between the two previously mentioned 

river systems. For southern Africa it is hypothesised that two lineages of the Nile crocodile 

exists along with two separate populations present. 
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3.2 Material and Methods 

3.2.1 Sample collection and DNA extraction 

A total of 139 Nile crocodile samples were collected from wild and wild-caught, 

ranch held individuals in four different countries and river systems respectively; Botswana 

(Okavango Delta, n= 29), Malawi (Lower Shire River, n=52), Namibia (Lower Kunene, 

n=12; Okavango n= 20; Otjiwarongo Crocodile Ranch n= 13) and South Africa (Izintaba 

crocodile farm, n=13) (Table S3.1 (See Appendix B: Fig S3.1a-3.1c,). The Okavango River 

was subdivided into three sampling populations: Bwabwatwa National Park (Namibia, n=20), 

Okavango Delta (Botswana, n=29) and Otjiwarongo Crocodile Farm (Botswana, n=13). 

Crocodiles from the Otjiwarongo Crocodile Farm were considered a true representation of a 

wild population, as the farm has maintained the same breeding pairs since their removal 

(from the wild) in 1986 from the Okavango Delta. Additionally, two populations were 

considered in the Lower Shire River system (Malawi) using the Nchalo Sugar Estate as a 

landmark: northwards to Kapichira Falls (n=27) and southwards to the Zambezi Confluence 

(n=25). Importantly, the Lower Kunene River (n=12) samples were comparatively small and 

considered a single population, although they originate from two sampling sites (Appendix B: 

Fig S3.1a-S3.1c,). Izintaba crocodile farm (n=13) from South Africa were considered a single 

population due to the small samples set available. 

Blood samples were collected from the ventral caudal tail vein and stored in K2EDTA 

vacutubes. Tissue samples were also collected, by scute removal (1-2 scutes) in a unique 

pattern for future identification of the individual Nile crocodile (Leslie 1997, Appendix B: 

Fig S3.2). All samples were stored at -20°C until DNA extraction. Total DNA was extracted 

using a CTAB protocol (Saghai-Maroof et al. 1984) and stored at -20°C until use. All 

samples were collected under the appropriate CITES Scientific Authority and collection 

permits for each country. Ethical clearance for this study was received from Stellenbosch 

University Ethics committee (SU-ACUD15-00007). 

 

3.2.2 MtDNA sequences 

Primers were manually designed using publically available sequences of the C. 

niloticus mtDNA control region (Appendix B: Table S3.2) and aligned using Multiple 

Sequence Comparison by Log-Expectation (MUSCLE) (Edgar 2004), implemented in 

Geneious software v7.1 (Kearse et al. 2012). The 514-bp fragment of the mtDNA control 

region was sequenced for 112 individuals using primers CnP1F (5’-

AGTCATCGTAGCTTAACTCACA-3’) and CnP1R (5’-TGTATAACGAGCATTAAA 
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TATTTATG-3’). All amplifications were performed in a total volume of 10 μl containing: 

KAPA Taq ReadyMix (KAPA Biosystems, Cape Town, SA), 0.8 μM forward- and reverse 

primers each and DNA. As follows: initial denaturation at 95 °C for 5 min, 35 cycles of 95°C 

for 15 sec, 56°C for 30 sec and 72°C for 80 sec and a final extension at 72°C for 5 min. 

Negative controls were included in all DNA extractions and amplifications. Sequencing 

reactions were performed in the forward direction using the BigDye® Terminator v3.1 

sequencing kit (Applied Biosystems) as per manufacture’s specifications and capillary 

electrophoresis was performed on an ABI3730xl sequencer (Applied Biosystems). 

DNA sequences were visually inspected for ambiguities in nucleotide base 

assignment and manually corrected using FinchTV 1.4.0 (Geospiza, Inc., Seattle, WA, 

http://www.geospiza.com). Sequences were aligned using the MUSCLE algorithm 

implemented in Geneious software v7.1. For the purpose of phylogeography, publicly 

available mtDNA sequences from previous studies and their geographical collection sites 

were retrieved from GenBank and datadryad (Meredith et al. 2011; Hekkala et al. 2011) 

(Appendix B: Table S3.2). 

 

3.2.3 MtDNA sequence analysis 

The following sequence diversity measures were estimated for each population: 

number of haplotypes (H), haplotype diversity (h), nucleotide diversity (π) and average 

number of pairwise nucleotide differences (k), using Arlequin v3.5 (Excoffier & Lischer 

2010). Genetic differentiation among populations was estimated using pairwise Phi-st (Φ-st) 

values (with significance determined using 1000 bootstrapped replicates), and population 

structure was further evaluated using AMOVA (significance estimated using 10,000 

iterations) based on a distance matrix of pairwise differences calculated in Arlequin v3.5 

(Excoffier & Lischer 2010). Populations were grouped for western (Lower Kunene and 

Okavango) vs. eastern (Lower Shire and South Africa) for the first round of AMOVA, 

following this was a second round of analyses only considering the Namibian populations 

(Lower Kunene vs. Okavango). A median-joining haplotype network was constructed to 

illustrate the evolutionary relationship among haplotypes with default parameters using 

Network software v4.6.3 (Bandelt et al. 1999) (For phylogenetic tree, see Appendix B: Fig 

3.3). 
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3.2.4 STR selection, multiplexing and genotyping 

Twelve loci were selected from previous publications, of C. porosus and C. johnstonii 

tested in C. niloticus, for cross-species amplification in the Nile crocodile, based on number 

of alleles (An>6) and observed heterozygosity (Ho>0.300) (Bishop et al. 2009; Miles et al. 

2009b), including tetra and dinucleotide markers. Six samples (two from each river system) 

were used for initial singleplex gradient PCR tests to assess optimal annealing temperatures 

(Ta) and polymorphism of loci. Locus CpP305 (Miles et al. 2009a) was included in the 

preliminary tests, however it was removed due to the the inability to score the marker. 

Three multiplex PCRs were considered based on Ta, expected allele range and 

fluorescent labels (Appendix B: Table S3.3). Due to Ta and fluorescent label constrictions, 

locus C391 was poolplexed with Multiplex 2. Multiplex amplifications were performed in 10 

μl total volume containing KAPA2G Fast Multiplex PCR Kit (KAPA Biosystems, Cape 

Town, SA) 0.8 μM of each primer and DNA, as follows: initial denaturation at 95°C for 3 

min, 35 cycles of 95°C for 15 sec, Ta for 30 sec, 72°C for 50 sec, and a final extension at 

72°C for 80 sec. Negative controls were included in all DNA extractions and amplifications. 

Singleplex and multiplex PCR products were run on an ABI3730xl Genetic Analyser™ 

(Applied Biosystems) using capillary electrophoresis with GeneScan™ 600 LIZ® (Applied 

Biosystems, Foster City, CA, USA) as internal standard. Genotypes were scored using 

GeneMapper® v4.1 (Applied Biosystems). The presence of null alleles (Brookfield 1996) 

and scoring errors, due to stuttering, were tested for each locus using Micro-checker v2.2.3 

(Van Oosterhout et al. 2004). 

 

3.2.5 STR population genetic analyses 

Departure from Hardy Weinberg equilibrium (HWE) (exact probability test, 500 

batches, 10,000 iterations), number of alleles (An), expected - (He) and observed 

heterozygosity (Ho) was calculated in Arlequin v3.5 (Excoffier & Lischer 2010), integrated 

over all STR loci and all STR loci per population, corrected for multiple testing (Bonferroni 

correction). Furthermore, allelic richness (Rs) and inbreeding coefficient (Fis) were estimated 

between populations in FSTAT v2.9.3.2 (Goudet 1995). Polymorphic information content 

(PIC) was calculated using Microsatellite Tools v3.1 

(http://animalgenomics.ucd.ie/sdepark/ms-toolkit/index.ph). Two neutrality tests were also 

conducted: Evens-Watterson test (Slatkin’s exact test derivative, in Arlequin) and an Fst-

outlier test as implemented in Lositan v1.44 (10,000 permutations assuming the Stepwise 

mutation model) (Antao et al. 2008). 
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Pairwise Fst and Analysis of Molecular Variance (AMOVA, 10,000 permutations) 

were performed on a locus-by-locus basis, integrated over all loci calculated in Arlequin. 

Populations were grouped for western (Lower Kunene and Okavango) vs. eastern (Lower 

Shire and South Africa) for the first round of AMOVA, following this was a second round of 

analyses only considering the Namibian sampling sites only (Lower Kunene vs. Okavango). 

To visualise population distinctness, a factorial correspondence analysis plot was drawn in 

Genetix v4.05.2 (Belkhir et al. 2000). Ancestral population structure of C. niloticus was 

inferred using Structure software v2.3.4 (Pritchard et al. 2000; Falush et al. 2007; Hubisz et 

al. 2009). An initial analysis was conducted for K-values between 1 and 6, using the 

‘admixture model’ with independent allele frequencies. A second round of analyses was 

conducted to assess structure within the major clusters recovered from the first analyses. For 

this purpose, the total data set was divided into groups comprising the individuals assigned to 

each of the clusters retrieved in the first analysis. The K-values tested ranged from 1 to the 

number of different sampling sites in each subset (10 replicates for each K, 15,000 steps of 

burn-in period followed by 35,000 steps of MCMC). The estimated log probabilities for each 

K value were calculated using the rate of change in the log probability values and plotted on a 

graph representing the uppermost level of structure in Structure Harvester software v0.6.93 

(Earl & VonHoldt 2012). 

Contemporary effective population sizes (Ne) were estimated by the linkage 

disequilibrium- (LD) (0.02 critical value and the Jack-knife [95% CI]) and heterozygosity 

excess methods for each population, as implemented in NEESTIMATOR v2.01 (Do et al. 

2014). The temporal method was not considered for estimating Ne as the individuals were 

sampled around the same time. Wild populations of the Okavango and Lower Shire River 

systems were grouped as single populations, respectively, to prevent ambiguity Ne for the 

river population. This was considered as populations sampled within the river system are 

likely of migrating between sites. 

Testing for recent bottlenecks or radial expansion was evaluated using the Wilcoxon 

signed rank test for significant deviation from heterozygosity excess and deficiency under the 

Infinite Allele Model (IAM), Single Mutation Model (SMM) and the two-phased model 

(TPM) implemented in BOTTLENECK v1.2.02 (Piry et al. 1999). Analyses in 

BOTTLENECK were performed using 1 000 replications at the 5% nominal level and a TPM 

composed of 70% SMM and 30% IAM (Piry et al. 1999). The TPM has been considered to 

be the best fit model for STR data analyses for recent bottleneck identification (Piry et al. 

1999). 
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3.3 Results 

3.3.1 Mitochondrial Analysis  

The 514 bp mitochondrial control region was amplified and sequences for 112 Nile 

crocodile individuals. In the Lower Kunene, Okavango and Lower Shire populations, five 

haplotypes were observed, of which the Lower Kunene, Okavango populations clustered 

separately from the Lower Shire River populations. The consideration of publically available 

sequences (Meredith et al. 2011; Hekkala et al. 2011) (Appendix B: Table S3.2) indicated 

two clusters representing the two Nile crocodile eastern and western clades, which were 

previously described across Africa (Schmitz et al. 2003; Hekkala et al. 2011). The 

populations from the Lower Kunene, Okavango and Lower Shire River system clustered in 

the Eastern clade, which was separated from the Western clade by 15 mutational steps. The 

total dataset showed 12 haplotypes defined by 12 variable sites (all of which consisted of 

transitions) among 146 individuals (Fig. 3.1a). 

The Lower Shire River system (Malawi) showed the highest haplotype diversity 

among the three Rivers (h=0.332±0.083; π=0.015±0.008) with four haplotypes observed in a 

total of 47 individuals (Appendix B: Table S3.4). Two of the haplotypes seem to have 

evolved recently and was exclusive to Malawi, both at a frequency of 0.04 and one 

mutational step derived from previously described haplotypes. Both of the other two 

haplotypes (frequency=0.83) was found to be shared with Madagascar, and the other 

(frequency=0.09) with Madagascar, Tanzania, South Africa and Zimbabwe sequences 

reported in a previous study (Hekkala et al. 2011).  

The Lower Kunene and Okavango River systems showed no haplotype diversity with 

a single haplotype observed in a total of 64 individuals collected from four locations and no 

haplotype diversity observed among the two Rivers (h=0; π=0). Pairwise PHI-st values 

indicated significant differentiation between the Lower Shire populations in comparison to 

Lower Kunene (mean Φst = 0.940, P<0.05) and the three Okavango populations (mean Φst = 

0.932, 0.947, 0.919, P<0.05) (Table 3.1). Population differentiation among the Lower 

Kunene, Okavango vs Lower Shire River systems was also supported by AMOVA analysis, 

with only significant differentiation observed within populations (Fst=0.800; 20%; P<0.05) 

(Table 3.2). No significant population differentiation was observed between the Lower 

Kunene and Okavango populations. 
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Table 3.2 Genetic divergence among populations of the Nile crocodiles in Kunene, Okavango (Bwabwatwa 

National Park, Okavango Delta and Otjiwarongo Crocodile Farm), Lower Shire populations (Lower Shire 

(North) and Lower Shire (South)) populations and South Africa commercial population. Pairwise Fst-values 

using STRs below diagonal line and pairwise Φst-values using mtDNA above diagonal line. N/A = No 

amplification. 

 Kunene 
Bwabwatwa 

National Park 

Okavango 

Delta 

Otjiwarongo 

Crocodile Farm 

Lower 

Shire 

(North) 

Lower 

Shire 

(South) 

South 

Africa 

Comm. 

Kunene - -0.012 -0.034 0.075 0.902* 0.977* N/A 

Bwabwatwa 

National Park 
0.138* - -0.046 -0.044 0.896* 0.967* N/A 

Okavango Delta 0.116* 0.005 - 0.034 0.920* 0.975* N/A 

Otjiwarongo 

Crocodile Farm 
0.138* 0.055* 0.07275* - 0.882* 0.955* N/A 

Lower Shire 

(North) 
0.222* 0.175* 0.171* 0.174* - 0.008 N/A 

Lower Shire 

(South) 
0.200* 0.159* 0.158* 0.160* 0.003 - N/A 

South Africa 

Comm. 
0.162* 0.119* 0.112* 0.197* 0.083* 0.074* - 

*Values that indicate significant differentiation, P<0.05.  

 

Table 3.3 AMOVA results for standard computations (haplotype format) of the control region, excluding South 

African samples. Two separate analyses were conducted, namely populations clustered in two groups. Group 1: 

West (Lower Kunene and Okavango) vs east (Lower Shire), Group 2: Lower Kunene vs Okavango populations. 

West and east, southern 

Africa 

   

Source of variation Sum of squares Variance components Percentage variation 

Among groups 21.602 0.39427 80.050 

Among populations 

within groups 

0.377 -0.00024 -0.050 

Within populations 10.441 0.09850 20.000 

Total 32.420 0.49252  

FST: 0.80002 P: 0.000*   

FSC: -0.00245 P: 0.320   

FCT: 0.80051 P: 0.066   

Kunene vs. Okavango    

Source of variation Sum of squares Variance components Percentage variation 

Among groups 0.056 -0.00012 -0.20 

Among populations 

within groups 

0.116 -0.00005 -0.09 

Within populations 3.582 0.05873 100.29 

Total 3.754 0.05856  

FST: -0.003 P: 0.585   

FSC: -0.001 P: 0.684   

FCT: -0.002 P: 0.499   
* Statistical significance at the 1% nominal level 
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(b) 

 

(a) 

Figure 3.1 (a) The Medium-Joining haplotype Network depicting two groups of haplotypes, namely the Western and Eastern clades. Haplotype colours correspond to the countries where the samples were 

collected. Circles represent mtDNA haplotypes, lines connecting haplotypes represent a single substitution step, and black dots represent hypothetical haplotypes. // represents 15 mutational steps. (b), 

indication of the 12 haplotypes found within the Nile crocodile portrayed for each country of origin in Africa. Then samples within the study from the Lower Kunene and Okavango share the same 

haplotype with Gabon and Uganda. Furthermore, the populations of Southern Africa show two different haplotypes among each other separating those of Lower Kunene and Okavango from the Lower 

Shire population, which shares haplotypes with the surrounding countries. 

(b) 
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3.3.2 Genetic diversity based on STR analysis 

A total of 122 alleles were observed across all loci, with the number of alleles per 

locus variying between four (C391 and CpP309) and 23 (CpP307) (Appendix B: Table S3.5). 

All markers amplified in more than 95% of the samples, and only CpP307 and Cj18 failed in 

12% and 14% of the samples, respectively, probably due to intra-specific sequence 

polymorphisms. Fixation indices (FIS) showed significant heterozygous deficiency (thus 

deviation from HWE) when considering all populations as a single population group, with 

values ranging from 0.048-0.263. No large allele dropout was detected, but loci C391 and 

CpP2504 showed signs of stuttering. No evidence of selection based on Fst outlier and Ewan-

Watterson tests were found for any of the 11 STR loci (Fig. 3.2 and Appendix B: Table S3.5). 

Nine loci were moderately informative (PIC>0.44) and two were highly informative 

(PIC>0.77). Except for Cj18 and CpP309, all loci showed evidence of null alleles (0.0183-

0.1213) and this most likely explain the significant deviation from Hardy-Weinberg 

Expectation at each locus.  

Departure from Hardy-Weinberg Expectation was non-significant when considering 

each population separately; however Hardy-Weinberg Expectation indicated departures at 

one locus (CpP307) in both Lower Shire populations and another (CpP1409) in the Botswana 

population after Bonferroni correction for multiple tests. All loci showed moderate values of 

He (≥0.551) and Ho was lower than He for most loci. The two Lower Shire River populations 

were the most diverse groups (He=0.67, Ho=0.63), and Rs=5.53 (averaged across the two 

groups) compared to the Lower Kunene (He=0.58, Ho=0.50, and Rs=4.10) and the Okavango 

populations (He=0.59, Ho=0.58 and Rs=4.46, averaged across the three groups) (Table 3.3). 

Fixation indices Fis indicated an excess of homozygotes in the Lower Kunene (Fis=0.15) and 

Lower Shire (Fis=0.10 and 0.07) populations, compared to the Okavango River populations 

(Fis=-0.01, 0.01 and 0.04). 
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Table 3.4 Genetic diversity in the Nile crocodile populations genotyped in this study for mean values of 

Panmixia of Southern Africa populations, Lower Kunene population, Okavango populations (Bwabwatwa 

National Park, Okavango Delta and Otjiwarongo Crocodile Farm), Lower Shire populations (Lower Shire 

(North) and Lower Shire (South) and South African commercial population. For complete table refer to 

Appendix B: Table S3.4. N - number of individuals, An - number of alleles, He - expected heterozygosity, Ho - 

observed heterozygosity, HWE - Hardy Weinberg Equilibrium test (P-value), Rs - mean allelic richness, Fis - 

mean frequency of inbreeding coefficient. 

Primer N An He Ho HWE (P) Rs Fis 

Panmixia 139 11.1 0.712 0.607 0.003 10.848 0.144 

Lower Kunene 12 4.2 0.583 0.495 0.587 4.097 0.149 

Bwabwatwa National Park 20 5.3 0.599 0.605 0.616 4.481 -0.009 

Okavango Delta 29 3.0 0.880 0.750 0.613 4.749 0.150 

Otjiwarongo Crocodile Farm 13 4.3 0.562 0.535 0.537 4.137 0.043 

Okavango 62 5.2 0.595 0.584 0.531 4.456 0.015 

Lower Shire (North) 27 6.9 0.664 0.617 0.337 5.519 0.098 

Lower Shire (South) 25 6.9 0.684 0.625 0.367 5.540 0.071 

Shire 52 6.9 0.674 0.621 0.352 5.529 0.085 

South Africa comm. 12 3.8 0.519 0.586 0.273 3.734 -0.104 

 

3.3.3 Contemporary genetic connectivity and genetic structure  

Genetic distance, based on STR data, (Fst = 0.05-0.15, p < 0.001) was observed 

between the Kunene and all three Okavango River populations and great genetic distance (Fst 

= 0.15-0.25, p<0.001) between the Kunene, Okavango and Shire populations (Table 3.1). 

Genetic differentiation was supported by Fst between the Lower Shire River population in 

comparison to the Lower Kunene (Fst =0.222 and 0.200, P<0.05) and three Okavango 

Figure 3.2 LOSITAN results indicating outlier loci as candidate loci under positive (red) and balancing (yellow) selection. 

All loci (indicated in blue dots) were considered to be neutral. 

95% Upper and lower 

confidence interval 
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populations (Fst =0.175 and 0.159, 0.171 and 0.158, 0.634 and 0.784, p<0.001) (Table 3.1). 

The sampled populations distributed between the Eastern (Lower Shire River) and Western 

(Lower Kunene-Okavango River) regions of southern Africa detected two populations 

clusters (K=2), using the Bayesian structure analyses assuming no prior assumption of 

population structure, (Fig. 3.3) as the log probability only slightly increased for K values 

greater than 2 (Appendix B: Fig. S3.3).  

The two separate clusters were further supported by significant differentiation 

amongst groups (Fct=0.133; 13%), within groups (Fsc=0.053; 5%) and over all groups and 

populations (Fst=0.179; 82%), determined by AMOVA (Figure 3.4) and depicted by two 

separate clusters in a factorial correspondence plot (Fig. 3.5). 

Additional analyses between the Lower Kunene and the Okavango River populations 

revealed further cluster sub-structure between the river systems; interestingly two sub-

structured populations were present in the Okavango Delta (Appendix B: Fig. S3.4). 

Clustering of the Lower Kunene and Okavango River were supported by AMOVA amongst 

groups (Fct=0.069; 14%), within groups (Fsc=0.050; 3%) and over all groups and populations 

(Fst=0.115; 83%) (Fig. 3.4) and depicted by two separate clusters in a factorial 

correspondence plot (Fig. 3.5). The signal for two populations present in the Okavango was 

very weak and not displayed in the factorial correspondence plot. 

 

 

 

  

(a) 

(b) 

Figure 3.3 Genetic structure of Crocodylus niloticus populations based on Bayesian clustering analyses [Structure software v2.3.4 

(Pritchard et al. 2000)] a) Genetic clusters in Southern Africa (complete dataset) , K = 2 and (b) Genetic clusters  in the Kunene and the 

Okavango samples. Populations: (1) Okavango, (2) Kunene, (3) South Africa Commercial and (4) Lower Shire. 
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13% 
5% 

82% 

(a) 

14% 
3% 

83% 

 

  

Figure 3.4 Locus by locus AMOVA results with populations clustered (a) in two geographical groups, Lower Kunene and 

Okavango river populations vs. Lower Shire River population and (b) two river groups, Lower Kunene river population vs. 

Okavango River population (*significance as the 0.01% nominal level). 

Fct = 0.133*; Fsc = 0.053*; Fst = 0.179* 

*Statistical significance at the 0.01% nominal level 

Among populations within regions 

Among regions 

Within populations 

Fct = 0.069*; Fsc = 0.050*; Fst = 0.115*  

*Statistical significance at the 0.01% nominal level 

(b) 

Among populations within rivers 

Among rivers 

Within populations 
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Axis 2 
(4.39%) 

Figure 3.5 Factorial Correspondence Analyses plots. (a) Four Crocodylus niloticus populations grouped into their various river systems (Dark Blue indicates South Africa and Lower Shire 

populaitons and Light Blue indicates Lower Kunene and Okavango populations). Heterogeniety (b) within South Africa and the Lower Shire along factor 1 and 2, (c) within Lower Kunene and 

Okavango along factor 1 and 2. 

(a) 

Axis 3 (3.10%) 

Axis 1 (6.17%) 

Axis 2 (3.85%) 

(b) 

Axis 1 (6.30%) 

(c) 

Axis 2 
(5.81%) 

Axis 1 (7.00%) 
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3.3.4 Effective population size and potential population bottleneck 

Effective population size, as estimated by the LD estimates were generally high; 

except for the Bwabwatwa National Park 38.6 (17.7-432.7) and Shire (South), 43.4 (29.4-

75.2) (Table 3.4). Subsequently, due to the presence of gene flow within the Okavango and 

Shire river system, an overall estimate was determined for each river system, Okavango; 

404.6 (107.3-∞) and Shire; 143.5 (74.5-743.8). There was no significant heterozygosity 

deficiency observed in any of the populations considering any of the three models (IAM, 

TPM, SSM: Wilcoxon signed-rank test, P>0.05), however heterozygosity excess was 

significant in the Shire (North) sampling site considering the IAM (P<0.05), however the 

combined Shire population considering the IAM indicated no significance (P>0.05) (Table 

3.5). 

 

Table 3.5 Estimates of contemporary Ne size based on the Linkage Disequilibrium method [95% CI], combined 

Ne of the Okavango and Lower Shire populations are in the shaded areas. 

Populations 
LD test for Ne 

[95% CI] 
 

Heterozygosity 

excess test for 

Ne 

 

Lower Kunene ∞ (24.7-∞)  ∞ (∞-∞)  

Bwabwatwa National Park 
38.6 (17.7-

432.7) 
 56.2 (10.1-∞)  

Okavango Delta 292.3 (44.7-∞) 
404.6 (107.3-∞) 

∞ (12.8-∞) 
∞ (16.7-∞) 

Otjiwarongo Crocodile Farm 62.04(18.1-∞) ∞ (13.1-∞) 

Lower Shire (North) 754.4 (54.1-∞) 
143.5 (74.5-743.8) 

∞ (∞-∞) 
∞ (∞-∞) 

Lower Shire (South) 43.4 (29.4-75.2) ∞ (∞-∞) 

South Africa Comm. ∞ (30.9-∞)  10.3 (3.5-∞)  
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Table 3. 6 Results from the BOTTLENECK test of Short Tandem Repeats from the seven populations tested 

across the three different models Infinite Allele Model (IAM), Two-Phase Modeal (TPM) and Single Mutation 

Model (SMM). Combined test for all three models of the Okavango and Lower Shire populations are in the 

shaded areas. 

Population 
IAM   TPM   SMM   

H def H exc H def H exc H def H exc H def H exc H def H exc H def H exc 

Lower Kunene 0.880 0.139   0.711 0.319   0.207 0.817   

Bwabwatwa 

National Park 
0.880 0.139 

0.926 0.087 

0.517 0.517 

0.618 0.416 

0.120 0.897 

0.120 0.897 
Okavango 

Delta 
0.913 0.103 0.650 0.382 0.120 0.897 

Otjiwarongo 

Crocodile 

Farm 

0.768 0.260   0.382 0.650   0.120 0.897   

Lower Shire 

(North) 
0.880 0.139 

0.995 0.006* 

0.517 0.517 

0.650 0.382 

0.139 0.880 

0.087 0.926 
Lower Shire 

(South) 
0.998 0.002* 0.840 0.183 0.416 0.618 

South Africa 

Comm. 
0.875 0.150   0.500 0.545   0.150 0.875   

H def = Heterozygosity deficiency, H exc = Heterozygosity excess, * Significant values, P<0.05. 

 
 

3.4 Discussion 

The empirical data derived from genetic studies, is supportive and a prerequisite 

toward more efficient conservation methods and management plans of the Nile crocodile. As 

previously found (Hekkala et al., 2010), the Nile crocodile populations in Namibia are 

structured relative to river basin formations. The importance of assessing genetic diversity is 

evident, especially in isolated populations which has been considered for the Nile crocodile 

populations per river system. It is proposed, from supporting evidence that the Nile crocodile 

originated from the Congo basin (Hekkala et al. 2011) and spread through sub-Saharan 

Africa.  

 

3.4.1 Divergence in the southern Africa crocodilian population 

The presence of two lineages of the Nile crocodile in southern Africa, indicated by the 

clustering of haplotypes in the Lower Shire (Malawi), separated by the single haplotype of 

the Lower Kunene and Okavango populations (Fig. 1a). Comparison to publically available 

sequences revealed two common haplotypes to be observed in Southern Africa, namely 

haplotype 2 and 8 (Fig. 1b). The aforementioned is further validated when pairwise Φst values 

between the Lower Shire populations are compared to the Lower Kunene and Okavango 

populations, indicating restriction of gene flow (Table 3.1). Further, should the Φst values not 

differ significantly from the null distribution of the variance of the population, the sub  
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populations would not be differentiated from the larger population.  

The study findings are in support of Hekkala et al. (2011) for a two lineage separation of the 

Nile crocodile in Southern Africa.  

A historical migration, with the hypothesis of the Nile crocodile originating from 

within the Congo basin of Central Africa, may be indicated by geographical influences in 

southern Africa along with the assessment of mtDNA sequences into southern Africa. The 

dispersal of fresh water species into Southern Africa may be relative to the Kasais headwaters 

to be captured by the Upper Zambezi River systems, leading the way to the Okavango and 

Kunene River system respectively (Cotterill 2006). Observation of a single haplotype within 

the Kunene and the Okavango populations to be shared with an individual from Gabon and 

Uganda (Fig 1a and 1b) could be indicative of their possible dispersal from central Africa and 

a recent separation between the Kunene and Okavango River systems (Hipondoka 2005; 

Hipondoka et al. 2006; Mendelsohn et al. 2013). Furthermore, the lack of haplotype diversity 

could be indication of these Nile crocodile populations to be the most south-westerly 

populations in Africa. Considering diversity within a population to be greatest for populations 

in the abundant centre and decreasing due to genetic drift and isolation relative to the 

dispersal of the populations (Eckert et al. 2008).  

 

3.4.2 Genetic diversity and contemporary population dynamics 

Allelic diversity (He, Ho and An) and richness has been a key focus point on 

estimating diversity within populations (Allendorf 1986; Fuerst & Muruyama 1986; Spielman 

et al. 2004). Short Tandem Repeat markers used within the study indicated no impact of 

markers to be under selection within the population (Appendix B: Table S3.5) or between the 

populations (Fig. 3.2). Allelic diversity within the study respective to each river system 

(Table 3.3) was found to corroborate with river systems in Africa: Botswana (Ho = 0.51) 

(Bishop et al. 2009) South Africa (St Lucia) (Ho = 0.48), Tanzania (Ruaha River) (Ho = 0.66) 

and Zimbabwe (Zambezi River) (Ho = 0.54) populations (Hekkala et al. 2010). Even though 

crocodilian populations have previously experienced population declines due to over 

exploitation, reports were still supportive of moderate levels of genetic diversity within the 

various populations.  
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3.4.3 The Split of Namibian Nile crocodile populations 

In the present study, STR analyses as an indicator of genetic differentiation was 

moderate (Fst = 0.05-0.15, p < 0.001) in the Lower Kunene as well as the Okavango River 

populations. Additionally, a great genetic differentiation (Fst = 0.15-0.25, p<0.001) was 

observed between the Lower Kunene, Okavango and Lower Shire populations (Table 3.1). 

The above indicates a significant measure of genetic variance contained within the respective 

sub populations, relative to the total genetic variance. This suggests a clear representation of 

sub population groups, which are historically related and independently diverse populations. 

The populations have limited genetic connectivity to one another and each river system has 

become its own independent population. Additionally, a large percentage of variation was 

seen within the populations depicted by an FCA separation (Fig. 3 FCA Single) by genetic 

distance and grouped the populations into two groups, namely West Southern Africa (Lower 

Kunene and Okavango) and East Southern Africa (Lower Shire). 

Bayesian structure analyses within southern Africa further revealed the divergence of 

two populations (Fig. 5a) endorsing the divergence of two populations, whereas the presence 

of two populations within the Lower Kunene and Okavango River system contradict one 

another. However, several species have been separated within the Kunene and Okavango 

River systems with the aridification of the Cuvelai basin (Curtis et al. 1998). 

Analyses of contemporary effective population size showed the Bwabwatwa and 

Lower Shire (South) populations to have a decrease in allelic diversity due to genetic drift 

(Ne<50) (Franklin 1980). However, the presence of genetic connectivity in the whole 

Okavango and Lower Shire River system required revaluation of the Ne, as several sampling 

populations were present within each of the river systems. The revaluation indicated no threat 

of genetic diversity loss within the Okavango and Lower Shire River. This was mirrored by 

the TPM Wilcoxon test to indicate no recent expansion or bottleneck event. Additionally, low 

levels of mtDNA structuring has been reported for long lived species (Glenn et al. 2002), to 

be partially explained by their low metabolic rates (Ray et al. 2004) influencing low mutation 

rates (Bromham 2002). Moreover, their slow ‘rate of evolution’ would have allowed them to 

recover from a historical bottleneck. 

The comparison of mtDNA control region to that of the STR nuclear DNA results for 

the Lower Kunene and Okavango populations contradict each other. A single haplotype 

within the Lower Kunene and Okavango populations are not in agreement with STR results 

of two independent populations. The pattern of the single haplotype is possible due to the 

Cuvelai basin which connected the Kunene and Okavango River (Hipondoka 2005; 
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Hipondoka et al. 2006; Mendelsohn et al. 2013) with the water dependent species occupying 

the habitats. The presence of a single haplotype present indicates a recent separation and no 

time for lineage separation between the populations and the populations can be recognised 

under a single ESU. 

The high mutation rate within STR display to separate populations with restricted 

gene flow between them, most likely caused by the aradification in the previously mentioned 

basin. With the current restriction of gene flow and possible migration between the two river 

populations, each river system would be recommended to have its own MU to maintain the 

diversity within the population. 

 

3.5 Conclusion 

The Nile crocodile in the Lower Kunene and Okavango River share a single 

haplotype among all the sequences samples and can be considered a single ESU. However, 

with the present separation of the two river systems resulted in two separate populations, MU, 

due to restricted gene flow. Mitochondrial DNA analysis has also confirmed that the Nile 

crocodile populations within the Lower Kunene and Okavango River systems form part of 

the Eastern Clade in Africa, as indicated by haplotype clustering. In the present study, STR 

analyses as an indicator of genetic differentiation was moderate in Lower Kunene as well as 

the Okavango River populations, indicated by significant Fst values. Additionally, a great 

genetic differentiation was observed between the Lower Kunene, Okavango and Lower Shire 

populations. This suggests the presence of two divergent lineages of the Nile crocodile in 

Southern Africa, which was also found for this study depicted by mtDNA and STR analyses.  

The above suggests a significant measure of genetic variance contained within the 

respective sub populations, relative to the total genetic variance. It is therefore a clear 

representation of sub population groups, which are historically related and independently 

diverse populations as well. Converging lines of evidence point toward the necessity in 

monitoring C. niloticus genetic diversity and structure, as it may provide more efficient risk 

stratification tools in order to assist conservationists in developing future management plans. 
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Chapter 4 

Concluding remarks, short comings and future 

recommendations 

 

4.1 Overview of the study findings 

The primary focus of this study was to investigate further the genetic diversity and 

structure of the Nile crocodile (C. niloticus), which inhabits various environments in sub-

Saharan Africa. The separated geographical locations of the Nile crocodile across sub-

Saharan Africa point toward a possible genetic influence as a result of topographical changes. 

Additionally the genetic variation also seen in the Nile crocodile could be intrinsically linked 

to the topography of the landscape. An aerial survey was conducted on the Nile crocodile 

along the Lower Kunene River system of Namibia and census size has been found to be 

supportive of genetic diversity. 

In Chapter 2, results of an aerial survey conducted to estimate the abundance and 

distribution of the Nile crocodile in the Lower Kunene River system is reported. Problems 

which arise for surveys are generally factors influencing observer and habitat bias. The recent 

development of open population models based on animal counts (Dail & Medsen, 2011; 

Zipkin et al., 2014), as conducted in our study, provided sufficient information to monitor the 

trend of a population over time and perhaps estimate other demographic parameters required 

to effectively manage a population. Additionally, long river segments were covered in brief 

survey sessions, to allow for minimal crocodile migration between sites. The estimated 

abundance of Nile crocodiles in the Lower Kunene River was estimated at 806 individuals 

after considering observer and environmental bias (2.29 crocodiles per km) and this is 

considered plentiful, compared to other African River populations (Bourquin, 2007). 

In Chapter 3, three populations from the Lower Kunene, Okavango and Lower Shire 

Rivers were assessed for their phylogeographic separation from the Congo basin, which has 

been considered the central origin of the Nile crocodile (Hekkala et al. 2011). Two primary 

haplotypes were found to be present within Southern Africa, justifying the two lineages of the 

Nile crocodile as was previously described (Hekkala et al. 2011). Additionally, the sharing of 

a single haplotype among the 64 samples of the Lower Kunene and Okavango populations 

indicate a historical joint population. The extend of the haplotype sharing towards central 

Southern African is yet to be determined as no samples were available from these river 

systems, namely Kwando, Mamili, Linyanti/Chobe and Upper Zambezi.  
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All three previous mentioned populations including a population from a South 

African commercial farm was evaluated for genetic diversity and structure. Nile crocodile 

populations were structured relative to river basin formation, which is the result of the change 

in topography and the presence of two separate populations in Southern Africa. Additional 

analyses for the Lower Kunene and Okavango River system indicated the same result, 

however gene flow was present within the Okavango River system and associated with 

nesting site locations. Genetic diversity was not found to be lacking as a result of genetic 

drift, thereby suggesting the absence of a bottle neck or expansion within the populations. 

However, long lived species could under represent the presence of genetic drift over time. 

 

4.2 Contribution towards conservation efforts 

Genetic conservation has been become more abundant in proposed management plans 

for species. The study has provided preliminary findings of the Nile crocodile in Namibia 

relative to neighbouring river systems to provide guidance for conservation management 

efforts, for the maintenance of diversity within Southern Africa, specifically the Lower 

Kunene, Okavango and Lower Shire River populations. Two divergent populations are 

present in southern Africa populations of the Nile crocodile, with mtDNA and STR analyses 

supporting this notion. Identification of the site of secondary contact between the two 

diverged lineages may be of importance to investigate population trends in central Southern 

Africa. 

Within the two Namibian river systems, the Lower Kunene and Okavango 

populations, a single lineage was observed by mtDNA, indicative of a single ESU. However, 

STR analyses are suggestive of two MUs required for the populations within each river 

system. The data derived from the Lower Kunene River system is lacking, primarily due to 

the absence of individuals and therefore requires further investigation to ascertain stronger 

evidence with respect to their genetic structure. However, the estimated abundance of 

crocodiles and protected areas along the Lower Kunene River and the diversity within the 

populations are indicative of moderate population fitness. 

Within the Okavango populations structure was observed for the presence of two 

populations and the presence of gene flow between these populations. The findings of Bishop 

et al. (2009) indicating a decreasing Nile crocodile population can now consider the 

individuals from Namibia to be included to the gene pool and a re-evaluation to determine the 

contribution of the Namibian population towards the Okavango Delta population. Especially 

since the Namibian populations are protected in Bwabwatwa and Mahango National Park.  
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4.3 Limitations and future research 

The limitations encountered within the study are those biases which influence all 

wildlife sampling of predators in remote areas. Samples obtained from the Lower Shire and 

Okavango River systems can be considered good baseline data for the structure and diversity 

within the river systems. [As a sample set of more than 50 is recognised as an adequate 

number of samples to be representative of the populations (Ruzzanter 1998).] The collection 

of the samples were possible as past samples have been collected from the Okavango Delta 

and several Crocodile Ranches are located along the Lower Shire River systems. The Lower 

Kunene River is under representative as only 12 samples were collected from the system for 

the study and the large distance between the sampling locations will not provide as 

informative data as those of the Okavango and Lower Shire populations. 

With the on-going collection of crocodile samples along the Namibian river systems, 

more fine scale structure may be determined within the respective river systems. The Kunene 

River has several waterfalls and rapids which may act as barriers and will be of interest to 

investigate to determine whether sub-structuring is present within the Kunene River 

populations. Communication with the professional hunters in the area may be helpful to 

collect tissue samples and during trawling times of the Namibian Inland Fisheries Institute as 

reports have been noted for several small crocodiles to be collected among the fish species. 

Further, the Okavango River should be considered to be sampled outside of the 

National parks but this may prove difficult as equipment is not as secured as in the National 

Park. The presence of gene flow between the two Nile crocodile populations in the Okavango 

river system could be aided by environmental authorities collaborating from Botswana and 

Namibia. The additional use of GPS tagging methods currently in use along the Kunene and 

Okavango Rivers may validate the movement of the Nile crocodile within the river systems 

to establish new protected areas with the incorporation of genetic structure (Species 

Management Plan, 2012). 
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Appendix A 

Appendix A1 

Table S2.1 The 10 sessions flown along the Kunene river system during the aerial survey. Shown for each day 

flown along the river and the distances covered on every single day. The river mouth was considered 0km and 

the Ruacana dam 352km. 

Session Date Distant points covered 

01 24-April-2012 from km 30 to km 132 

02 24-April-2012 from km 0 to km 121 

03 25-April-2012 from km 1 to km 128 

04 27-April-2012 from km 111 to km 266 

05 28-April-2012 from km 125 to km 256 

06 28-April-2012 from km 121 to km 256 

07 9-August-2012 from km 257 to km 352 

08 10-August-2012 from km 257 to km 352 

09 11-August-2012 from km 257 to km 352 

10 12-August-2012 from km 257 to km 352 

 

Table S2 2 Sample of the count data recorded on the Kunene River at site #71. Figures indicate the number of 

crocodiles observed at the site on a particular sampling occasion. NA indicates that this site was not surveyed on 

this particular occasion. Occ = occasion / session 

Group Occ1 … Occ6 Occ7 Occ8 Occ9 Occ10 Total 

Class 1 NA … NA 4 3 6 4 17 

Class 2  NA … NA 2 2 3 3 10 

Class 3  NA … NA 1 0 0 1 2 

Class 4 NA … NA 3 1 1 1 6 

Total NA … NA 10 6 10 9 35 
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Appendix A2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. 1 Covariates description for river segments 371-380 

#500m segment 371 372 373 374 375 376 377 378 379 380 

River width 3 4 5 3 3 3 1 2 2 2 

Alt variation 31.6 36.5 21.8 14.3 20.2 32.4 40.8 39.3 35.9 39.7 
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Figure S2.3 Covariate description 

Figure S2. 2 Covariate description segments for river segments 518 to 524 

#500m segment 518 519 520 521 522 523 524 

# of channels 2 2 2 2 2 2 2 
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Appendix A3 

JAGS code for the crocodile data analysis 

The JAGS code that we used to estimate parameters for the crocodile population in Kunene 

River is presented below. We used vague priors for all parameters based on the data. We ran 

three chains of the model, each for 2200,000 iterations after a burn-in of 200,000 and thinned 

by 2000. We assessed model convergence by visually examining the chains and assuring that 

R-hat values were all less than 1.05. 

# Priors 

# Standard vague prior for lambda 

for (g in 1:nGrp){ 

   alpha[g]  ~ dnorm(0, 0.1) 

   alpha1[g]  ~ dunif(-10, 10) 

   alpha2[g]  ~ dunif(-10, 10) 

   alpha3[g]  ~ dunif(-10, 10) 

   alpha4[g]  ~ dunif(-10, 10) 

   alpha44[g]  ~ dunif(-10, 10) 

   alpha5[g]  ~ dunif(-10, 10) 

   alpha55[g]  ~ dunif(-10, 10) 

   } 

# Standard vague prior on detection 

for (g in 1:nGrp){ 

   beta[g]  ~ dnorm(0, 0.1) 

   beta1[g]   ~ dunif(-10, 10) 

   beta2[g]   ~ dunif(-10, 10) 

   beta3[g]   ~ dunif(-10, 10) 

   beta4[g]   ~ dunif(-10, 10) 

  } 

# prior on for random effect 

tau.p   <- 1 / (sd.p * sd.p) 

sd.p     ~ dunif(0, 3) 

 

# Likelihood 

# Biological model for true abundance 

for (i in 1:nSit) { 

  for (g in 1:nGrp) { 

      N[i,g] ~ dpois(lambda[i,g])               # Abundance  per size class 

      log(lambda[i,g]) <- alpha[g] + alpha1[g] * sitcov1.N[i] 

                                   + alpha2[g] * sitcov2.N[i] 

                                   + alpha3[g] * sitcov3.N[i] 

                                   + alpha4[g] * sitcov4.N[i] 

                                   + alpha44[g] * pow(sitcov4.N[i],2) 

                                   + alpha5[g] * sitcov5.N[i] 

                                   + alpha55[g] * pow(sitcov5.N[i],2) 

   } #g 

   NSit[i] <- sum(N[i,]) 

} # i 

 

# Observation model for replicated counts 

for (g in 1:nGrp) { 

  for (iv in 1:nSmp) { 
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     n[v[iv,1],v[iv,2],g] ~ dbin(p[v[iv,1],v[iv,2],g], N[v[iv,1],g])      # Detection with 

site-by-day-by-group random effect 

     p[v[iv,1],v[iv,2],g] <- (1/(1+exp(-lp[v[iv,1],v[iv,2],g]))) 

     lp[v[iv,1],v[iv,2],g] <- beta[g] + beta1[g] * obscov1[v[iv,1],v[iv,2]] 

                          + beta2[g] * obscov2[v[iv,1],v[iv,2]] 

                          + beta3[g] * obscov3[v[iv,1],v[iv,2]] 

                          + beta4[g] * obscov4[v[iv,1],v[iv,2]] 

                          + rand[v[iv,1],v[iv,2],g] 

     rand[v[iv,1],v[iv,2],g] ~ dnorm(0, tau.p) 

     p[v.2[iv,1],v.2[iv,2],g] <- 0       # p for all not surveyed occasion * sites 

 

     # Compute fit statistic E for observed data 

     eval[v[iv,1],v[iv,2],g] <- p[v[iv,1],v[iv,2],g] * N[v[iv,1],g]    # Expected values 

     E[v[iv,1],v[iv,2],g] <- pow((n[v[iv,1],v[iv,2],g] - eval[v[iv,1],v[iv,2],g]),2) / 

(eval[v[iv,1],v[iv,2],g] + 0.5) 

     # Generate replicate data and compute fit stats for them 

     n.new[v[iv,1],v[iv,2],g] ~ dbin(p[v[iv,1],v[iv,2],g], N[v[iv,1],g]) 

     E.new[v[iv,1],v[iv,2],g] <- pow((n.new[v[iv,1],v[iv,2],g] - 

eval[v[iv,1],v[iv,2],g]),2) / (eval[v[iv,1],v[iv,2],g] + 0.5) 

     p.list[iv,g] <- p[v[iv,1],v[iv,2],g] 

  } # v 

} #g 

# Derived and other quantities for (g in 1:nGrp){   totalNGrp[g] <- sum(N[,g]) 

   mean.det[g]  <- mean(p.list[,g]) 

   #for (j in 1:nRep){ 

   #   jg.p[j,g] <- mean(p[,j,g]) 

   #} 

} 

totalN <- sum(N[,]) 

N.Class[1] <- totalNGrp[1] * fq.n1 

N.Class[2] <- totalNGrp[1] * fq.n2 

N.Class[3] <- totalNGrp[2] * fq.n3 

N.Class[4] <- totalNGrp[2] * fq.n4 

 

for (g in 1:nGrp){ 

  for (iv in 1:nSmp) { 

    fit.list[iv,g] <- E[v[iv,1],v[iv,2],g] 

    fit.new.list[iv,g] <- E.new[v[iv,1],v[iv,2],g] 

    } 

} 

 

for (g in 1:nGrp){ 

  for (iw in 1:10) { 

    jg.p[iw,g] <- mean(p.list[w[iw]:w[iw+1],g])  #vector that tells the number of sites 

with 

  } 

} 

 

fit <- sum(fit.list[,]) 

fit.new <- sum(fit.new.list[,])  
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Appendix B 

Table S3.1 Origin of Nile crocodile individuals used within the study for phylogeographic analyses for 

comparison of Nile crocodile distribution in Africa, using mtDNA control region. Indicating country of origin, 

river system, latitude, longitude, sample type and accession number. 

Country  River System Locality Latitude Longitude Samples type  

Botswana Okavango Delta -18.25759 21.54353 Blood  

 Okavango Delta -18.21855 21.51949 Blood  

 Okavango Delta -18.25133 21.54088 Blood  

 Okavango Delta -23.72061 21.85913 Blood  

 Okavango Delta -18.28806 21.83225 Blood  

 Okavango Delta -18.25339 21.78478 Blood  

 Okavango Delta -18.46762 22.07741 Blood  

 Okavango Delta -18.32437 21.83028 Blood  

 Okavango Delta -18.28844 21.82317 Blood  

 Okavango Delta -18.29211 21.81610 Blood  

 Okavango Delta -18.41975 21.97619 Blood  

 Okavango Delta -18.73840 22.25302 Blood  

 Okavango Delta -18.75076 22.24855 Blood  

 Okavango Delta -18.72373 22.24522 Blood  

 Okavango Delta -18.72066 22.23969 Blood  

 Okavango Delta -18.71440 22.21235 Blood  

 Okavango Delta -18.71241 22.18826 Blood  

 Okavango Delta -18.75176 22.26060 Blood  

 Okavango Delta -18.70344 22.18106 Blood  

 Okavango Delta -18.68061 22.18108 Blood  

 Okavango Delta -18.66118 22.18812 Blood  

 Okavango Delta -18.80586 22.36799 Blood  

 Okavango Delta -18.60625 22.11565 Blood  

 Okavango Delta -18.61554 22.10932 Blood  

 Okavango Delta -18.62895 22.16772 Blood  

 Okavango Delta -18.61554 22.10932 Blood  

Namibia Okavango -18.17831 21.74166 Scute  

 Okavango -18.17831 21.74166 Scute  

 Okavango -18.17831 21.74166 Scute  

 Okavango -18.17337 21.74191 Scute  

 Okavango -18.24451 21.78623 Scute  
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 Okavango -18.24451 21.78623 Scute  

 Okavango -18.24451 21.78623 Scute  

 Okavango -18.17458 21.69928 Scute  

 Okavango -18.17337 21.74191 Scute  

 Okavango -18.17458 21.69928 Scute  

 Okavango -18.17458 21.69928 Scute  

 Okavango -18.17458 21.69928 Scute  

 Okavango -18.18167 21.74532 Scute  

Namibia Kunene -17.21149 12.20063 Scute  

 Kunene -17.25853 13.57198 Scute  

 Kunene -17.36022 13.88841 Scute  

 Kunene -17.25853 13.57198 Scute  

 Kunene -17.25853 13.57198 Scute  

 Kunene -17.25853 13.57198 Scute  

 Kunene -17.25853 13.57198 Scute  

 Kunene -17.36022 13.88841 Scute  

 Kunene -17.23711 12.24267 Scute  

 Kunene -17.23711 12.24267 Scute  

 Kunene -17.23689 12.24006 Scute  

 Kunene -17.24008 12.25133 Scute  
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Table S3.2 Additional samples of Nile crocodile mtDNA control regions of publically available sequences. 

Geographic location, River System Locality, N – Number of samples, Accession Number and Source. 

Region and  

Geographic location  
River System Locality N Accession number Source 

West Africa     

Burkina Faso Unknown 1 None (Hekkala et al. 2011) 

Gambia Kedougou, Gambia river 1 None (Hekkala et al. 2011) 

Gambia River Gambia, NP 2 None (Hekkala et al. 2011) 

Gambia Gambia River 1 JF502243 (Meredith et al. 2011)* 

Ghana Mole National Park 1 None (Hekkala et al. 2011) 

Ivory Coast Go River 1 None (Hekkala et al. 2011) 

Mauritania Aioun el-Atrouss 1 None (Hekkala et al. 2011) 

Mauritania Guelta Linsherbe 1 JF502244 (Meredith et al. 2011)* 

Nigeria Escravos River, Niger Delta 1 None (Hekkala et al. 2011) 

Senegal Casamance River 1 None (Hekkala et al. 2011) 

East Africa     

Botswana Okavango Delta 29 
(See Appendix B: 

Table 1) 
This study 

Egypt Lake Nasser, near Aswan 4 None (Hekkala et al. 2011) 

Gabon Petit Loango, Loango NP 1 None (Hekkala et al. 2011) 

Kenya Tana river 3 None (Hekkala et al. 2011) 

Malawi Lower Shire 27 
(See Appendix B: 

Table 1) 
This study 

Malawi Lower Shire 25 
(See Appendix B: 

Table 1) 
This study 

Malawi Salima Bay 1 None (Hekkala et al. 2011) 

Namibia Okavango river 20 
(See Appendix B: 

Table 1) 
This study 

Namibia 
Kunene river,  

Hartmann Valley 
5 

(See Appendix B: 

Table 1) 
This study 

Namibia 
Kunene river,  

Swartboois Drift 
7 

(See Appendix B: 

Table 1) 
This study 

Namibia Otjiwarongo crocodile ranch 13 
(See Appendix B: 

Table 1) 
This study 

Republic of Congo Likouala aux herbes 1 None (Hekkala et al. 2011) 

South Africa Lake St. Lucia 1 None (Hekkala et al. 2011) 
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Tanzania Lake Rukwa 1 None (Hekkala et al. 2011) 

Tanzania Rufiji River 1 None (Hekkala et al. 2011) 

Uganda Kidepo Valley, NP 2 None (Hekkala et al. 2011) 

Uganda 
Victoria Nile,  

Murchison falls NP 
1 None (Hekkala et al. 2011) 

Uganda Semliki River, Semuliki NP 1 None (Hekkala et al. 2011) 

Uganda 
Lake Mburo, Ruizi Drainage,  

Lake Mburo NP 
1 None (Hekkala et al. 2011) 

Zimbabwe Lake Kariba 1 None (Hekkala et al. 2011) 

Zimbabwe Sengwa, Lake Kariba 1 JF502245 (Meredith et al. 2011)* 

Madagascar     

Madagascar Ankarana Caves 2 None (Hekkala et al. 2011) 

Madagascar Betsiboko river 1 None (Hekkala et al. 2011) 

Madagascar Estuary, Fort Dauphin 1 None (Hekkala et al. 2011) 

Madagascar Near Fort Dauphine 1 JF502246 (Meredith et al. 2011)* 

* = sequences were excluded from the analyses due to short fragment lengths 
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Table S3.3 Eleven STR marker panel optimised for Nile crocodile genotyping in three PCR multiplex reactions and a singleplex reaction with primer information, repeat 

motif, dye label, estimated allele ranges, Ta - primer annealing temperature and PCR conditions of primers used. Loci were selected from 
1
(Miles et al. 2009a) and 

2 
(Bishop

et al. 2009). 

Primer Primer sequence 5‘-3’ Repeat motif Dye label Estimated allele range (bp) Ta (°C) PCR conditions 

CpP1409
1 F-GTTTATGCCCTACTGGTTATCTATC (AGAT)n NED 250-302 55 MP1 

R-

CAGTCGGGCGTCATCAGGGAAGGGGAT

TTAATAAT 

55 

CpP2504
1 

F-

CAGTCGGGCGTCATCACTCATATTTCCC

AACTATCAC 

(AGAT)n FAM 346-398 55 MP1 

R-GTTTCATTCCCACAATACACATAA 55 

CpP309
1 

F-GTTTAATACCTGGCATGTGTTCTTC (AAAC)n PET 209-223 55 MP1 

R-

CAGTCGGGCGTCATCACATCAGGTTGGC

ATTTCA 

55 

CpP4311
1 

F-

CAGTCGGGCGTCATCAGGCTGCTCTGTG

TTTG 

(AGAT)n FAM 194-222 55 MP1 

R-GTTTGGGTTTAGCATCATGT 55 

CpP218
1 

F-GTTTGGCATTTGAATTATTAACT (ACCC)n PET 176-192 50 MP2 

R-

CAGTCGGGCGTCATCACTGGCAAATCA

CTTCTG 

50 

CpP307
1 

F-

CAGTCGGGCGTCATCAGAAACCAGAGG

CCAATA 

(ACAT)n NED 338-398 

50 

MP2 

R-GTTTCTTGTCTTTGGCAGATT 50 

C391
2
 F-ATGAGTCAGGTGGCAGGTTC (CA)n VIC 127-133 63 Singleplex 

R-CATAAATACACTTTTGAGCAGCAG 63 

Cj18
2 

F-ATCCAAATC CCATGAACCTGAGAG (CA)n PET 202-218 63 MP3 

R-CCGAGTGCTTACAAGAGGCTGG 63 
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CUD68
2 

F-GCTTCAGCAGGGGCTACC (CA)n NED 112-128 63 MP3 

R-TGGGGAAACTGCACTTTAGG 63 

CJ119
2 

F-GTTTGCTGTGGAATGTTTCTAC (CA)n FAM 160-190 63 MP3 

R-CGCTATATGAAACGGTGGCTG 63 

Cj35
2 

F-GTTTAGAAGTCTCCAAGCCTCTCAG 
(CT)nTA(CA)n

(CT)n 
VIC 156-166 

63 
MP3 

R-CTGGGGCAAGGATTTAACTCTC 63 
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Table S3.4 Genetic diversity for the Nile crocodile, Crocodylus niloticus, integrated over all mtDNA control 

region haplotypes from each sampling location. N - number of samples, H - number of haplotypes (unique 

haplotypes), h - haplotype diversity, π - nucleotide diversity, k - mean number of nucleotide differences between 

haplotypes. 

 N H h π k 

Kunene 12 1 (1) 0 0 0 

Okavango 52 1 (1) 0 0 0 

Malawi 47 4 (4) 0.332±0.083 0.015±0.008 8.144 
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Table S3.5 Genetic diversity measures and Hardy-Weinberg Equilibrium test in Southern Africa Nile crocodile 

populations. a) over all populations, b) Kunene population, c) Okavango populations (Bwabwatwa National Park, 

Okavango Delta and Otjiwarongo Crocodile Farm), d) Shire populations (Shire (North) and Shire (South) and e) South 

Africa commercial samples. N - number of individuals, An - number of alleles, He - expected heterozygosity, Ho - 

observed heterozygosity, HWE - Hardy Weinberg Equilibrium test (P-value), Rs - mean allelic richness, Fis - mean 

frequency of inbreeding coefficient, Null Alleles – Brookfield 1, Ewens-Watterson homozygosity test Frequencies (P-

value) and PIC - polymorphic information content. 

Primer N An He Ho HWE (P) Rs Fis Null Alleles EW test F (P) PIC 

a)           

CpP1409 135 28 0.931 0.807 0.000 26.960 0.133 0.0621 0.035 (0.041) 0.923 

CpP2504 138 20 0.791 0.667 0.002 19.598 0.157 0.0681 0.821 (0.312) 0.771 

CpP309 139 4 0.589 0.547 0.019 3.777 0.071 0.025 0.135 (0.346) 0.505 

CpP4311 139 8 0.724 0.655 0.000 7.728 0.096 0.039 0.218 (0.180) 0.687 

CpP218 137 5 0.557 0.482 0.010 5.000 0.135 0.0471 0.334 (0.089) 0.511 

CpP307 110 23 0.887 0.655 0.000 22.927 0.263 0.1211 0.397 (0.325) 0.872 

C391 137 4 0.560 0.489 0.000 4.000 0.127 0.044 0.188 (0.090) 0.496 

Cj18 108 8 0.748 0.713 0.004 8.000 0.048 0.018 0.168 (0.079) 0.707 

CUD68 134 6 0.706 0.582 0.000 5.956 0.177 0.0711 0.098 (0.211) 0.649 

Cj119 136 10 0.784 0.640 0.002 9.546 0.184 0.0791 0.161 (0.320) 0.747 

Cj35 130 6 0.553 0.446 0.000 5.831 0.194 0.0681 0.489 (0.382) 0.506 

Mean  11.1 0.712 0.607 0.003 10.848 0.144 0.058 0.277 (0.216) 0.670 

b) Kunene           

CpP1409 12 5 0.750 0.833 0.817 4.917 -0.117 -0.067 0.188 (0.182) 0.675 

CpP2504
 

12 3 0.554 0.500 0.740 2.917 0.102 0.020 0.309 (0.469) 0.428 

CpP309
 

12 3 0.562 0.500 1.000 2.917 0.114 0.025 0.258 (0.428) 0.432 

CpP4311
 

12 4 0.659 0.333 0.042 3.917 0.506 0.183
1 

0.289 (0.378) 0.561 

CpP218
 

12 4 0.576 0.583 0.678 3.993 -0.013 -0.020 0.549 (0.367) 0.506 

CpP307
 

12 9 0.855 0.750 0.493 8.736 0.128 0.038 0.482 (0.393) 0.798 

C391 11 2 0.455 0.455 1.000 2.000 0.000 -0.014 0.242 (0.242) 0.340 

Cj18
 

11 4 0.710 0.545 0.521 4.000 0.241 0.079 0.141 (0.222) 0.615 

CUD68
 

12 3 0.301 0.333 1.000 2.917 -0.114 -0.035 0.823 (0.823) 0.264 

Cj119 12 5 0.435 0.250 0.053 4.750 0.436 0.118 0.962 (0.962) 0.393 

Cj35
 

11 4 0.558 0.364 0.119 4.000 0.360 0.111 0.656 (0.599) 0.482 

Mean  4 0.583 0.495 0.587 4.097 0.149 0.040 0.445 (0.460) 0.499 

c) Okavango           

Bwabwatwa National Park      

CpP1409 19 9 0.784 0.789 0.106 7.076 -0.007 -0.015 0.648 (0.715) 0.734 

CpP2504
 

20 10 0.606 0.600 0.281 7.333 0.011 -0.006 0.986 (0.960) 0.577 

CpP309
 

20 2 0.513 0.500 1.000 2.000 0.026 0.000 0.012 (0.012) 0.375 

CpP4311
 

20 4 0.568 0.650 0.824 3.797 -0.149 -0.062 0.431 (0.230) 0.509 

CpP218
 

20 3 0.145 0.150 1.000 2.354 -0.036 -0.008 0.937 (0.937) 0.136 
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CpP307
 

20 10 0.823 0.800 0.516 7.629 0.029 0.001 0.531 (0.681) 0.778 

C391 20 3 0.512 0.400 0.468 2.550 0.223 0.066 0.330 (0.525) 0.397 

Cj18
 

15 5 0.678 0.667 0.877 4.666 0.018 -0.007 0.407 (0.387) 0.605 

CUD68
 

18 3 0.514 0.556 0.844 2.997 -0.083 -0.037 0.326 (0.170) 0.449 

Cj119 20 4 0.729 0.750 0.351 3.966 -0.029 -0.023 0.022 (0.28) 0.657 

Cj35
 

19 5 0.721 0.789 0.505 4.919 -0.098 -0.051 0.172 (0.051) 0.665 

Mean  5 0.599 0.605 0.616 4.481 -0.009 -0.013 0.437 (0.427) 0.535 

Okavango Delta       

CpP1409 28 12 0.880 0.750 0.001* 8.891 0.150 0.061 0.126 (0.210) 0.850 

CpP2504 29 13 0.685 0.724 0.510 8.126 -0.058 -0.030 0.981 (0.912) 0.660 

CpP309 29 2 0.503 0.345 0.134 2.000 0.319 0.100 0.051 (0.051) 0.372 

CpP4311 29 4 0.551 0.586 1.000 3.748 -0.065 -0.029 0.397 (0.182) 0.498 

CpP218 28 3 0.229 0.250 1.000 2.563 -0.092 -0.020 0.729 (0.656) 0.211 

CpP307 24 8 0.717 0.708 0.812 5.975 0.013 -0.004 0.659 (0.683) 0.656 

C391 29 3 0.556 0.690 0.404 2.769 -0.246 -0.093 0.140 (0.231) 0.443 

Cj18 28 5 0.738 0.679 0.157 4.844 0.082 0.027 0.063 (0.032) 0.680 

CUD68 27 5 0.665 0.704 0.622 4.529 -0.059 -0.031 0.277 (0.153) 0.608 

Cj119 27 5 0.624 0.481 0.059 4.180 0.232 0.081 0.409 (0.405) 0.553 

Cj35 29 6 0.716 0.828 0.166 4.616 -0.160 -0.073 0.269 (0.435) 0.649 

Mean  6.0 3.083 0.624 0.613 0.011 4.749 0.562 -0.001 0.442 

Otjiwarongo Crocodile Farm      

CpP1409 13 6 0.778 0.923 0.721 5.692 -0.195 -0.100 0.252 (0.307) 0.711 

CpP2504 13 6 0.745 0.769 0.697 5.825 -0.034 -0.031 0.444 (0.264) 0.682 

CpP309 13 2 0.409 0.538 0.499 2.000 -0.333 -0.104 0.287 (0.287) 0.316 

CpP4311 13 4 0.588 0.538 0.664 3.828 0.087 0.017 0.499 (0.569) 0.496 

CpP218 13 2 0.148 0.154 1.000 1.982 -0.043 -0.010 0.725 (0.725) 0.132 

CpP307 12 8 0.757 0.750 0.739 7.659 0.010 -0.014 0.850 (0.831) 0.697 

C391 13 3 0.643 0.615 0.695 3.000 0.045 0.002 0.075 (0.071) 0.546 

Cj18 12 3 0.507 0.500 0.0234 2.996 0.015 -0.009 0.443 (0.342) 0.424 

CUD68 13 4 0.455 0.385 0.450 3.843 0.161 0.037 0.762 (0.666) 0.407 

Cj119 13 5 0.785 0.462 0.0059 4.846 0.422 0.167
1 

0.048 (0.101) 0.712 

Cj35 12 4 0.370 0.250 0.408 3.833 0.333 0.077 0.920 (0.920) 0.330 

Mean  4 0.562 0.535 0.537 4.137 0.043 0.003 0.482 (0.416) 0.496 

Total Mean  5.18 0.595 0.584 0.531 4.456 0.015 -0.004 0.431 (0.416) 0.531 

d) Shire            

Shire (North)           

CpP1409 26 15 0.908 0.846 0.529 10.641 0.069 0.024 0.188 (0.227) 0.881 

CpP2504 27 14 0.755 0.667 0.195 8.297 0.119 0.043 0.968 (0.976) 0.720 

CpP309 27 3 0.611 0.630 0.102 2.997 -0.030 -0.018 0.067 (0.055) 0.531 
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CpP4311 27 6 0.825 0.667 0.024 5.769 0.194 0.079 0.001 (0.004) 0.781 

CpP218 27 5 0.662 0.704 0.873 4.288 -0.065 -0.033 0.295 (0.278) 0.591 

CpP307 20 8 0.721 0.450 0.003
* 

6.700 0.382 0.148
1 

0.727 (0.502) 0.677 

C391 27 3 0.414 0.370 0.093 2.799 0.108 0.026 0.469 (0.334) 0.358 

Cj18 18 7 0.840 0.889 0.931 6.768 -0.060 -0.040 0.028 (0.011) 0.793 

CUD68 27 4 0.649 0.741 0.417 3.781 -0.144 -0.063 0.151 (0.212) 0.572 

Cj119 27 8 0.756 0.741 0.420 6.360 0.021 0.001 0.445 (0.327) 0.715 

Cj35 24 3 0.159 0.083 0.124 2.308 0.480 0.062 0.880 (0.880) 0.148 

Mean  7 0.664 0.617 0.337 5.519 0.098 0.021 0.384 (0.338) 0.615 

Shire (South)           

CpP1409 25 17 0.906 0.800 0.0095 11.200 0.119 0.047 0.551 (0.623) 0.879 

CpP2504 25 11 0.793 0.600 0.010 7.404 0.248 0.100
1 

0.725 (0.836) 0.748 

CpP309 25 3 0.624 0.560 0.047 2.999 0.104 0.032 0.062 (0.054) 0.541 

CpP4311 25 7 0.810 0.840 0.951 6.201 -0.038 -0.026 0.058 (0.054) 0.764 

CpP218 25 5 0.711 0.720 0.370 4.720 -0.013 -0.0137 0.151 (0.088) 0.647 

CpP307 22 13 0.855 0.545 0.001
* 

9.609 0.368 0.158
1 

0.679 (0.547) 0.819 

C391 25 3 0.438 0.400 0.112 2.832 0.089 0.021 0.450 (0.306) 0.375 

Cj18 24 5 0.720 0.833 0.511 4.690 -0.162 -0.075 0.127 (0.091) 0.654 

CUD68 25 4 0.610 0.440 0.058 3.603 0.283 0.099 0.266 (0.271) 0.519 

Cj119 25 6 0.774 0.800 0.965 5.685 -0.034 -0.024 0.084 (0.031) 0.725 

Cj35 24 2 0.284 0.333 1.000 1.996 -0.179 -0.044 0.376 (0.376) 0.239 

Mean  7 0.684 0.625 0.367 5.540 0.071 0.025 0.321 (0.298) 0.628 

Total Mean  6.9 0.674 0.621 0.352 5.529 0.085 0.023 0.352 (0.318) 0.622 

e)           

South Africa           

CpP1409 12 6 0.801 0.750 0.222 3.993 -0.333 -0.0435 0.173 (0.080) 0.736 

CpP2504 12 8 0.790 0.833 0.129 7.659 -0.058 -0.1733 0.707 (0.775) 0.723 

CpP309 13 3 0.665 0.923 0.010 3.000 -0.412 -0.1954 0.042 (0.042) 0.566 

CpP4311 13 4 0.566 0.846 0.092 3.692 -0.526 -0.1404 0.559 (0.741) 0.462 

CpP218 12 4 0.634 0.833 0.577 3.000 0.452 0.000 0.356 (0.266) 0.547 

CpP307 0 0 0.000 0.000 0.000 0.000 0.000 -0.077 0.000 (0.000) 0.000 

C391 12 3 0.409 0.500 1.000 2.917 -0.234 0.000 0.649 (0.684) 0.341 

Cj18 0 0 0.000 0.000 0.000 0.000 0.000 0.002 0.000 (0.000) 0.000 

CUD68 12 5 0.728 0.833 0.041 4.996 0.048 -0.080 0.056 (0.039) 0.716 

Cj119 12 6 0.786 0.750 0.648 5.826 -0.152 0.0978 0.546 (0.597) 0.649 

Cj35 11 3 0.325 0.182 0.280 5.989 0.066 -0.055 0.806 (0.806) 0.282 

Mean  4 0.519 0.586 0.273 3.734 -0.104 -0.0435 0.354 (0.366) 0.457 

* = Hardy Weinberg Equilibrium significance after Bonferroni correction for multiple tests (p-level<0.0045). 

1
 = Presence of Null alleles  
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Table S3.6 Nile crocodile populations (Lower Kunene, Bwabwatwa, Okavango Delta, Otjiwarongo Crocodile Ranch, 

Lower Shire  (North), Lower Shire (South) and South Africa Commercial samples) allele frequencies for 11 STR loci 

(N = 139), including; Allelen = mean allele size and N = number of individuals. 

 

Locus Allelen 

Lower 

Kunene 
Bwabwatwa 

Okavango 

Delta 

Otjiwarongo 

Crocodile 

Ranch 

Lower 

Shire 

(North) 

Lower 

Shire 

(South) 

South 

Africa 

Commercial 

C_391 N 11 20 29 13 27 25 12 

 
127 0,318 0,600 0,448 0,500 0,741 0,720 0,750 

 
129 - 0,025 0,052 0,308 - - - 

 
131 0,682 0,375 0,500 0,192 0,056 0,060 0,208 

 
133 - - - - 0,204 0,220 0,042 

Cj_119 N 12 20 27 13 27 25 12 

 
160 - - 0,019 - - - - 

 
166 0,042 0,375 0,537 0,038 0,111 0,100 0,417 

 
168 - - - 0,231 0,019 - 0,083 

 
178 - 0,100 0,074 0,154 0,130 0,060 - 

 
180 0,125 0,275 0,074 0,308 0,444 0,380 0,333 

 
182 0,750 0,250 0,296 0,269 0,111 0,240 0,042 

 
184 0,042 - - - - - - 

 
186 - - - - 0,037 - - 

 
188 0,042 - - - 0,130 0,140 0,083 

 
190 - - - - 0,019 0,080 0,042 

Cj_18 N 11 15 28 12 18 24 0 

 
202 0,318 0,500 0,321 0,667 0,167 0,375 - 

 
204 - - - - - 0,063 - 

 
208 - 0,067 0,089 - 0,111 - - 

 
210 0,045 0,133 0,107 0,250 0,167 0,146 - 

 
212 - - - - 0,111 - - 

 
214 - - - - 0,083 0,063 - 

 
216 0,227 0,267 0,375 0,083 0,306 0,354 - 

 
218 0,409 0,033 0,107 - 0,056 - - 

Cj_35 N 11 19 29 12 24 24 11 

 
156 - - 0,017 - - - - 

 
158 - 0,079 0,034 - - - - 

 
160 0,636 0,158 0,379 0,792 0,917 0,833 0,818 

 
162 0,091 0,474 0,328 0,042 0,063 0,167 0,136 

 
164 0,045 0,158 0,034 0,042 - - - 

 
166 0,227 0,132 0,207 0,125 0,021 - 0,045 

CpP_1409 N 12 19 28 13 26 25 12 

 
250 - - - - 0,038 - - 

 
252 - - - - 0,019 - - 

 
256 - - - - - 0,020 - 

 
257 - - - - - - 0,375 

 
258 - 0,395 0,214 0,231 0,115 0,040 - 

 
259 - - - - - - 0,167 

 
260 0,167 0,026 0,196 - 0,115 - - 

 
262 0,042 - 0,018 0,038 0,019 0,120 - 

 
264 - - 0,018 - 0,038 0,020 - 
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266 - - - - - 0,020 - 

 
268 - 0,026 - 0,385 - 0,020 - 

 
270 - - 0,018 - - 0,020 - 

 
272 - 0,079 0,054 - 0,019 0,120 - 

 
274 - - 0,071 - 0,192 0,220 - 

 
276 - 0,026 - - - 0,020 - 

 
277 - - - - - 0,000 0,083 

 
278 0,250 - - 0,038 0,096 0,140 - 

 
280 - 0,211 0,125 - 0,038 0,040 - 

 
281 - - - - - - 0,083 

 
282 0,417 0,053 0,125 0,154 0,058 0,040 - 

 
284 - - - - 0,058 0,060 - 

 
285 - - - - - - 0,208 

 
286 0,125 - - - 0,019 0,020 - 

 
287 - - - - - - 0,083 

 
288 - 0,158 0,054 - - - - 

 
290 - 0,026 0,089 0,154 0,019 0,020 - 

 
292 - - 0,018 - - - - 

 
302 - - - - 0,154 0,060 - 

CpP_218 N 12 20 28 13 27 25 12 

 
176 0,208 - - - 0,481 0,420 0,292 

 
180 - 0,025 0,036 - 0,037 0,080 - 

 
184 0,083 - - 0,077 0,130 0,120 0,083 

 
188 0,625 0,925 0,875 0,923 0,315 0,320 0,542 

 
192 0,083 0,050 0,089 - 0,037 0,060 0,083 

CpP_2504 N 12 20 29 13 27 25 12 

 
346 - 0,050 0,052 0,115 0,037 - - 

 
348 - - - - 0,056 0,040 - 

 
360 0,542 0,075 0,052 0,115 0,037 0,060 0,042 

 
362 - - 0,017 - - - 0,042 

 
364 - - 0,017 - 0,463 0,280 0,083 

 
366 - - 0,034 - 0,019 - - 

 
368 0,417 0,625 0,552 0,462 0,167 0,340 0,333 

 
370 - - - - 0,019 0,020 - 

 
372 - 0,050 0,052 0,038 0,093 0,140 0,083 

 
374 - - 0,017 - 0,019 0,020 - 

 
376 0,042 - - 0,077 - - - 

 
378 - 0,025 0,017 0,192 0,019 0,020 - 

 
380 - 0,050 - - - - - 

 
382 - 0,050 0,086 - 0,019 - 0,042 

 
384 - - - - 0,019 0,040 0,042 

 
386 - - - - - - 0,333 

 
388 - 0,025 0,052 - - 0,020 - 

 
390 - 0,025 0,017 - 0,019 0,020 - 

 
392 - 0,025 0,034 - - - - 

 
398 - - - - 0,019 - - 

CpP_307 N 12 20 24 12 20 22 0 

 
340 0,250 - - - 0,100 0,045 - 
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342 0,083 0,025 0,021 0,083 0,500 0,227 - 

 
344 0,042 0,150 0,083 - - 0,045 - 

 
348 - - - - - 0,023 - 

 
350 - - - - 0,150 0,295 - 

 
352 - - - - 0,075 - - 

 
356 - 0,025 - 0,042 - - - 

 
358 - - - 0,042 - - - 

 
360 0,083 0,025 - - - 0,023 - 

 
362 0,292 0,325 0,417 0,208 - - - 

 
366 - - - - 0,025 0,068 - 

 
368 0,042 0,225 0,333 0,458 - - - 

 
370 0,042 - - - - 0,045 - 

 
372 - 0,075 0,021 0,042 - 0,045 - 

 
374 - - - 0,042 0,075 0,091 - 

 
376 - 0,025 0,042 - - - - 

 
378 - - - - 0,050 0,023 - 

 
380 0,083 - - - - - - 

 
382 - - - - - 0,023 - 

 
384 0,083 0,100 0,042 0,083 - - - 

 
386 - 0,025 - - - - - 

 
388 - - - - 0,025 0,045 - 

 
398 - - 0,042 - - - - 

CpP_309 N 12 20 29 13 27 25 13 

 
209 - - - - 0,185 0,280 0,308 

 
213 0,500 0,500 0,552 0,731 0,537 0,520 0,231 

 
217 0,458 0,500 0,448 0,269 0,278 0,200 0,462 

 
223 0,042 - - - - - - 

CpP_4311 N 12 20 29 13 27 25 13 

 
194 - - - - - 0,040 - 

 
198 0,042 - - - - - - 

 
202 0,125 0,175 0,138 0,077 0,148 0,300 0,346 

 
206 - 0,150 0,172 0,308 0,204 0,240 0,038 

 
210 0,458 0,625 0,638 0,577 0,241 0,180 0,577 

 
214 0,375 0,050 0,052 0,038 0,056 0,060 0,038 

 
218 - - - - 0,222 0,040 - 

 
222 - - - - 0,130 0,140 - 

CUD_68 N 12 18 27 13 27 25 12 

 
112 - - - - - - 0,083 

 
116 - - 0,074 - 0,130 0,040 0,208 

 
118 0,042 0,167 0,148 0,115 0,333 0,380 0,167 

 
120 0,125 0,167 0,222 0,115 0,481 0,500 0,375 

 
122 0,833 0,667 0,519 0,731 0,056 0,080 0,167 

 
128 - - 0,037 0,038 - - - 
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Figure S3.1 Map of Southern Africa river system indicating crocodile capturing sites. Within each of the three different river syetems, Fig. 3.1b 

Kunene river syetsm, Fig. 3.1c Okavango river systems and the third Shire river system with noexact GPS cooridiantes for crocodile capturing site 

locations. 
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Figure S3.1b Map of the Lower Kunene river system and crocodile capturing sites. On the left (green square) capturing site Serra Cafema and on the right (blure sqaure) capturing 

site East of Swart Boois drift. Blue dots indicate sampling location of Nile crocodile individuals used within this study. 
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Figure S3.1c Map of the Okavango river system from Namibia and the Okavango Delta in Botswana. Blue dots indicate sampling location of Nile crocodile individuals used within 

this study. 
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Figure S3.2 Scute cut removal system for Nile crocodile individual 

identification in the wild. Drafted from Leslie et al., 1997 
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Mitochondrial DNA sequences were aligned using ClustalW function implemented in 

Geneious v7.1 (Kearse et al. 2012) and constructed a UPGMA (Unweighted Pair Group Method 

with Arithmetic Mean) tree within the Geneious Tree Builder using the Tamura-Nei genetic 

distance model. 
 
 
 
 
 

 
  

Figure S3.3 An Unweighted Pair Group Method with Arithmetic Mean (UPGMA) phylogenetic tree of mtDNA control 

region sequences used within the study for the Lower Kunene, Okavango, Lower Shire and publically available sequences 

(Hekkala et al. 2011) for the Nile crocodile in Africa, considering Alligator mississipiensis as the outgroup. Redlines 

indicate the separation of the western Nile crocodile clade as described by Schmitz et al. (2003) and the black lines the 

eastern clade.  Of which the eastern clade consist of a further two lineages within Southern and eastern Africa. Lineage 1: 

Green and Lineage 2: Blue for Southern Africa. 
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Figure S3.5 Delta K vs K for number of population detection without prior assumption of populations in 

Southern Africa rivers, Kunene, Okavango, Shire and South Africa Rivers. Results indicate two distinct 

populations present within Southern Africa 

Figure S3.4 Delta K vs K for number of population detection without prior assumption of populations in the 

Kunene and Okavango river populations. Results indicate two distinct populations present within the Kunene 

and Okavango river systems in Northern Namibia. 
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