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Abstract: Woodlands and savannahs provide essential ecosystem functions and services to

communities. On the African continent, they are widely utilized and converted to subsistence

and intensive agriculture or urbanized. This study investigates changes in land cover over four

administrative regions of North Eastern Namibia within the Kalahari woodland savannah biome,

covering a total of 107,994 km2. Land cover is mapped using multi-sensor Landsat imagery at decadal

intervals from 1975 to 2014, with a post-classification change detection method. The dominant change

observed was a reduction in the area of woodland savannah due to the expansion of agriculture,

primarily in the form of small-scale cereal and pastoral production. More specifically, woodland

savannah area decreased from 90% of the study area in 1975 to 83% in 2004, and then increased

to 86% in 2014, while agricultural land increased from 6% to 12% between 1975 and 2014. We assess

land cover changes in relation to towns, villages, rivers and roads and find most changes occurred in

proximity to these. In addition, we find that most land cover changes occur within land designated

as communally held, followed by state protected land. With widespread changes occurring across

the African continent, this study provides important data for understanding drivers of change in the

region and their impacts on the distribution of woodland savannahs.

Keywords: deforestation; land degradation; woodland; savannah; Landsat; land cover change;

land-use change; Africa; Corona

1. Introduction

Human activities are altering the surface of the biosphere in profound ways. Whether by clearing

forests, intensifying cropland production or expanding urban areas, anthropogenic activities have

altered an increasingly large proportion of the Earth’s land surface [1]. The effects of land surface

changes range from alterations to the composition of the atmosphere and climate, to the loss of

biodiversity and the disruption of biogeochemical cycles [2–4]. Due to the significance of such changes

on the biosphere, monitoring changes in land cover is a high priority area for research [5]. In effect,

maps and datasets which quantify biophysical variables, including land-use and land cover (LULC),

are essential for understanding and modelling complex interactions and impacts between the natural

and human environments, from regional to global scales. These include processes such as deforestation,
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land degradation and landscape carbon dynamics in the context of global change [5–7]. Furthermore,

multi-temporal analyses of LULC provide important insights into long term trends which serve to

identify drivers and determinants of change [8,9]. Indeed, in regions where there is a lack of sufficiently

detailed cartographic information, environmental change detection and monitoring using satellite

data can be pivotal in providing a basis for planning, management and conservation initiatives [10]. In

particular, satellite remote sensing using the Landsat system has been used extensively to quantify the

extent of LULC in numerous environments around the world [11,12].

Across the African continent, the overall tendency has been toward the clearing of land, including

savannah, for crop farming and grazing [13–16]. In the communally held regions of North Eastern

Namibia, savannahs have declined due to small-scale cropland expansion, increased grazing, fire

frequency and land-use pressure [17,18]. However, theses landscapes provide numerous important

ecosystem goods and services upon which people depend [19–22]. We use the definition by [23] of

the study area as falling within the Northern Kalahari woodland savannah and refer to the biome as

woodland. Broadly, savannah biomes are characterized by a mixture of herbaceous and woodland

plant functional groups, commonly consisting of a woody tree and shrub layer with a grassy or

herbaceous understory, and with a forest canopy cover between 10% and 30%. Often arid to semi-arid,

they undergo marked spatio-temporal shifts in climate and land-use, resulting in pronounced annual

and inter-annual divergence of vegetation characteristics [24,25]. As a consequence, these ecosystems

show some of the lowest satellite based land cover mapping accuracies in comparison to homogenous

vegetation types [26,27]. Nevertheless, recent studies [18,28–32] have successfully used remote sensing

data to assess changes in woodland and arable land cover in Northern Namibia. However, they have

concentrated on mapping vegetation change within spatially restricted areas i.e., either a portion

or single Namibian administrative region, and using short time scales, such as two time intervals.

Indeed, land cover changes having occurred over the past 40 years have, to our knowledge, not yet

been quantified at the landscape scale, and change trajectories among land cover classes explained

and evaluated.

To address this gap and to gain an in-depth understanding of the magnitude and trajectory of

land cover changes at a regional scale (104 km2), we use Landsat archive satellite imagery, freely

available from the United States Geological Survey (USGS). We explore land cover changes in North

East (NE) Namibia over the past four decades (1975–2014) at decadal time scale intervals, using

a post-classification change detection method. The aim is to map and discuss the changes in the

main land cover types with an emphasis on woodland change. We identify increases in area under

arable land and losses of woodland by measuring and assessing: (i) the area of change; (ii) the spatial

distribution of change; (iii) the trajectories of change between land cover types; (iv) the potential drivers

of change; and, finally, (v) the accuracy of the maps. Information resulting from this research can serve

as a practical foundation for interpreting the underlying drivers of environmental change, developing

strategies for the sustainable development of the region and informing policy and conservation

initiatives. For example, these data provide details on the temporal and spatial patterns of land cover

change processes, which can be used to assess the consequences of past, present, and future land-use

policies, as well as providing a basis for quantifying landscape carbon dynamics.

2. Methods

The following section details the: (i) study area; (ii) data acquisition and processing; (iii) change

detection work flow; (iv) land cover change analysis; (v) proximal variables of change analysis;

and (vi) accuracy assessment.

2.1. Study Area

The study region is located within the Kalahari woodland savannah of NE Namibia [23,33] at the

southern edge of the African “miombo” ecoregion, and upon the Kalahari sand sheet [34,35]. It extends

over 107,994 km2 to include the administrative regions of Ohangwena, Oshikoto, Kavango and Zambesi
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(Caprivi) (Figure 1). The rationale for defining the boundaries of the study region is the overlap

between the relatively homogenous eco-floristic and bioclimatic extent of the Kalahari woodland

savannah and the common pattern of communal land use within these administrative regions. The

communal farming sector is labour-intensive and subsistence-based, with limited mechanical and

chemical inputs and user rather than ownership rights defining tenure. They are also characterised by a

higher population density relative to other areas of Namibia [21,36]. The land is owned by the state but

administered in trust by the communities and crop land is normally allocated to individual farmsteads

while grazing land is shared between community members and is typically not fenced [21]. Agriculture

throughout the region is characterized by agro-silvo-pastoralism centred on small-scale pearl millet

(Pennisetum glaucum) cultivation, but also includes extensive cattle ranching and conventional irrigated

agriculture [17]. Rain-fed crop farming is concentrated on certain soil types found near ephemeral

rivers and clay pans which are more fertile than the surrounding deep sandy soils, while extensive

grazing takes place in the remaining hinterland areas [32,37]. Logging in the region has taken place

since the early 1900s, but the net cubic meter harvest has declined dramatically. Historically, large

areas of woodland were cleared for crop farming, particularly in northern areas where soils and

rainfall are better suited [38]. This trend continues and in recent decades new areas of woodland

have been cleared for crops and settlements, with much of the deforestation taking place in two core

areas, namely along the Okavango River and in western Ohangwena Region [29]. A rainfall gradient

exists within the study area with a mean annual rainfall of 600 mm in the east to 400 mm in the west,

and equally from north to south. Rainfall is concentrated from December to March but cumulative

amounts vary greatly from year to year. Evapotranspiration rates are elevated and flooding affects a

large proportion of the landscape, including primarily the Cuvelai basin and the region of Zambesi,

resulting in large, ephemeral water and wetland bodies and pronounced variation in maximum

plant growth and production [39]. Woody species are generally semi-deciduous or deciduous, with

the western areas being dominated by Colophospermum mopane shrub-land and eastern areas by

Burkea africana, Baikiaea plurijuga, Pterocarpus angolensis and Guibourtia coleosperma, woodland

savannah [32,33]. Fire has a large impact on the landscape, for example, it was found that between 27%

and 51% of the regions of Kavango and Zambesi burned annually between 1989 and 2001, resulting in

reduced regeneration and tree mortality [40].

Figure 1. Study site, including four administrative regions of Ohangwena, Oshikoto, Kavango and

Caprivi (yellow) and the Okavango River (blue) in North East (NE) Namibia. The map background

is a Landsat 8 Top of the Atmosphere (TOA) reflectance, median composite, 60 m resolution image

mosaic comprised of all scenes available for 2015 using the infrared bands 5, 4 and 3.
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2.2. Landsat Scene Acquisition and Processing

Landsat Multispectral Scanner System (MSS), Thematic Mapper (TM), Enhanced Thematic

Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) scenes were obtained from

the USGS, which are level 1 terrain corrected products (L1T) and offer acceptable levels of spatial

accuracy, therefore no geo-rectification was required and image-to-image registration was omitted [41].

Digital numbers were converted to calibrated top of the atmosphere radiances and then corrected for

atmospheric effects using the Apparent Reflectance Model, which makes no corrections for atmospheric

scattering or absorption (an atmospheric transmittance value of 1, a path radiance due to haze of 0 and

a spectral diffuse sky irradiance of 0 were used), resulting in an image of proportional reflectance [42].

Cloud free MSS images from the 1975 period were used whenever a suitable image was identified, i.e.,

one scene was acquired for 1973 and two for 1979, due to their limited availability and quality.

Pre-processed Landsat imagery available through Google’s Earth Engine was used to assess

LULC change across the study area. Here, Top of the Atmosphere (TOA) composite images were

processed using all the available Landsat images for each year (i.e., 1984–1985), for the periods

of 1984, 1994, 2004 and 2014. A cloud score was then applied to each pixel using the Simple Landsat

Cloud Score algorithm, which selects the lowest possible range of cloud scores at each point and then

computes per-band percentile values (i.e., the percentile value to use when compositing each band)

from the accepted pixels. This algorithm also uses the Landsat Path Row Limit method to select only

the least-cloudy scenes. The median pixel value of the composite image stack was then selected to

carry out the analysis, in order to remove the influence of clouds, reduce image noise, cloud and fire

scars. This results in multi-band images where each pixel represents the median of all unmasked pixels

for each band. Finally, the new images were stacked with a normalized difference vegetation index

(NDVI) band generated using the same method [43].

2.3. Classification and Change Detection Work Flow

To obtain a matrix of change between land cover classes, we used the post-classification method

at decadal intervals [44]. A decadal time scale was chosen for several reasons: (i) a lack of cloud free,

good quality images for this region, especially at the start of the Landsat archive; and (ii) the necessity

to generate a regular time-series for the whole region. Here, we found decadal intervals provided

seamless mosaics over the study region because limited imagery for the late 1970s and early 1980s

period precluded generating a denser time series. We use the post-classification method to quantify

land cover conversions, in which independently generated classifications at two time intervals are

compared. The main advantage is to limit issues associated with radiometric calibration (i.e. solar

illumination, atmospheric absorption and scattering and sensor properties) in between intervals [45].

However, the accuracy of the initial classification will dictate the accuracy of the post-classification

comparison. In effect, the end accuracy approximates the compounding of the accuracies of every

single classification. The complication thereby rests with producing regular, comparable and accurate

results for every comparison [11].

Initially, a preliminary change detection study was carried out over a pilot area (11,240 km2) on

the border between the Ohangwena and Oshikoto administrative regions, known to be experiencing

land cover changes. This was done to facilitate: (i) land cover class definition; (ii) the selection

of suitable change detection methods; (iii) the identification of applicable image processing;

and (iv) an initial accuracy assessment, as field data validation points had been collected in this

area [28]. The area was encompassed by a single Landsat footprint and four scenes at decadal intervals

between 1984 and 2014. Cloud free images from the early dry season and end of the wet season are

considered the best for identifying woody vegetation in NE Namibia (April–May), as they maximize

the contrast between the dry herbaceous layer and green canopy layer [33]. For this pilot study,

Landsat TM, ETM+ and OLI scenes as close to the month of June were used due to scene availability.

Five initial land cover classes were identified and scenes were classified using a supervised Maximum
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Likelihood algorithm, with 10 training areas identified per class using Google Earth, aerial images

loaned by the University of Namibia and 61 GPS points derived from field visits (Figure 2A).

–

–

– –

Figure 2. Workflow diagram illustrating the steps and methods employed. Pilot study (A): (i)

Dry season (June) Landsat images at decadal intervals (1984–2014); (ii) processed to Top of the

Atmosphere Reflectance (TOA); (iii) training data from Google Earth, aerial imagery and field

Global Position system (GPS) points; (iv) classified with a supervised maximum likelihood classifier;

and (v) accuracy assessment: validating 50 random sample points per class using available satellite

and aerial imagery. Main study (B): (a) Cloud free (Multispectral Scanner system (MSS) scenes from

the 1975 era; (b) training data derived from MSS scenes and Corona imagery; (c) Classification and

Regression Tree (CART) classifiers; (d) for periods 1984–2014, all available Landsat scenes for one

year (i.e., 1984–1985) were cloud masked and composited into a new image using the median pixel

value and an Normalized Difference Vegetation Index (NDVI) band derived using the same method;

(e) training data were interactively identified from Landsat scenes, Google Earth and aerial imagery, as

well as ancillary knowledge from field visits; (f) Random Forest (RF) classifiers; (g) visual inspection

and interactive classification (i.e., selection of training areas, and subsequent image classification);

(h) accuracy assessment; (i) urban mask; (j) area adjusted accuracy assessment on post-classification

binary maps; and (k) change area detection.

Machine-learning techniques, including Classification and Regression Trees (CART) and Random

Forest (RF) are increasingly used to classify remotely sensed data and RF has been shown to improve

classification accuracy [46]. Due to spectral differences between MSS scenes, it was not possible

to composite all available images for the 1975 period, therefore, selected MSS scenes representing

the period between 1973 and 1979 were classified individually using a CART classifier and reference

Corona satellite photographs [47]. For the remaining periods (1984–2014) the median composite/NDVI

image stacks were classified into the major land cover classes, using supervised RF classifiers and up

to 8 training areas per class [46,48] (Table S1 in the Supplementary Material). Seven land cover classes
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were selected in an attempt to capture the main landscape variability based on visual interpretation of

high resolution satellite imagery and field visits (Table 1).

Table 1. Land cover classes used in the final analysis.

Class Description

Water Rivers, lakes and standing water bodies
Clay pan Dry lake bed; layer of clay alternating with water during the wet season
Agriculture Arable cropland, orchards and pasture, villages and farmsteads
Bare ground Exposed sands, beaches, riparian sand bars, dunes and roads
Woodland Predominant land cover class; includes all savannah woodland transitions
Wetland Seasonally flooded areas found adjacent to rivers and lakes
Urban Densely populated areas, paved roads, concrete, warehouses, and tarmac (masked)

Classes include” (i) “Water”, which represents rivers, lakes and standing water bodies;

(ii) “Clay pan”, which denotes commonly found dry lake beds associated with drainage channels

(often containing water from during the wet season), composed of eutric Arenosols with a high clay

content (between 5% and 8%) [48]; (iii) “Agriculture”, which designates a mosaic of arable cropland,

orchards and pasture; includes, villages and farmsteads; (iv) “Bare ground”, attempts to capture areas

of sand, beaches, riparian sand bars, dunes and unpaved roads, all of which are spectrally distinct;

(v) “Woodland”, describes a heterogeneous savannah land cover type, i.e., savannahs, woodlands and

transitions at different stages of disturbance and recovery; (vi) “Wetland”, signifies permanently or

seasonally flooded areas, often found adjacent to rivers and lakes and showing high NDVI values; and

(vii) “Urban”, attempts to estimate the extent of densely populated areas, which are often characterised

by paved roads, warehouses and houses made of concrete brick as well as tarmac, by creating a mask

based on Version 4 of the Defence Meteorological Program (DMSP) Operational Line scan System

(OLS) Night time Lights Time Series [49]. Spectral separation between classes was not assessed in this

study. Training sites were selected interactively, based on Landsat scenes, Google Earth imagery, aerial

images and knowledge of land covers gained from previous field visits (Figure 2B).

” (i) “Water”, which represents rivers, lakes and standing water bodies; (ii) “Clay 
pan”, 

5% and 8%) [48]; (iii) “Agriculture”, 
and pasture; includes, villages and farmsteads; (iv) “Bare ground”

“Woodland”
at different stages of disturbance and recovery; (vi) “Wetland”, signifies permanently or 

(vii) “Urban”

–

 
Figure 3. Timeline illustrating the satellite sensors used in this study, their purpose (classification,

masking and validation) and date range.

Urban areas were masked out due to their apparent spectral similarity with urban and agricultural

areas, using the DMSP OLS at 1 km resolution. This dataset consists of cloud-free composites

made using all the available archived data (Figure 3). We applied a threshold to annual composites
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from 2012 to 2013, 2002 to 2003 and 1992 to 1993 to mask the 2014, 2004, and 1994 maps, respectively.

The 1992–1993 composite was also used to mask out urban areas from the 1984 and 1975 maps, as this

dataset is only available from 1992 onwards. However, using this dataset as a pre-1992 mask may have

resulted in an overestimation of the urban class extent. Burnt areas were successfully excluded from

the analysis by taking the median pixel of the composite images, but extents were quantified using

single dry season scenes. Fire is not considered a major land cover change transition, because regularly

occurring fires are known to primarily affect the understory of woodland savannahs (as opposed to

stand replacing fires) [29].

2.4. Land Cover Change Analysis

For each land cover class, analysis of the spatial extent, changes in area, i.e., gains, losses,

persistence, and transitions from one land cover class to another, were calculated as proposed by [50]

using the IDRISI land change modeller [42]. Cross tabulation matrices comparing two different

categorical maps between successively mapped periods, allowed transitions among classes to be

identified and potential underlying change processes assessed, and were computed as the off-diagonal

values of the cross tabulation matrix [50]. The four administrative regions encompassing the study area

have contrasting proportions of land-use categories (i.e., State Protected and Small-scale agriculture on

communal land, etc.), population sizes and densities, as well as geographic extents. This is expected

to impact on the amount of land converted to the other land-uses. We therefore: (i) map and discuss

land cover class changes for each region, and compare these with the results of related satellite-based

studies; and (ii) assess the most important land cover class transition in relation to the different land-use

categories for each region, with a view to identifying which categories are important in determining

change [51].

Percentage of land cover class changed in relation to the study area was calculated as

(Equation (1)):

% Area =

(

Area changed f or a class

Total area o f land cover map

)

× 100 (1)

2.5. Proximal Variables of Change

To determine which factors were influential in explaining the mapped land cover changes, we

quantified the predominant land cover change in relation to the distance from possible drivers of

change (proximal variables). They included proximity to: (i) towns; (ii) villages; (iii) roads; and

(iv) rivers (including major, minor, perennial and ephemeral). These variables were chosen based

on [51]; major towns included the regional centres of Rundu, Katima Mulilo, Divundu, Oshikango and

Eenhana, while minor town constituted all remaining settlements. Euclidian distance from each feature

was computed, and the output was then divided into 5 km buffers in order to accurately capture the

expected small-scale land cover changes. The amount of the land converted is calculated a percentage

of each distance buffer and buffer overlap was not accounted for [52].

2.6. Accuracy Assessment

To assess the pilot study map accuracy, 50 randomly stratified points per class were generated

for the 2014 map. These were then validated visually using Landsat satellite scenes, high resolution

Google Earth satellite imagery, aerial photos and ground knowledge. Similarly, for the 1975 period

map, 50 randomly stratified points per class, including the urban class, were generated and validated

using MSS Landsat and Corona imagery. For both datasets, overall accuracy was calculated [42].

Alternatively, for the composite image land cover maps spanning the periods 1984–2014, half of the

training data were reserved for processing an accuracy assessment; the urban class was excluded as it

was masked. Then, for each map, a confusion matrix representing overall validation expected accuracy

(error) was processed using the reserved data. Finally, a qualitative assessment of each land cover map

was undertaken using all available imagery.
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In order to further assess the accuracy of the land cover maps generated in this study, an area

adjusted accuracy assessment was additionally processed as per the method proposed by [53]. Here,

validation data is employed for estimating the adjusted change area and confidence intervals, please

refer to Olofsson et al. [53] for a complete review of the methods. Post-classification results are

summarized by change matrices, which show the extent of different land cover transitions (i.e., from

one land cover category to another). To map changes between two points in time, the number of

variables in the to-from change matrix is the number of land cover classes squared. Therefore, in

order to avoid having a matrix with 49 classes (seven land cover classes were used in this study),

the land cover maps were modified to represent only binary Woodland and Non-Woodland classes

(i.e., all other classes were merged into the Non-Woodland class), resulting in only four transitions

in the matrix (i.e., two no change “transitions” and two changes from woodland to non-woodland,

and non-woodland to woodland). In addition, the Woodland class is also the class of primary interest,

and therefore only the changes from Woodland to Non-Woodland were assessed for area adjusted

accuracy. The pairs of maps were then overlaid to create changes maps. An accuracy assessment of the

change map was performed using a stratified random sample (independent of the sample selected

for the accuracy assessment of the single date maps). We determined the reference land cover using

Landsat scenes.

3. Results and Discussion

3.1. Classification Accuracy

Overall classification error for the pilot study map was 94.0% for 2014. In the pilot study, for the

sake of feasibility, we only conducted an accuracy assessment for the present day period (2014), and

assumed that the accuracy for the historical maps would be similar. In effect, an accuracy assessment

for historical thematic maps is complicated by the fact that only the most recently classified maps can

genuinely be compared against temporally coincident validation datasets. Similarly, as the scenes used

to develop the maps and validation datasets are often temporally mismatched, we assume that there

may be discrepancies in observed and mapped land covers which will affect the results of the accuracy

assessment. Overall classification error for the 1975 map was of 78%, however, lower classification

accuracies are likely here as not all scenes were from the same period (i.e., one scene was acquired

for 1973 and two for 1979). Validation overall accuracy (errors) using reserved training data were

of 99.7%, 99.8% and 99.5%, for the periods 1984–1994, 1994–2004 and 2004–2014, respectively

(Table S2).

The equations proposed by Olofsson et al. [53] were used to calculate the error-adjusted land

change area estimate at the 95% confidence interval (please refer to [53] for details), for the Woodland

to the non-Woodland class (Table 2). Error matrices for each period are provided in the supplementary

material. Here we find that although the land cover maps show high accuracies, the User’s accuracy of

the change category was of 30%, 54%, 28%, and 58% for the periods 1975–1984, 1984–1994, 1994–2004

and 2004–2014, respectively (Table S3), suggesting that the change maps were not highly accurate.

Further, the extent of change estimated from the change maps falls within the 95% confidence

interval of the error-adjusted estimated area, except in 2004–2014 change map. Here, the mapped

area of deforestation is found to be of 4624 km2, with an error-adjusted estimate of deforestation

and ±95% confidence interval of 1556 km2
± 76 km2 (Table 2). In addition, the change map had an

overall accuracy of 72% (Table S3), however, the producer’s accuracy (omission), which concerns the

probability that validation dataset is correctly mapped, showed high accuracy (100%) for deforestation.

This suggests that user’s accuracy associated with the deforestation class was problematic. The

stratified estimator of the extent of deforestation (1556 km2) is less than half of the area of mapped

deforestation. The reason for this disparity can be identified from the error matrix: it shows that all of

the proportions of extents of deforestation are omitted from the map (the estimated area proportions

omitted from the deforestation class were 0 and 0, column 3 (deforestation) (Table S3)). Hence, the
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error-adjusted estimate of the extent of deforestation adds this omitted deforested extent to the mapped

area of deforestation because: (i) it reduces the estimated area of deforestation; and (ii) had there been

errors of omission, the estimated area of deforestation and 95% confidence interval would have been

larger. Finally, for the 2004–2014 change map, the omission error associated with a few sample units

of deforestation has a strong influence on the estimated area of deforestation i.e., every sample unit

of omission error from the woodland class confers 1556 km2 of deforestation. Similarly, each sample

unit of omission error from the agricultural class confers roughly 211 km2 of deforestation to the total

error-adjusted value.

Table 2. The error-adjusted area of change (i.e., the transition from the Woodland to the Non-Woodland

class), the 95% confidence interval of the error-adjusted estimated area, and actual change calculated

from the change map.

Date Change Estimate (km2) Error (km2) Actual Change (km2)

1975–1984 577 20 5906
1984–1994 2161 159 7411
1994–2004 678 300 8653
2004–2014 1556 76 4624

3.2. Limitations

Numerous factors contribute to inaccuracies when classifying satellite imagery, especially in

savannah environments [54–56]. To address these issues, we created composite images composed of

all the available Landsat scenes for a single year to remove noise, included an NDVI band, and

interactively classified these into the main cover types using knowledge gained from previous

field visits and high resolution imagery. In addition, many limitations exist when applying hard

classification techniques to heterogeneous vegetation biomes such as savannahs [57]. To this effect,

object-based image classification of savannah vegetation has shown promising results [58,59]. The

highest classification accuracies are associated with homogenous land covers, while heterogeneous

land covers comprising vegetation with variable structures (i.e., grass, shrubs and trees of savannahs),

have lower accuracies. Simply put, the primary reasons behind misclassifications are small land cover

patch size (i.e., forest or grassland) and landscape heterogeneity [57,60]. Land cover maps divide

the landscape into distinct classes, but in savannahs, land cover type boundaries are not necessarily

distinct. Instead, they are often distinguished by a range of vegetation functional types, patches and

spatial and temporal shifts from open grassland savannah to closed forest covers. These shifts result

from numerous factors, including fire, variable rainfall, grazing and anthropogenic impacts such as

deforestation and urbanization [25]. The inherent landscape variability coupled with, the pronounced

woodland deciduousness, is therefore presumed to have contributed to the low accuracy assessment

results for the change maps [25,61,62]. Furthermore, the agricultural landscape is composed of a

mosaic of different land uses and land covers, leading to potential mis-classifications and confusions

with other land cover classes, i.e., the “Wetland” and “Woodland” classes (Table S4). Finally, we

assume that both the Woodland and Agriculture classes are highly heterogeneous and composed

of numerous different plant functional groups (Table 1). Accordingly, the results presented must be

interpreted with caution and as a best estimate of the aerial extents of these classes over time.

3.3. Change Area, Distribution and Transitions

Over the whole study period (1975–2014), the most extensive land cover class to change was

woodland. Between 1975 and 2014, woodland area declined by −460,689 ha (4.3% of the study area),

while agricultural land increased by 431,545 ha (4% of the study area) during that same period. The

extents of all classes, as well as losses and gains in the Agriculture and Woodland classes are plotted

for the entire study area (Figure 4).
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Figure 4. Bar graph illustrating the extents of the main land cover classes as a percentage of the study

area (study area = 107,994 km2) at decadal time scales. It shows an overall decline in the Woodland class

and concurrent increase in the Agricultural class until 2004, followed by an increase in the Woodland

class and decrease in the Agricultural class. Also included are the losses, gains and net change in the

Agriculture and Woodland classes.

The overall trend for the whole study period was of a loss in woodland and an associated increase

in agricultural classes except during the last decade, where woodland cover appears to be increasing.

For all land cover classes, losses and gains took place simultaneously, i.e., between 1975 and 1984

woodland lost −5.47% and gained 4.59%, resulting in a net change of −0.87% of the study area.

The pattern is similar for the intervals 1984–1994 and 1994–2004, however, between 2004 and 2014,

woodland gains (6.64%) outweigh losses (−4.28%), resulting in a net positive change of 2.36%. Similarly,

we see that during the 1994–2004 period, the highest woodland cover loss (−8%) was accompanied by

the most important agricultural expansion (5.71%). For the whole study area, the predominant land

cover transitions at each time interval were changes from woodland to agricultural classes, followed

by changes from agricultural to woodland classes. For example, the predominant change trajectory

between 1975 and 1984 as a percentage of the study area, included agriculture to woodland (3.54%)

and woodland to agriculture (3.06%). These findings imply the woodland and agricultural land cover

classes are dynamic and changeable, exhibiting relatively large losses, gains and exchanges over the

intervals compared (Table S4). Correspondingly, 73% of the study area underwent no change; yet it is

very likely that minor land cover changes, such as forest fires, could have taken place between study

intervals. We mapped burnt area for each interval using the same approach but with single scenes

from May to August, and found increases from 3.3% of the study area in 1975 to 11.5% in 1994, but

constituted only 0.1% and 0.6% in 2004 and 2014, respectively.

The composite DSMP OLS images reveal urban area increased from 0.3% to 1.42% of the study

area between 1994 and 2004, respectively. Urban areas experienced significant growth since the 1990s,

in fact, Namibia’s urban population more than doubled between 1981 and 2001 [39]. As shown by

the change matrix (Table S4), increases in the extent of urban areas (1994–2004) resulted mainly in

the loss of agricultural land, while urban expansion in the latter period (2004–2014) primarily caused

woodland losses. However, changes in the spatial extent of urban areas should be interpreted with

caution, as urban growth may not always be linked with electricity [29]. Nevertheless, this method

provides an alternative method for estimating of the extent of human influence on the landscape.

Our analysis revealed a gradual reduction in the area of woodland and an increase in agricultural

and urban land covers. Woodland conversion to agricultural land uses occurs as a continuous

small-scale (2 ha) process of extraction and utilization of resources, driven by a need for permanent

grazing pasture, construction timber and fire wood, and arable land for rain-fed cropping [17,29]

(Figure 5a,b). Correspondingly, the process of cropland fallowing and subsequent woodland succession

is constrained by diverse factors, chief among them being water availability, soil nutrient depletion,

alterations and diminution of seedbanks, increased likelihood of fire disturbance and continual grazing

pressure [38] (Figure 5c,d).
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Figure 5. Corona image from 1972 (a) compared with present day satellite imagery (b) revealing

small-scale agricultural growth (i.e., Woodland class loss); and a Corona image from 1972

(c) compared to present day satellite imagery (d) showing woodland succession and crop land fallowing

(i.e., Woodland class gain).

 

Figure 6. (a–d) Maps show the transitions from the classes Woodland to Agriculture for each time

interval: yellow (19751984), orange (1984–1994), dark orange (1994–2004) and red (2004–2014). The

encroachment the Agricultural class into the Woodland class as well as the nature of the changes, are

evident for each time interval.
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Figure 6 displays land cover maps for the main land cover class transition (i.e., Woodland to

Agriculture classes) for each time interval: yellow (1975–1984), orange (1984–1994), dark orange

(1994–2004) and red (2004–2014). The encroachment the Agricultural class into the Woodland class as

well as the small-scale nature of the changes, are clearly visible for each time interval. For example,

gradual decreases can be noted in proximity to the urban area of Rundu, which suggest urban

expansion and small-scale cropping (Figure 6).

3.4. Land Cover Changes per Administrative Region

The administrative regions assessed vary importantly in terms of land-use categories, populations

and geographic extents [39]. We therefore expect to find differences in the relative amounts of change.

In effect, the Woodland class persistently declined in Ohangwena region, with consistent net losses. A

similar pattern is evident for Oshikoto and Caprivi regions; however, a net positive change is evident

for the 2004–2014 era (Figure 7).

–

–

Figure 7. Plots showing the extent of all land cover classes (above) and the changes (i.e., losses, gains

and net change) of the woodland cover class (below), by administrative region.

Contrastingly, Kavango region showed a gradual increase from 94.20%, 94.31%, 94.80%, 92.81%

and 94.78% in 1975, 1984, 1994, 2004 and 2014, respectively (Figure 5). These results stand in

contrast to studies finding decreases in woodland cover within the region of Kavango and therefore

should be interpreted with caution [18,28–30]. Our results are likely due to a number of different

factors, including: (i) the selection of broad land cover classes, i.e., Woodland and Agriculture, which

encompass and range of different cover types, which are themselves highly susceptible to changes

from anthropogenic and climatic drivers [63,64]; (ii) the method used to validate the maps, here,

the earliest map (1975) was validated using a limited number of sample points, while the maps for

the following eras were validated using half of the training data in combination with a qualitative

assessment of each land cover map (Figure 2B); and (iii) the different temporal and spatial scales of the

analyses. For example, the study by Erkkilä et al. [28] focused on a small portion of the Ohangwena
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region and found decreases in woodland. The study by Röder et al. [29] centred upon the town

and Rundu and encompassed part of the Eastern and Western Kavango provinces (Namibia) and

part of the Cuando-Cubango province (Angola) covering an area of 15,000 km2, at two time intervals

(1990 and 2010). Had this study encompassed the entire region, their results may have been comparable.

Further, Mendelsohn (2003) [18] find that for Kavango region, 26,140 ha of woodland were cleared

by 1943, then, 72,100 ha (1.48%) in 1972 and 194,550 ha in 1996 (3.99%), resulting in a mean annual

rate of increase of 3.9% from 1943 and 1996, but does not indicate which aerial imagery or satellite

data were used. In comparison, for the same region, we found that in 1975, agricultural land

constituted 260,839 ha (5.35%), and in 1994, it constituted 189,378 ha (3.89%), or a very similar mapped

extent. The most important differences occur in 1970s period and may be attributable to the low

spatial resolution (60 m) and variable quality of the MSS images used in this study [65]. Similarly,

Pröpper et al. [30] found decreases in woodland cover for Kavango but do not provide exact aerial

extents. We propose our results are likely due to both vegetation succession and woody encroachment

occurring in areas previously dominated by grassland cover [66–68].

The predominant land cover class transition (i.e., Woodland to Agriculture) is assessed in relation

to the different land-use categories, in order to identify which categories are the most important

contributors to change for each region. Figure 8 shows the predominant transition as a percentage

of each administrative region, for every land-use category. It is evident that for all regions, the

greatest proportion occurs on “small scale agriculture on communal land”, this is particularly obvious

for Ohangwena region (Figure 8). Similarly, for all regions except Caprivi, we find that “large scale

agriculture on communal land” is the third largest contributor to the predominant land cover transition.

For Caprivi, Kavango and Oshikto, the second largest proportion of changes occurred on State

Protected land (Ohangwena has no protected areas), suggesting land cover change impacts sites of

conservation interest. Monitoring land cover changes in protected is essential, indeed, loss of habitat

by deforestation and conversion to arable land are likely the most important threats to biodiversity [69].

As demonstrated by [70], detection of land cover changes, especially in mixed vegetation types such

as grass and shrub land, is essential for facilitating numerous conservation activities, including the

enforcement of protection and contributing to the work of managers and conservation scientists.

the greatest proportion occurs on “small scale agriculture on communal land”, this is particularly 
on (Figure 8). Similarly, for all regions except Caprivi, we find that “large 

scale agriculture on communal land” is the third largest contributor to the predominant land cover 

 

–
woodland to agricultural land in buffers zone 1 for “minor town”, “major town” “rivers” and “roads” 
were of 4.56%, 1.95%, 4.88% and 4.03%, respectively. Except for “major towns”, these values are more 

’

Figure 8. The predominant land cover transition (i.e., from Woodland to Agriculture) as a percentage

of each administrative region, for every land-use category.
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3.5. Drivers, Consequences and Implications of Land Cover Changes

The observed trends in woodland extent are likely explained by the current and historical

Namibian socio-political context. Northern Namibia has benefited from a period of political and

social stability and a strong drive for economic growth as of independence in 1990 [71]. This is

evidenced by the expansion of the urban areas, for example, Rundu within the study area. The

associated development of modern road networks has heightened the flow of goods between markets

throughout the region, and consequently also access to and commercialization of communally held

resources including, timber, pasture, thatch and access to remoter arable lands [29,39,72]. The majority

of conversions from woodland to agricultural land cover classes, in terms of area, took place in the first

two buffer zones in proximity to villages, rivers and roads, and the area of changes decreased with

distance from these. For example, for the period 2004–2014, conversions from woodland to agricultural

land in buffers zone 1 for “minor town”, “major town” “rivers” and “roads” were of 4.56%, 1.95%,

4.88% and 4.03%, respectively. Except for “major towns”, these values are more than double the values

from the further zones, thus highlighting the correlation between proximity to villages, roads, and

rivers and conversions from the woodland to the agricultural class. This analysis used the predominant

land cover class transition (i.e., woodland to agriculture), and variables included proximity of villages,

rivers and roads. The area of change decreased with increasing distance from all proximal variables, as

evidence by significant Pearson’s product-moment correlation coefficients (Table S5). All variables

exhibit a clear and similar pattern (except distance to major towns), where the most important rates of

conversion are found adjacent to the variable, and decrease with growing distance (Figure 9). As an

avenue for future research, modelling transitions between categories as functions of environmental

variables should be considered.

–

Figure 9. Bar graphs show the area of the predominant land cover class transition (i.e., woodland to

agriculture per 5 km distance zone), as a percentage of each buffer zone, for each proximal change

variable (i.e., rivers, roads, villages and major towns), calculated using Euclidean distance.

To illustrate this, ephemeral and perennial rivers are associated with more fertile, arable soils; in

fact, river courses have been shown to be the preferred location for subsistence agriculture because of

the higher soil fertility and access to water [73]. Ephemeral and major rivers, as well as floodplains,

including the Okavango River and Cuvelai basin, respectively, have historically been regional centres

of agriculture [73,74]. Importantly, therefore, the area available of potentially arable land is limited

and decreasing.

The conversion of land to intensive, conventional agricultural uses on the continent is clearly

exposed by recent, continental scale land cover studies [14,75]. In NE Namibia, however, woodland

losses appear to be chiefly the result of small-scale subsistence farming (Figure 8). These changes are

explained as being the result of expanding population pressure, better access to and commodification
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of natural resources, as well as an ineffective legislation to manage land use and its distribution [29].

However, the observed trend of woodland conversion to subsistence agriculture is described as being

unsustainable because, as subsistence agriculture spreads into increasingly marginal areas (in terms

of agricultural potential and soil fertility), as a result of an ever decreasing amount of arable land, it

increases the likelihood of soil becoming nutrient depleted sooner, thereby accentuating the need for

more arable land [74]. An additional issue identified by various authors is the increased competition

for grazing and other resources within commonage areas between wealthy farmers, who can afford

both more stock and man power, and resident subsistence farmers [76]. Wealthy land users have

been shown to be responsible for fencing off large tracts of commonage, often to the detriment of

local residents. The enclosure of large tracts of woodland which were previously held as commonage,

reduces the grazing intensity and woodland clearing within the enclosed area, however, these processes

are in all likelihood displaced elsewhere [39]. In consequence, the increasing competition for land and

grazing resources may be driving local land-use intensification, in the form of increased woodland

clearing for cropping and resource extraction. In this context and given their wide extent, savannah

woodland biomes are globally significant and constitute an important carbon sink if appropriately

managed. Because of their potential for carbon sequestration, investments in the conservation and

management of woodlands can provide African countries with benefits from carbon trading [77–79].

Although African savannahs provide for the livelihoods of a great many people, their capacity to

furnish environmental services is not well understood and numerous constraints act to preclude

their development, including a lack of valuation studies for such services, poorly defined tenure and

markets, and a shortage of technical and institutional resourcefulness [80].

4. Conclusions

This study successfully develops a regional scale analysis of land cover change over four decades

in NE Namibia. By processing and comparing multi-sensor Landsat scenes over five time intervals

between 1975 and 2014, and across four administrative regions in NE Namibia, we observe an overall

trend towards a reduction in woodland extent. The conversion of woodlands to arable land was the

prevailing land cover transition process in terms of area, during all intervals, followed to a lesser

extent by the succession of agricultural land to woodland. These transitions suggest that woodland

clearing, followed by arable land abandonment and woodland succession, are widespread. The

variable classification results obtained in the final analyses highlight the complexities of applying

post classification change detection methods to spatially and temporally heterogeneous woodland

savannah environments which are heavily impacted by grazing, fire and woodland clearing over

decadal time scales [55,56]. The clearing and conversion of woodlands to other land uses appears to be

primarily driven by subsistence-based, rain-fed cropping, with pastoralism, timber extraction, but also

urban and infrastructural expansion, such as the creation of new roads, forming an integral part of the

change process [29]. In effect, we look at the predominant land cover changes in relation to distance

from towns, villages, rivers and roads, and find most changes occurred in proximity to these, and

decrease with distance from these. Furthermore, the predominant land cover changes were found to

occur mainly within land designated as communally held, followed by state protected land, suggesting

land cover changes had a relatively high impact on conservation areas [70]. Finally, a lack of concise

tenure rights regulating access to commonage grazing land may, in part, be driving the intensification

of land-use. Here, subsistence farmers are compelled to compete for resources (primarily grazing and

arable land) with wealthier farmers, who also often have the assets to fence large tracts of commonage,

resulting in some areas, in what many perceive to be a typical “tragedy of the commons” situation.

NE Namibia has extensive tracts of woodland savannah which provide numerous globally significant

ecosystem services, such as carbon sequestration and biodiversity conservation, but also a wealth of

natural resources critical to the livelihoods of communities in the region [38].

Ecosystems around the world are continuously changing as a result of anthropogenic and natural

causes. In the present study, we investigate abrupt changes from one land cover class to another.
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However, ecosystem changes can also be gradual, with subtle changes in vegetation and surface

biophysical properties occurring even over short time scales [11]. The availability of new satellite

archives at dense temporal resolutions present novel opportunities to study these changes, through

the analysis of trends in land surface dynamics. In effect, time-series analyses which have typically

been carried out on dense temporal and coarse spatial resolution sensors such as MODIS and AVHRR,

are now applicable to high resolution datasets, for example, by combining Landsat 8 and Sentinel-2

archives [81]. Identifying and understanding the continual changes to our planet is essential for

informing policy makers, managers and stakeholder about which ecosystems are at risk, what actions

can be taken to better manage them and finally how effective these management actions might have

been [82,83].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/8/8/681/s1,
Table S1: Google Earth Engine code, Table S2: Evaluation error matrixes indicating overall accuracy, errors of
commission and omission, and total training data pixels, Table S3: Error matrices for each period showing adjusted
change area and confidence intervals. The transition from woodland to non-woodland is labelled deforestation.
Error matrix entries are expressed as the estimated area proportion. Map classes represent rows and reference
classes the columns, Table S4: Cross tabulation matrices showing change trajectories as a percentage of the study
area [50], Table S5: Pearson Pearson’s coefficient (r) showing the relation between the aerial extent of main land
cover class transition (i.e., woodland to agriculture) in each 5 km distance zone, and each proximal change variable
for each interval assessed.
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