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Molecular analysis suggests that Namibian 
cheetahs (Acinonyx jubatus) are definitive hosts 
of a so far undescribed Besnoitia species
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Abstract 

Background: Besnoitia darlingi, B. neotomofelis and B. oryctofelisi are closely related coccidian parasites with felids 
as definitive hosts. These parasites use a variety of animal species as intermediate hosts. North American opossums 
(Didelphis virginiana), North American southern plains woodrats (Neotoma micropus) and South American domestic 
rabbits (Oryctolagus cuniculus) are intermediate hosts of B. darlingi, B. neotomofelis and B. oryctofelisi, respectively. 
Based on conserved regions in the internal transcribed spacer-1 (ITS1) sequence of the ribosomal DNA (rDNA), a real-
time PCR for a sensitive detection of these Besnoitia spp. in tissues of intermediate hosts and faeces of definitive hosts 
has recently been established. Available sequence data suggest that species such as B. akodoni and B. jellisoni are also 
covered by this real-time PCR. It has been hypothesised that additional Besnoitia spp. exist worldwide that are closely 
related to B. darlingi or B. darlingi-like parasites (B. neotomofelis, B. oryctofelisi, B. akodoni or B. jellisoni). Also related, but 
not as closely, is B. besnoiti, the cause of bovine besnoitiosis.

Methods: Faecal samples from two free-ranging cheetahs (Acinonyx jubatus) from Namibia that had previously 
tested positive for coccidian parasites by coproscopy were used for this study. A conventional PCR verified the pres-
ence of coccidian parasite DNA. To clarify the identity of these coccidia, the faecal DNA samples were further charac-
terised by species-specific PCRs and Sanger sequencing.

Results: One of the samples tested positive for B. darlingi or B. darlingi-like parasites by real-time PCR, while no 
other coccidian parasites, including Toxoplasma gondii, Hammondia hammondi, H. heydorni, B. besnoiti and Neospora 

caninum, were detected in the two samples. The rDNA of the B. darlingi-like parasite was amplified and partially 
sequenced. Comparison with existing sequences in GenBank revealed a close relationship to other Besnoitia spp., but 
also showed clear divergences.

Conclusions: Our results suggest that a so far unknown Besnoitia species exists in Namibian wildlife, which is closely 
related to B. darlingi, B. neotomofelis, B. oryctofelisi, B. akodoni or B. jellisoni. The cheetah appears to be the definitive host 
of this newly discovered parasite, while prey species of the cheetah may act as intermediate hosts.
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Background
Besnoitia darlingi, B. neotomofelis and B. oryctofelisi are 
closely related coccidian parasites, for which domestic 
cats have been ascertained as definitive hosts [1–4]. The 
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bobcat (Lynx rufus) has been identified as the definitive 
host of B. darlingi in the wild [5]. Besnoitia darlingi uses 
a marsupial, the North American opossum (Didelphis 

virginiana), as its intermediate host [5]. In contrast, B. 

neotomofelis and B. oryctofelisi have been described in 
placental mammals, i.e. in the North American southern 
plains woodrat (Neotoma micropus) and in domestic rab-
bits from South America (Oryctolagus cuniculus), respec-
tively [2, 4, 6]. Besnoitia akodoni, another closely related 
Besnoitia species, was described in a placental mammal 
in South America, i.e. the rodent Akodon montensis, as 
intermediate host [7]. Another Besnoitia sp., B. jellisoni, 
was described in the North American white-footed deer 
mouse (Peromyscus maniculatus) and in three species of 
kangaroo rats (Dipodomys species) as intermediate hosts 
[8, 9]. In contrast to B. darlingi, B. neotomofelis, and B. 

oryctofelisi, the definitive hosts of B. jellisoni or B. ako-

doni are unknown. Domestic cats, other carnivorous 
mammals, various birds and snakes have been excluded 
as final hosts of B. jellisoni [10, 11]. Further reports sug-
gest the presence of similar Besnoitia spp. parasites in 
New Zealand, Australia, Japan and Kenya [12–15]. More-
over, for B. wallacei, first described on Oahu, Hawaii, in a 
domestic cat (i.e. its definitive host), experimental studies 
suggested rodents (mice, rats) as appropriate intermedi-
ate hosts [10].

It has therefore recently been argued that other, so 
far unknown, Besnoitia species may exist in other parts 
of the world [16]. The high level of conservation in the 
internal transcribed spacer-1 (ITS1) sequence of the 
ribosomal DNA (rDNA) among related species of B. 

darlingi and B. darlingi-like species (B. neotomofelis, B. 

oryctofelisi, B. akodoni, B. jellisoni) was utilised to estab-
lish primers and a probe for the detection of such Bes-

noitia spp. parasites in their intermediate (e.g. rodents, 
lagomorphs and marsupials) or definitive hosts (e.g. wild 
felids or canids) [16]. This real-time PCR is not able to 
detect the Besnoitia spp. of ungulates, i.e. cattle, goats, 
donkeys and horses, and caribou and reindeer, such as 
B. besnoiti, B. caprae, B. bennetti and B. tarandi, respec-
tively [16].

Our previous work suggested the presence of Toxo-

plasma gondii in most of 12 Namibian wildlife species 
and that of B. besnoiti and Neospora caninum in a few of 
these same species, including six of suborder Feliformia, 
four of suborder Caniformia and two of suborder Rumi-
nantia [17]. Felids, including cheetahs (Acinonyx juba-

tus), are known as definitive hosts of T. gondii, but for B. 

besnoiti, the causative agent of bovine besnoitiosis, the 
definitive host is still unknown, although wild felids have 
been discussed as candidates [17, 18]. Since morphologi-
cal identification of coccidian parasites is challenging, we 
used molecular methods to examine the faeces collected 

from the ampulla recti of two free-ranging cheetahs for B. 

besnoiti. In a previous study, these two cheetahs had been 
shown to be positive for coccidian oocysts by coproscopy 
[19].

Methods
DNA extraction

In this study, we used faecal samples from two free-
ranging female cheetahs, one sub-adult and one adult, 
from farmland in central Namibia. The animals had 
previously tested positive for coccidian parasites by 
coproscopy [19]. The original and detailed records 
reported up to 3600 oocysts with an approximate 
size of 18–22.5 × 18.0–36.0 µm per gram faeces [19]. 
Coproscopy of the sub-adult and the adult cheetah for 
the present study revealed 3600 and 50 oocysts with an 
approximate size of 18.0 × 18.0  µm, respectively, per 
gram faeces, as well as 300 oocysts with an approximate 
size of 22.5 × 36.0  µm per gram faeces in the adult 
cheetah (BW and GÁC, unpublished data). Capture and 
handling of the animals, sample collection, transport 
and storage has been described previously [17, 19, 20]. 
The Quick-DNA Fecal/Soil Microbe DNA Miniprep Kit 
(Zymo Research Europe GmbH, Freiburg, Germany) 
was used to extract DNA from approximately 200-mg 
aliquots according to the manufacturer’s recommenda-
tions. From the faecal sample of the sub-adult female, 
two aliquots were available, which were independently 
extracted. Extraction typically yields 100  μl DNA per 
faecal sample [16].

Endpoint PCR

To test for coccidian parasites, a PCR was performed 
using the common apicomplexan small subunit riboso-
mal DNA (18S rDNA) primers COC-1 and COC-2 [21, 
22]. Hammondia heydorni DNA was tested using the 
primers JS4  and  JS5 as described [23, 24]. Due to the 
high level of sequence identity in the rDNA target, the 
primer pair JS4/JS5 was expected to amplify also DNA 
of Hammondia triffitae, a coccidian parasite using foxes 
as definitive hosts [25–27].

For the identification of coccidian parasites by Sanger 
sequencing, rDNA was amplified by endpoint PCR 
using primer pairs (Fig. 1) as previously published [23, 
28, 29] and listed in Additional file 1: Table S1.

For all PCRs, primers were used at a final concentra-
tion of 0.5  mM and dNTPs at a final concentration of 
250  mM each (Stratec Molecular GmbH, Berlin, Ger-
many). Taq polymerase (Stratec Molecular GmbH) had 
a final concentration of 1 U/25 µl using the buffer sys-
tem supplied with the enzyme. The PCR cycling condi-
tions were: 94 °C, 5 min; then 56 °C/1 min (with 0.5 °C 
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decrement per cycle after the 1st cycle), 72  °C/1  min, 
94  °C/1  min, for 10 cycles; followed by 51  °C/1  min, 
72  °C/1  min, 94  °C/1  min, for 40 cycles; and a final 
incubation at 51  °C for 1  min and a final extension at 
72 °C for 5 min.

Real‑time PCRs

Real-time PCRs were used to test for T. gondii, Hammon-

dia hammondi, B. besnoiti, B. darlingi and B. darlingi-
like parasites or N. caninum. Toxoplasma gondii was 
examined as previously reported targeting the TgREP-
529 repetitive element [30, 31]. Hammondia hammondi 
was diagnosed using a recently published real-time PCR 
targeting the HhamREP-529 repetitive element [22]. In 
the case of B. besnoiti, a fragment of the ITS1 region in 
the rDNA was amplified as described (BbRT1; [32]). For 
B. darlingi and B. darlingi-like parasite, a recently pub-
lished real-time PCR designated BdanjoRT1 was applied 
[16]. For the detection of N. caninum DNA, a previously 
published real-time PCR targeting the Nc5 gene [31, 33] 
was used.

To monitor the inhibition of the real-time PCRs, a het-
erologous plasmid with DNA sequences resembling the 
enhanced green fluorescent protein (EGFP) gene [34] was 
added to the reaction mix in all real-time PCRs except 
those for N. caninum. The internal control PCR included 
the primers EGFP1-F, EGFP2-R and the probe EGFP1 
[22]. A 712-bp fragment of the EGFP gene was amplified 
and cloned into the pGEM-Teasy standard cloning vec-
tor (Promega, Walldorf, Germany) in reverse orientation 
to obtain the internal control (IC) DNA (pGEM-EGFP2-
rev). The amount of the IC DNA added to each reaction 
was adjusted so that it resulted in a quantification cycle 
(Cq) value of approximately 32 in the real-time PCR.

Reactions were performed in a final volume of 20 µl 
using a commercial master mix (PerfeCTa MultiPlex 

qPCR ToughMix; Quantabio, VWR International, 
Darmstadt, Germany) and a CFX384 instrument (Bio-
rad Laboratories GmbH, Munich, Germany). Prim-
ers and probes were purchased from MWG-Biotech 
(Ebersberg, Germany). Standard concentrations for 
primers (500  nM) and probes (100  nM, target specific 
primers; 160 nM, EGFP1) were used. The cycling con-
ditions in real-time PCR: were 95.0  °C, 5  min (initial 
denaturation); then 95.0  °C/10  s, 60.0  °C/30  s, for 45 
cycles. After each cycle, the light emission by the fluo-
rophore was measured. Real-time PCR results were 
analysed using the CFX manager software version 1.6 
(Biorad Laboratories GmbH, Munich, Germany).

Cloning

For Sanger sequencing of the amplification products, 
bands of the expected size were excised from agarose 
gels and purified with a commercial kit (NucleoSpin® 
Gel and PCR Clean-up; Macherey–Nagel, Düren, Ger-
many), following the manufacturer’s instructions. Puri-
fied amplification products were then cloned into a 
commercially available vector (pGEM®-T Easy Vector 
System I; Promega, Mannheim, Germany) and used to 
transform chemically competent Escherichia coli (One-
Shot TOP10; Thermo Fisher Scientific, Langenselbold, 
Germany). The transformed E. coli cell were cultivated 
and the plasmid DNA was subsequently collected using 
a commercial kit (QIAprep Spin Miniprep Kit; Qia-
gen, Hilden, Germany) according to the manufactur-
er’s instructions. Sequencing was performed using the 
BigDye Terminator v1.1 Cycle Seq. Kit (Thermo Fisher 
Scientific) and passage through NucleoSEQ Columns 
(Macherey–Nagel) for cleaning up the nucleic acids, 
in an ABI 3130 capillary sequencer (Thermo Fisher 
Scientific).

Fig. 1 Overview of PCR fragments and primer names used to assess rDNA sequences of Besnoitia darlingi-like parasites (named “Besnoitia-acinonyx” 
for this study) and related organisms in faeces of a Namibian cheetah. Green-coloured amplicons revealed sequences closely related to B. 

darlingi-like parasites (Table 1); yellow-coloured amplicons revealed sequences related to additional coccidia (Table 1). Details on primer sequences 
are given in Additional file 1: Table S1. ITS1 Internal transcribed spacer-1
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The forward and reverse sequences were aligned, if 
necessary trimmed based on primer sequence informa-
tion, and the consensus sequences for the individual 
cloned amplification products compared to sequences 
stored in GenBank, EMBL, DDBJ or RefSeq using 
BLASTn with standard conditions.

Phylogenetic analysis

The evolutionary history based on ITS1 rDNA sequences 
was inferred using the maximum parsimony (MP) 
method. The number of base substitutions per site 
between sequences included into the analysis was termed 
“pairwise distance” or “evolutionary divergence” in the 
following section. The MP tree was obtained using the 
subtree-pruning-regrafting algorithm [35] with search 
level 0, in which the initial trees were obtained by the 
random addition of sequences (10 replicates). All codon 
positions (1st, 2nd, 3rd, noncoding) were included. Evo-
lutionary analyses were conducted in MEGA X [36].

Results
PCRs for coccidian parasites

The observed parasitic structures, previously diag-
nosed microscopically as coccidia [19], were confirmed 
by a positive reaction in an 18S rDNA-based endpoint 
COC-1/COC-2 PCR for both samples of the two chee-
tahs (one sub-adult and one adult female). Species-spe-
cific PCRs were negative for T. gondii, H. hammondi 
and B. besnoiti. The unlikely presence of N. caninum or 
H. heydorni was also excluded by real-time or endpoint 
PCR, respectively. Using a real-time PCR established to 
detect B. darlingi and B. darlingi-like parasites [16], we 
observed a positive signal (Cq 28.3 or 31.9) in both sam-
ple aliquots of the sub-adult female cheetah. This sug-
gests that genomes equivalent to 10–100 tachyzoites 
were present in 10 µl of the 100 µl of DNA extracted from 
this faecal sample. No signal was observed in the sample 
of the adult female cheetah, although the IC real-time 
PCR revealed no inhibition.

Characterisation of 18S and ITS1 rDNA sequences 

of a Besnoitia sp.‑like parasite

The positive B. darlingi-like real-time PCR suggested 
either the presence of B. darlingi in the faeces of the 
positive cheetah—although this was unlikely because 
B. darlingi use marsupials as intermediate hosts, which 
are not present in Africa—or, most likely, the presence 
of oocysts of another, possibly not yet known, Besnoi-

tia species. To identify this parasite, we partially char-
acterised its rDNA using overlapping amplification 
products for parts of the 18S rDNA, the ITS1 rDNA 
and parts of the 5.8S rDNA (Fig. 1; Table 1; Additional 

file  1: Table  S1). The sequences of the cloned ampli-
cons were analysed by BLASTn with recording of the 
five top species hits using the BLASTn suite (Max 
Score). The amplicons of four different targets, using 
the primer pairs JS4–TIM11, 18S-5F–TIM11, BbGS4F–
BdanjoRev and BbGS5F–BbGS5R, revealed sequences 
related to the candidate of a Besnoitia species (Table 1). 
These were B. darlingi, B. neotomofelis, B. oryctofelisi, 
B. jellisoni, B. akodoni, B. besnoiti, B. bennetti, B. 

caprae and B. tarandi, with percent identities ranging 
up to 99.54% among the top species hits in BLASTn 
(Table  1; Besnoitia sp.-related). With the exception of 
the BbGS4F-BdanjoRev-cloned sequences, B. darlingi 
sequences (GenBank, EMBL, DDBJ, RefSeq) always 
ranked first (Table  1), which suggests that a parasite 
closely related to B. darlingi or B. darlingi-like parasites 
had been excreted as oocysts by the Namibian chee-
tah. The sequences of the JS4–TIM11 (n = 6), 18S-5F–
TIM11 (n = 3) and BbGS4F–BdanjoRev (n = 3) clones, 
i.e. clones covering the ITS1 sequence, were aligned, 
and the consensus sequence was stored at GenBank 
(MW468050) using the parasite isolate designation 
“Besnoitia-acinonyx”. The B. darlingi-like sequence 
amplified by BbGS5F–BbGS5R (i.e. a part of the 18S 
rDNA) was also stored in GenBank (MW559556).

Some of the remaining sequences had only coccid-
ian parasites among the first five species hits. However, 
these species hits were dominated by Cystoisospora 
spp., which may suggest that Cystoisospora spp. had 
been present in the faecal samples in addition to the B. 

darlingi-like parasites (Table 1;  Coccidia-related).

Phylogenetic relationships to “Besnoitia‑acinonyx”

Based on the ITS1 rDNA sequence, the possible phy-
logenetic relationships of the newly described species, 
represented by the DNA isolate (here termed “Besnoitia-
acinonyx”), to other Besnoitia spp., namely B. darlingi, B. 

neotomofelis, B. oryctofelisi, B. akodoni, B. jellisoni and B. 

besnoiti, but also to T. gondii, H. heydorni, H. triffitae and 
N. caninum, were assessed. The ITS1 sequence placed 
“Besnoitia-acinonyx” between those of B. darlingi, B. 

darlingi-like parasites and B. besnoiti (Fig.  2). Estimates 
of evolutionary divergence revealed a close relationship 
to B. darlingi, B. neotomofelis, B. oryctofelisi, B. akodoni 
and B. jellisoni (pairwise distances < 0.1; Table  2) and a 
larger distance to B. besnoiti (distance 0.234; Table  2). 
Among the remaining coccidia tested, T. gondii showed 
a higher distance to “Besnoitia-acinonyx” (0.595; Table 2) 
than N. caninum (0.544; Table 2). Interestingly, T. gondii 
and N. caninum showed a closer relationship to “Besnoi-
tia-acinonyx” than to all remaining Besnoitia spp. except 
B. besnoiti (Table 2). In addition, B. besnoiti was closer to 
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“Besnoitia-acinonyx” (0.234; Table  2) than to any other 
Besnoitia sp. examined (0.294–0.268; Table 2). Identities 
of the ITS1 rDNA of “Besnoitia-acinonyx” with B. dar-

lingi and the B. darlingi-like parasites were 89.7–90.1% 
(B. darlingi), 89.7% (B. oryctofelisi), 88.9% (B. akodoni) 
and 86.9% (B. jellisoni and B. neotomofelis).

Discussion
In this study, we examined archived faecal samples of two 
free-ranging cheetahs from farmland in central Namibia. 
Coccidian parasites had been identified by coproscopy in 
these samples previously [19]. Using a coccidia-specific 
PCR, the microscopic observations were confirmed for 
both animals.

We originally expected T. gondii or H. hammondi in 
the cheetahs, as these parasites are known to use felids 

Table 1 The PCR analyses targeted nine overlapping regions of the 18S rDNA, internal transcribed spacer-1 rDNA and part of the 5.8S 
rDNA

A variable number of plasmid clones per target was received and subsequently Sanger-sequenced. Sequences were not concatenated, but individually assessed by 

BLASTn. The top five hits of species using in BLASTn the option MaxScore are displayed. Due to the conserved primer regions, sequences of unrelated species, i.e. 

predominantly fungi, were identified in addition to sequences resembling sequences of coccidian parasite-related or Besnoitia sp.-related species

Relatedness of sequences Amplification with primer pairs Number 
of clones

Top five species with highest identity and coverage in GenBank (number of 
sequences per organism, percent coverage, percent identity)

Besnoitia sp.-related BbGS4F–BdanjoRev 3 Besnoitia oryctofelisi (1, 99–100, 98.58–99.01), B. darlingi (1, 99–100, 98.31–98.73), 
B. tarandi (1, 100, 97.85–98.17), B. besnoiti (7, 99–100, 97.85–98.17), B. bennetti 
(1, 99–100, 97.69–98.03)

JS4–TIM11 3 Besnoitia darlingi (3, 82–90, 93.60–94.20), B. oryctofelisi (2, 77–80, 93.42–93.91), 
B. caprae (1, 100, 87.02–88.03), B. besnoiti (5, 100, 87.02–88.06), B. akodoni (1, 
76–77, 92.52–92.97)

18S-5F–TIM11 3 Besnoitia darlingi (1, 92, 95.75–96.02), B. oryctofelisi (1, 89–90, 95.93–96.19), B. 
besnoiti (7, 99–100, 91.41–91.82), B. tarandi (1, 96–97, 91.32–91.72), B. bennetti 
(1, 93, 91.04–91.46)

JS4–TIM11 2 Besnoitia darlingi (3, 79–90, 92.86–93.40), B. oryctofelisi (2, 75–78, 92.73–92.97), B. 
caprae (1, 100, 86.44–86.81), B. besnoiti (5, 100, 86.44–86.81), B. bennetti (1, 100, 
86.21–86.60)

JS4–TIM11 1 Besnoitia darlingi (2, 80–89, 91.95–92.82), B. oryctofelisi (2, 85–86, 92.69–92.82), B. 
akodoni (1, 83, 91.72), B. neotomofelis (1, 83, 90.72), B. bennetti (1, 100, 85.54)

BbGS5F–BbGS5R 2 Besnoitia darlingi (2, 99–100, 99.31–99.54), B. oryctofelisi (1, 99–100, 99.31–99.54), 
B. jellisoni (1, 99–100, 99.31–99.54), B. besnoiti (12, 100, 99.09–99.31), B. tarandi 
(2, 100, 98.86–99.31)

Coccidia-related BbGS1F–BbGS1R 6 Cystoisospora sp. ex. Aonyx cinereus (1, 99, 99.17–99.67), C. belli (8, 63, 99.17–
99.67), C. ohioensis (4, 63–99, 99.00–99.50), C. suis (2, 63–99, 99.00–99.50), 
Cystoisospora sp. (1, 63–99, 99.00–99.50)

BbGS4F–BbGS4R 2 Cystoisospora belli (5, 100, 99.66), C. timori (1, 100, 99.66), C. cf. ohioensis (1, 100, 
99.49), H. triffitae (1, 100, 99.33), H. heydorni (1, 100, 99.33)

BbGS6F–BbGS6R 2 Cystoisospora ohioensis (4, 97–100, 99.76–99.53), C. belli (5, 100, 99.30–99.53), C. 
timori (1, 100, 99.06), C. canis (2, 97, 99.76), C. suis (2, 97, 99.76)

BbGS2F–BbGS2R 1 Cystoisospora sp. ex. Aonyx cinereus (1, 100, 100.00), C. canis (2, 100, 100.00), C. 
ohioensis (3, 100, 100.00), C. suis (2, 100, 100.00), C. laidlawi (1, 100, 100.00)

BbGS3F–BbGS3R 1 B. besnoiti (4, 100, 99.81), B. darlingi (1, 100, 99.81), T. gondii (19, 100, 99.81), H. 
heydorni (1, 100, 99.81), H. hammondi (1, 100, 99.81)

BbGS3F–BbGS3R 1 Cystoisospora ohioensis (4, 100, 99.81), C. suis (2, 100, 99.81), C. belli (2, 100, 99.81), 
Cystoisospora sp. (1, 100, 99.81), C. timori (1, 100, 99.81)

Unrelated to coccidia BbGS6F–BbGS6R 1 Thecaphora spilanthes (1, 70, 93.64), uncultured basidiomycete (1, 67, 92.89), 
Exobasidium rhododentri (1, 70, 90.36), uncultured Ceriporiopsis (1, 72, 89.44), 
Exobasidium rostrupli (1, 70, 90.07),

BbGS6F–BbGS6R 1 Thecaphora spilanthes (1, 45, 98.79), Arabidopsis lyrate (1, 56, 99.09), Scyliorhinus 
canicula (1, 34, 99.09), uncultured archeon (1, 40, 99.08), uncultured bacterium 
(4, 40, 99.08)

BbGS4F–BbGS4R 1 Helminthosporium hispanicum (2, 100, 89.92), H. tiliae (2, 100, 89.92), H. quercium 
(2, 100, 89.92), H. austriacum (2, 100, 89.92), H. velutium (3, 100, 89.92)

BbGS4F–BbGS4R 1 Thecaphora saponariae (1, 75, 99.65), Thecaphora amaranthi (1, 76, 90.12), 
Exobasidiomycetes sp. (1, 78, 89.09), Tilletiopsis washingtonensis (1, 78, 88.76), 
Tilletiopsis sp. (1, 78, 88.76)



Page 6 of 10Schares et al. Parasites Vectors          (2021) 14:201 

as definitive hosts [37]. Antibodies against the tachy-
zoite stage of B. besnoiti had been detected in blue wil-
debeest (Connochaetes taurinus) and lions (Panthera leo) 
in Namibia by serology [17]. Thus, in addition, we sus-
pected that B. besnoiti might be present in faecal samples 
of Namibian cheetahs because felids might be a defini-
tive (and/or intermediate) host of B. besnoiti [17, 18]. In 
southern Africa, the existence of B. besnoiti, which uses 
cattle as intermediate hosts, has long been known (sum-
marised in [38]). Besnoitia besnoiti-like parasites have 
been previously isolated from or observed in prey ani-
mals of cheetah, such as blue wildebeest, impala (Aepyc-

eros melampus) and kudu (Tragelaphus strepsiceros) in 
South Africa [39].

For reasons of completeness, DNA extracted from the 
faecal samples was also examined for N. caninum and H. 

heydorni, although these are parasites of dogs, dingoes, 
wolves or coyotes [27, 40], and for B. darlingi, which uses 
marsupials as intermediate hosts, as well as for B. dar-

lingi-like parasites [16].
Using our previously developed real-time PCR, 

established to identify B. darlingi, B. neotomofelis, B. 

oryctofelisi, B. akodoni and B. jellisoni in intermediate 
and definitive hosts, we obtained positive results with 

two sample aliquots from one cheetah (Cq 28.3 and Cq 
31.9). When this newly developed real-time PCR was 
first reported, we hypothesised that further B. darlingi-
related parasites might exist worldwide and might be 
picked up by this PCR [16]. Since all B. darlingi-like para-
sites known so far have been detected in North or South 
America, we deemed it unlikely that the B. darlingi-like 
PCR signal that was observed in the faeces of the cheetah 
belonged to B. darlingi or one of the American B. dar-

lingi-like parasites. Therefore, this study reports the first 
evidence for the existence of an additional Besnoitia sp. 
in southern Africa.

A part of the rDNA (18S rDNA) and in particular the 
ITS1 rDNA sequence of this parasite was characterised in 
more detail. In analogy to other coccidian parasites, such 
as T. gondii, we expected that the rDNA sequence would 
be present more than 100-fold in the genome of a single 
parasite organism [41], which makes the rDNA gene and 
particularly the ITS1 region a sensitive target for species 
identification. Since there were no purified oocysts from 
the faecal samples available, it was difficult to identify or 
amplify Besnoitia sp. DNA selectively from the plethora 
of organisms (most likely bacteria and fungi) present in 
the faecal samples.

Fig. 2 GenBank sequences of Neospora caninum (Ncan; AY259040), Toxoplasma gondii (Tgond; ME49, L49390), Hammondia heydorni (Hheyd; 
AY189897), Hammondia triffitae (Htriff; KJ396594), Besnoitia besnoiti (Bbesn, AY833646), “Besnoitia-acinonyx” (MW468050; this study; Additional file 2: 
Text S1), B. jellisoni (Bjel; AF076860), B. neotomofelis (Bneot; HQ909085), B. akodoni (Bakod; AY545987), B. oryctofelisi #1 (Boryct1; AY182000), B. oryctofelisi 
#2 (Boryct2; GU479632), B. darlingi #1 (Bdar1; AF489696), B. darlingi #2 (Bdar2; MF872605), B. darlingi #3 (Bdar3; GU479631) and B. darlingi #4 (Bdar4, 
HQ163919) were subjected to evolutionary history analysis using the maximum parsimony (MP) method. The consensus tree inferred from the 6 
most parsimonious trees is shown. Branches corresponding to partitions reproduced in < 50% trees are collapsed. The consistency index is 0.912 
(0.866), the retention index is 0.910 (0.910), and the composite index is 0.830 (0.788) for all sites and parsimony-informative sites (in parentheses). 
The MP tree was obtained using the subtree-pruning-regrafting algorithm [35] with search level 0, in which the initial trees were obtained by the 
random addition of sequences (10 replicates). The tree is drawn to scale, with branch lengths calculated using the average pathway method [35] 
and are in the units of the number of changes over the whole sequence. The analysis involved 15 nucleotide sequences. All codon positions (1st, 
2nd, 3rd, noncoding) were included. There were 425 positions in the final dataset. Evolutionary analyses were conducted in MEGA X [36]
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Our real-time PCR results suggested that genomes 
equivalent to 10–100 tachyzoites were present in 10 µl 
of the 100 µl of DNA extracted from 200 mg of the posi-
tive faecal sample. This corresponds to about 60–600 up 
to 500–5000 oocysts per gram faeces, depending on the 
proportion of sporulated oocysts (assuming 8 genomes in 
sporulated oocyts and only a single genome in unsporu-
lated oocysts from the gut). Since oocysts were collected 
from the ampulla recti—and were therefore unsporu-
lated—the estimate of 500–5000 oocysts per gram of 
faeces seems more realistic. This estimation is in accord 
with the number of 3600 oocysts with an approximate 
size of 18 × 18 µm per gram faeces recorded in the previ-
ous coproscopy study [19]. However, oocysts of B. dar-

lingi-like parasites have an expected size of 10 × 12 μm 
(B. darlingi [1, 5]), 11 × 12 µm (B. oryctofelisi, [1, 2]) or 
13 × 14  μm (B. neotomofelis, [2]). Several scenarios are 
possible to explain this discrepancy. First, the oocysts 
of “Besnoitia-acinonyx” are 18 × 18  µm in size. Sec-
ond, other coccidian parasites, probably Cystoisospora 
sp., were also present in the sample and oocysts with a 
diameter of 10–14 µm (expected for Besnoitia sp.) were 
overlooked. In addition to the oocyst sizes observed, the 
sequences of 18S rDNA fragments amplified suggest that 
Cystoisospora sp. were also present in these faeces, which 
supports the second scenario. However, the observa-
tion of such sequences is not a final proof of the exist-
ence of Cystoisospora sp. because 18S rDNA sequences 
are largely conserved and particular sequence fragments 
of the 18S rDNA can belong to many different coccid-
ian parasites [42]. Third, and a less likely scenario, it can 
be hypothesised that the observed “Besnoitia-acinonyx” 
DNA did not originate from oocysts, but from interme-
diate host stages in infected prey of the cheetah. Fourth, 
coprophagia as a source of the observed oocysts is very 
unlikely, as cheetahs display an extremely selective feed-
ing behaviour and coprophagia has never been observed 
in this species [43]. Fifth, feeding from carcasses is also 
very rare in cheetahs [43]. Thus, future studies are neces-
sary to isolate oocysts of this parasite from cheetahs to 
confirm that this species is the definitive host of “Besnoi-
tia-acinonyx” and to determine the respective oocyst size 
of this B. darlingi-related parasite.

As several organisms (including other coccidia) may 
have been present in the faeces, we concentrated on 
sequences that belonged unambiguously to B. darlingi-
like parasites. The BdanjoRev primer [16], which had 
been applied in the B. darlingi real-time PCR, played—
in combination with the BbGS4F primer [28]—a central 
role in the identification of the correct Besnoitia-like 
rDNA sequences [16]. Using the previously published 
primer pair JS4 [23] and TIM11 [29], as well as the newly 
established primer 18S-5F in combination with TIM11, 

we observed exclusively B. darlingi-like sequences, which 
we aligned and made available as a provisional rDNA 
sequence of “Besnoitia-acinonyx” (MW468050).

The ITS1 region of the rDNA Besnoitia spp. of New 
World marsupials, rodents and domestic rabbits show 
only a few differences [5, 44]. The ITS1 rDNA sequence 
of the Besnoitia sp. observed in the Namibian chee-
tah was similar to previously described ITS1 rDNA 
sequences, but differed from all B. darlingi and B. dar-

lingi-like sequences described to date. Identities of the 
ITS1 rDNA of “Besnoitia-acinonyx” with B. darlingi and 
B. darlingi-like parasites were ≤ 90% (i.e. 89.7–90.1% 
[B. darlingi], 89.7% [B. oryctofelisi], 88.9% [B. akodoni] 
and 86.9% [B. jellisoni and B. neotomofelis]). Compared 
among each other, B. darlingi and the remaining B. dar-

lingi-like parasites (namely B. oryctofelisi, B. akodoni, B. 

jellisoni and B. neotomofelis), each characterised by dif-
ferent intermediate host spectra, showed much higher 
identities in the ITS1 rDNA region, ranging from 92.9% 
to 98.3%. Thus, it appears to be justified to conclude that 
the “Besnoitia-acinonyx” sequence belongs to a so far 
unknown Besnoitia sp. that most likely uses the chee-
tah as its definitive host. This view is supported further 
by identities among the ITS1 rDNAs of Besnoitia sp. of 
ungulates (namely B. besnoiti, B. tarandi, B. bennetti, B. 

caprae) which are almost 100% identical, but belong to 
clearly separate species.

Since no free-ranging marsupials exist in Africa, rodent 
or lagomorph species, which are prey for cheetahs, prob-
ably serve this parasite as intermediate hosts. In analogy 
to the South American B. oryctofelisi, lagomorphs, such 
as the Cape hare (Lepus capensis), the Savanna hare (L. 

microtis) or the Scrub hare (L. saxatilis), may represent 
suitable intermediate hosts.

The ITS1 rDNA sequence of “Besnoitia-acinonyx” sug-
gests a closer relationship to the American B. darlingi and 
B. darlingi-like parasites than to B. besnoiti, which infects 
cattle and probably also antelopes in southern Africa. 
This finding suggests that all B. darlingi or B. darlingi-like 
parasites, regardless of their American or African origin 
and their ability to infect marsupials or placental mam-
mals, have a common ancestor, which evolved when the 
South American and the African continents were not yet 
disconnected, i.e. 100–200 million years ago. Most likely, 
this common ancestor evolved together with marsupial 
and placental mammalian animals, which started to sepa-
rate also around this time [45]. Marsupial mammals are 
the closest living relatives to placental mammals, sharing 
a common ancestor that lived approximaely 130 million 
years ago [45].
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Conclusion
Molecular analysis of a faecal sample revealed that 
Namibian cheetah (Acinonyx jubatus) is most likely a 
definitive host of a newly described Besnoitia species. 
This species is closely related to B. darlingi and other 
related Besnoitia spp. parasites of rodents and lago-
morphs. Future studies are needed to identify its natural 
intermediate host in southern Africa, which most likely is 
a common prey of the Namibian cheetah. Hares, rabbits 
and rodents represent possible intermediate host candi-
dates to be further examined.
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