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Abstract 

The Karoo-Namib is a species rich region in which many iconic and keystone species are found, such 

as Aloe pillansii. The recent population history of A.pillansii is poorly understood. However the 

suggested climatic shifts that occurred throughout the Holocene era may have affected its 

distribution, demographics and gene flow. The glacial/interglacial refugia hypothesis predicts that 

the southernmost population served as a refuge population and that the subsequent expansion of 

the population was to the north in concert with the northward expansion of the winter rainfall 

regime. I evaluated this hypothesis by linking the molecular data (cpDNA and nDNA) of 84 individuals 

from three main populations with phylogeographical techniques. Based on the combination of 

percentage of mutations percentage per million years range and the chloroplast sequences, it has 

been estimated that the time of divergences was between 3.45 to 16.67 million years ago. The 

molecular analysis identified a significant lack of genetic diversity within and among the three 

dominant populations of A.pillansii. This suggests that the species experienced a severe bottleneck 

event prior to its recent expansion that has been suggested to have occurred within the time frame 

of 100 to 1000 years ago. This pattern is compared with its sister taxa Aloe dichtotma, which 

possesses variation within and among its populations. The lack of genetic variation evident within A. 

pillansii leaves it vulnerable to future climate shifts as low genetic variation within a species lowers 

the ability of that species to adapt to both environmental and climatic changes. This thesis has 

provided a brief insight into the population history of A.pillansii,but further research is needed.  

Keywords: Aloe pillansii, bottleneck and variation 
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1. Introduction 

Species are often limited in their distributions by a range of biotic and abiotic factors (Potts 2011; 

Chase and Meadows 2007). The regions where species occur and do not occur is often based on 

their relative rate evolution and speciation through time and space (Elith and Leatherwick 2009, 

Dynesius and Jansson 2000). Individuals rarely produce a solitary population with an equal 

connectivity amongst each individual within the species. Individuals may be isolated from each other 

by distance or by complex environmental scenarios that could have an influence on their dispersal 

(Potts 2011; Elith and Leatherwick 2009). Traditionally, the ability to understand the distributional 

shifts of a species through time relied on mapping the movement of the species and dating fossils 

and pollen (Holmes et al 2003). However, the historical information gathered about the species is 

often fragmented and the fossil or pollen remains may not exist for particular taxa (Elith and 

Leatherwick 2009). Additionally, in many regions around the world and in southern Africa 

particularly, climatic conditions or landscapes necessary for the formation of preserved archives 

have not occurred (Potts 2011).   

Recently, plant phylogeography has allowed for an increased understanding of the historical factors 

that have influenced the directional migration of species in response to Holocene glacial and inter-

glacial cycles through different regions of the world (Beheregaray 2008). Phylogeography 

encompasses the processes and principles which govern the genetic lineages and the geographic 

distributions within and among populations (Avise 1998) and provides the potential to gain a greater 

understanding of the history of plant communities. This is especially useful in places like Southern 

Africa which is home to three biodiversity hotspots (Chase and Meadows 2007). 

The plant diversity of Southern Africa’s arid landscapes is astonishing, particularly within the winter 

rainfall zone of the karoo, with its large array of succulents (Bolus et al. 2004). The Karoo-Namib 

region is home to over 6300 species of which at least 38% are endemic (Hilton-Taylor 1996). The 

Karoo-Namib region is largely comprised of widespread plateaus (Holmes et al. 2013). The Great 

Escarpment separates the eastern coastal regions from the plateaus. The arid interior area is the 

dominant spatial and geological aspect of the region. Holmes et al. (2003) showed that based on 

depositional evidence; there has been a shift in climatic conditions throughout the Holocene. The 

results were interpreted to suggest that the Karoo-Namib region has experienced an array of 

palaeoenvironments since the last glacial/interglacial periods. 
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Southern Africa is located at the boundary of the temperate, tropical and subtropical climate 

systems (Chase and Meadows 2007).  The subcontinent is influenced by several circulation systems, 

including those of atmospheric and oceanic origins (Weldeab et al. 2013, Chase and Meadows 2007). 

This results in different season rainfall regimes occurring over specific regions within the 

subcontinent.   

Across Southern Africa there are two prevailing rainfall regimes (Chase and Meadows 2007). The 

northern and eastern regions receive summer rainfall which comprises more than 66% of the annual 

rainfall. This is caused by the interaction between pressure cells and easterly flows. In contrast the 

winter rainfall regime extends from south western Namibia to Cape Agulhas along the South Atlantic 

coastline (Chase and Meadows 2007). Arid and semi –arid landscapes such as the southern Namib 

Desert and the South African Namaqualand region receive more than 65% of their annual rainfall in 

the winter months (Chase and meadows 2007,Cowling et al. 1999). Between the dominant rainfall 

regimes lies a narrow zone which receives both winter and summer rainfall which is often referred 

to as the all-year rainfall zone. 

The current winter rainfall regime of southern Africa has been hypothesised (eg Stuut et al. 2004; 

van Zinderen Bakker , 1976) to have been caused by an increase in the glaciation of the Antarctic sea 

(Zachos et al. 2001; Potts 2011) with the resultant equatorward displacement of the south Atlantic 

high-pressure cell (Potts 2011).  These shifts would influence the climates of southern Africa 

resulting in an increase in humidity and winter rainfall throughout the glacial periods that persisted 

in southwestern Africa (Chase and Meadows 2007). However, the body of evidence for 

environmental change in southern Africa has been meagre (Weldeab et al. 2013). This has been 

largely because the environment of the subcontinent experiences conditions that are not favourable 

for preserving paleaoecological data (Chase and Meadows 2007). These environments include a 

range of arid conditions and seasonal rainfall which have fluctuated over time. 

Van Zinderen Bakker (1976) proposed the hypothesis of the shift in the latitudinal circulatory 

systems over Southern Africa throughout the glacial-interglacial periods (Chase and Meadows 2007). 

The idea was largely based upon the expansion of the pressure systems and the displacement of the 

intertropical convergence zone (ITCZ) (the ITCZ is a zone in which north-easterly and south-easterly 

trade winds meet) (Phillips 2013). Thereafter he developed models for the expansion of the winter 

rainfall regime across southern Africa during glacial periods (Chase and Meadows 2007). The 

conceptual model developed by Van Zinderen Bakker (1976), which implies an expansion of the 

winter rainfall regime throughout southwestern Africa within the last glacial period, has been 

supported by recent evidence (Chase and Meadows 2007).  
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The importance of the proposed research on the phylogeography of Aloe pillansii is multifaceted. 

One of the foremost reasons is that the species is in decline. Midgley et al (1997) and Bolus et al. 

(2004) have provided evidence of the decline in the northern population of this species. Data 

produced by (Williamson 1998) has shown that there is a decline in the number of juveniles and 

seedlings in the northern populations which would influence subsequent recruitment in these 

populations. This trend will result in the senescence of the population in future.  Furthermore, 

populations have a relatively small distribution and range which has the potential for the 

populations to be isolated. This is another aspect of the species that needs attention due to the fact 

that conservation efforts are threatened by population isolation. A.pillansii is listed as an 

endangered species on the IUCN Red List which increases the need for the conservation of the 

species. 

Aloe pillansii has previously fallen within the Asphodelaceae subfamily: Alooideae which 

encompassed seven alooid genera (Grace et al. 2013). However recently there has been a 

reconsideration of the classification which a contracted generic group for Aloe species.  This gave 

rise to the novel genera of Aloidendron (Grace et al. 2013). Within the novel genus is A.pllansii, 

A.dichotoma, A.ramosissimum, A. barberae and A. eminems (Adams et al. 2002).The taxa within the 

genus Aloidendron has been grouped based upon descriptive and chemical similarities(Dagne et al. 

2000). This indicates how closely related A.pllansii is to A.dichotoma and A.ramosissimum, 

This study sought to investigate the population history of Aloe pillansii in South Africa and Namibia. 

My approaches include a phylogenetic analysis to determine the position of A.pillansii within the 

Aloe clade. To assess the time of the divergence of A.pillansii from its closest relatives, molecular 

detaining approach will be used. Based on the study by (Stager et al. 2012) which suggests a 

warming period that occurred 900 to 1400 years before present. It can be hypothesised that 

A.pilansii may have experienced a recent bottleneck event. Using the approached mentioned it is 

possible to infer the occurrence of the bottleneck and if so, how severe was it? Should the results of 

this thesis supports the proposed hypotheses, it will provide context for the population history of 

not just A.pillansii but of other tree species within the Karoo-Namib region as well. The results would 

also provide knowledge of the role that climate change has had on past species distributions.   This 

helps in the construction of future species distribution models which are crucial for the conservation 

of those species most likely affected by future changes in climate.  
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2. Methods and Materials 

2.1 Species Description  

Aloe pillansii is a keystone species of the Succulent Karoo biome (Duncan et al. 2005) and is rare and 

endemic to the region (Bolus et al. 2004). Trees grow to a height of 10 m or greater with a 

corresponding stem diameter that is between 1 – 2 m wide (Bolus 2004). A characteristic feature of 

these trees is the dichotomous branching which often occurs at the midpoint of the stem’s length 

(www.plantzafrica.com) (Fig 1). Older individuals often possess trunks that are swollen and bottle 

shaped which develop to support the branches (www.plantzafrica.com). A.pillansii is distinguishable 

from A.dichotoma and A. ramosissima by its rosulate leaves and by its inflorescences which develop 

horizontally upon the lowest leaf (Bolus 2004) (Fig 1.)In A.dichotoma and A. ramisissima their 

inflorescences are held erect above the leaf rosettes (www.plantzafrica.com).Distinctively, the 

younger leaves appear glaucous in comparison to species that are closely related 

(www.plantzafrica.com). The flowering season occurs from September to December wherein the 

spherical capsules ripen and split open to release wind dispersed seeds (Bolus 2004). 

 

  

Figure 1. Aloe pillansii showing (A) dichotomous branching and (B) the leaves and inflorescences 

(www.arkive.org) 

 

 

http://www.plantzafrica.com/
http://www.plantzafrica.com/
http://www.plantzafrica.com/
http://www.plantzafrica.com/
http://www.arkive.org/
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2.2 Species Distribution  

Aloe pillansii occurs in regions that experience an arid climate with rain falling largely in the winter 

months. The specific habitat occupied by A.pillansii includes mountainous regions, locations adjacent 

to river beds as well as low lying gravel slopes.  The global population spatial range is located within 

Namibia and South Africa.  The most northern cluster of populations occurs in southwestern 

Namibia and is separated from the central cluster of populations in South Africa by the Orange River 

(Fig 2).  There is a third, disjunct population in the southern part of its distribution in South Africa.   

 

 

Fig 2: The entire spatial range and pattern of the populations of Aloe pillansii (map adapted from 

Elsabe Swart) 
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2.3 Sampling and DNA extraction 

Populations of Aloe pillansii were identified at 22 localities within South Africa and Namibia 

respectively. The locations were found across the spatial range of the northern, central and southern 

cluster of populations of Aloe pillansii (Fig 2). Leaf material samples of the individuals found at the 

identified locations were collected by Elsabe Swart. DNA was extracted using the CTAB buffer DNA 

protocol described by Doyle and Doyle (1987). 

Table 1: Aloe pillansii populations analysed (84 individuals) in this study (* represents the 

populations where the GPS coordinates were not available).   

                     GPS Coordinates 

Country Location 
Sample 
Code Latitude Longitude 

South Africa Rooiberg  R 33°24'36.23'' 19°45'42.95'' 

South Africa Keerdam K 30°02'36'' 17°35'10'' 

South Africa Creshe Mountain* C 
  South Africa Swartberge S 33.3667° 22.3542° 

South Africa Hartmens Zebra Mountain HMZ 48.550° 11.3315° 

South Africa Rosyntjieberg RB 28°18'01.12'' 17°12'53.65'' 

South Africa Mountains west of Namas MWN 29°58'36.51'' 19°05'18.22'' 

South Africa Beacon Mountain* BM 
  South Africa Orange River OR 28°44'55.33'' 19°21'17.09'' 

South Africa Goegap GNR 29°06'25.86'' 19°21'47.91'' 

South Africa Zebrasfontein* ZFN 
  South Africa Five Sisters FS 28°13'16.11'' 16°55'41.47'' 

South Africa Cornell's Kop CK 28°25'05.36'' 16°53'05.36'' 

Namibia Mi Millans* MM 
  South Africa Kodasmyn KDN 28.0539° 17.0347° 

South Africa Anniskop AP 28°23'08.82'' 16°52'34.65'' 

Naminia McMillan* MCM 
  Namibia Rosh Pinah RP 27°57'53.78'' 16°45'36.50'' 

Namibia Namaskluft NT 27.94983° 16.753063° 

Namibia Namaskluft RD Farm (Inselberg 1) NI1 27.95640° 16.68541° 

Namibia Namas Inselberg 2 NI2 27.45698° 16.54238° 

Nambia Valley Opposite Namas* VON     
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2.4 Nuclear and chloroplast sequencing 

The nuclear region sampled was the internal transcribed spacer (ITS). Five chloroplast regions were 

sampled:, trnS-trnG, trnT-trnD,rpl32-trnL and trnT-trnL and psbA-trnH.Primers used in the PCR 

reaction are given in Table 1. The PCR volume for each genome region evaluated per individual 

consisted of 20-25 mg of plant DNA material, 17.6 μl of PCR water, 3.0 μl reaction buffer and MgCl2, 

1.2 μl dNTPS, 1.0 μl of tailed forward and reverse primer s (Table 2) and 0.2 μl of Taq DNA 

polymerase. The PCR amplification protocol used for both the ITS and chloroplast region was carried 

out using a Veriti® 96-Well Fast Thermal Cycler using the protocol labelled “BogStandard”. The 

protocol consisted of a denaturing step at 94°C for 3 minutes, 35 cycles, with each including 94°C for 

45 seconds, 52°C for 45 seconds, 72°C for 1 minute and 30 seconds,and a final step of 72°C for 7 

minutes. The PCR products were sequenced using the forward primers at the University of 

Stellenbosch at their Central DNA sequencing Facility 

 

Table 2. The primers used for the PCR amplification for the selected Nuclear and Chloroplast regions 

of Aloe pillansii (Potts 2011) 

Genome Region Primer Name Primer Sequence  Primer Sequence Reference 

Chloroplast  trnS-trnG C1 (Forward) AGATAGGGATTCGAACCCTCGGT (Figlar and Nooteboom 2004) 

  
C4 (Reverse) TTTTACCACTAAACTATACCCGC (Figlar and Nooteboom 2005) 

 
trnT-trnD F1 (Forward) ACC AAT TGA ACT ACA ATC CC  (Clark 2007) 

  
F4 (Reverse)  CCC TTT TAA CTC AGT GGT A (Clark 2007) 

 
rpl32-trnL V1 (Forward) CAGTTCCAAAAAAACGTACTTC (Shaw et al 2007) 

  
V2 (Reverse) CTGCTTCCTAAGAGCAGCGT (Shaw et al 2007) 

 
trnT-trnL H5 (Forward) CAT TAC AAA TGC GAT GCT CT  (Clark 2007) 

  
H6 (Reverse) TCT ACC GAT TTC GCC ATA TC  (Clark 2007) 

 
psbA A7 (Forward) GTTATGCATGAACGTAATGCTC  (Sang et al.1995) 

  
A8 (Reverse) AACCTTGGTATGGAAGTTATG (Sang et al.1995) 

Nuclear ITS ITS4 (Forward) TCC TCC GCT TAT TGA TAT GC (White et al. 1990);( Pots 2011) 

    ITS5 (Reverse) GGA AGG AGA AGT CGT AAC AAG G (Sang et al.1995) 
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2.5 Sequence assembly and alignment 

The nuclear and chloroplast DNA sequences produced were assembled using BioEdit sequence 

Alignment Editor Version 7.2.5 (http://www.mbio.ncsu.edu/bioedit/bioedit.html) and then aligned 

using a ClustalW Multiple alignment (Thompson et al 1997).  

2.6 Phylogenetic analysis 

We used the psbA-trnH region to reconstruct phylogenetic relationships among the three western 

tree sites (Daru et al. 2012).Based on the previous study, where these comprised a well-supported 

monophyletic group, sister to A.barberae. We used the latter as an outgroup. Molecular 

Evolutionary Genetics Analysis (MEGA) version 6.0 (Tamura et al. 2013). Nodal support was 

estimated by bootstrapping. With 1000 bootstrap replicates. 

2.7 Molecular dating  

The absence of a fossil record which could be used to calibrate the phylogeny and population-level 

data, we employed a simple molecular clock approach (e.g. Sarich and Wilson, 1973).  Since 

chloroplast mutation rates vary widely across angiosperms, and across DNA regions, we used a very 

broad range (1.54 x 10-9 - 3.6 x 10-8 per site per year) of plausible mutation rates (Zhang & Huett 

2003). For the population study, these values were used to estimate expected nucleotide diversity 

across our set of sequences for various time intervals (Daru et al. 2012) 

The time of divergence was obtained by firstly determining the number of differences within the 

psbA-trnH sequences between A.pillansii and A.dichotoma. The differences were then divided by the 

sequence length. The resultant value was then divided by two as at the point of divergence between 

A.pillansii and A.dichiotoma, the tree splits into two branches. This was then divided by the mutation 

percentage per million years range which produced the range of the time of divergence for 

A.pillansii. 

3. Results 

3.1 Aloe pillansii sequence assembly and alignment 

The nuclear DNA (ITS) alignment contained multiple traces that could not be reliably phased.  This 

region was thus discarded from subsequent analyses. The genetic data (cpDNA) analysed showed no 

variation within the selected gene regions within and between the sampled populations of the 

species. This was made clear by the presence of a single chloroplast haplotype that was identified 

across the entire spatial range for each chloroplast region (Table 3). The nuclear DNA (ITS) alignment 

http://www.mbio.ncsu.edu/bioedit/bioedit.html
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CC0QFjAC&url=http%3A%2F%2Fwww.megasoftware.net%2F&ei=6MhQVLOVAo_3aurfgsAC&usg=AFQjCNHQf892EopQWs-1WiulLETzK18AkQ&sig2=yK0pqgJtUGrDnYy1hoaY-w&bvm=bv.78597519,d.d2s
https://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CC0QFjAC&url=http%3A%2F%2Fwww.megasoftware.net%2F&ei=6MhQVLOVAo_3aurfgsAC&usg=AFQjCNHQf892EopQWs-1WiulLETzK18AkQ&sig2=yK0pqgJtUGrDnYy1hoaY-w&bvm=bv.78597519,d.d2s


13 
 

contained multiple traces which made it unclear as to the accuracy of the sequences and therefore 

could not be used in the analysis. 

Based on the broad range of mutation rates used here, the expected diversity of the total 700 

positions sampled is considerably higher.Even at the lowest plausible rates, we would have expected 

to see at least 1.68 to 2.52 mutations over 1000 years, and 16.8 over 100, 000. At the higher rate, 

our expectation for 700 sites is a range 2.52 for 1000 and 25.2 over 100 000 years.  

 Table 3. Haplotype Diversity for the A.pillansii populations 

                                        cpDNA Haplotypes                                     

Country Location 
Sample 
Code 

       TrnS-
TrnsG                                

TrnT-
TrnD 

rpl32-
TrnL 

TrnT-
TrnL psbA 

South Africa Rooiberg  R 1 1 1 1 1 

South Africa Keerdam K 1 1 1 1 1 

South Africa Creshe Mountain C 1 1 1 1 1 

South Africa Swartberge S 1 1 1 1 1 

South Africa HartmensZebra Mountain HMZ 1 1 1 1 1 

South Africa Rosyntjieberg RB 1 1 1 1 1 

South Africa Mountains west of Namas MWN 1 1 1 1 1 

South Africa Beacon Mountain BM 1 1 1 1 1 

South Africa Orange River OR 1 1 1 1 1 

South Africa Goegap GNR 1 1 1 1 1 

South Africa Zebrasfontein ZFN 1 1 1 1 1 

South Africa Five Sisters FS 1 1 1 1 1 

South Africa Cornell's Kop CK 1 1 1 1 1 

South Africa Mi Millans MM 1 1 1 1 1 

South Africa Kodasmyn KDN 1 1 1 1 1 

South Africa Anniskop AP 1 1 1 1 1 

Namibia McMillan MCM 1 1 1 1 1 

Namibia Rosh Pinah RP 1 1 1 1 1 

Namibia Namaskluft NT 1 1 1 1 1 

Namibia 
Namaskluft RD Farm 
(Inselberg 1) NI1 1 1 1 1 1 

Namibia Namas Inselberg 2 NI2 1 1 1 1 1 

Nambia Valley Opposite Namas VON 1 1 1 1 1 
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3.2 Phylogenetic analysis and Molecular Dating 

The phylogenetic tree recovered under ML resolves A. pillansii as sister to the remaining two taxa 

(Fig 3).   The relationship between A. dichotoma and A. ramossisima is only moderately well 

supported.  Based on the reasonable mutation rates for chloroplast DNA of 0.024% per million years 

to 0.116% per million years (Potts et al.2013), A.pillansii diverged from its close relatives 16.67 TO 

3.45 million years ago (Fig 4).  
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4. Discussion  

Two key findings emerge from the present study. First, A.pillansii is a relatively young species that is 

estimated to have diverged from its nearest relatives only 16.67 3.45 million years ago. The time of 

divergence coincides with the recent radiation of Rushioideae that occurred between 3.8 and 8.7 

million years ago (Klak et al.2004).This was proposed to be as a result of the expansion of the winter 

rainfall niche which occurred 5 million years ago as well as the suggested increase in aridification of 

the region (Klak et al. (2004).    

The second key observation is the complete lack of chloroplast polymorphism across a large sample 

of individuals covering the entirety of its range.  A possible explanation for this pattern could be 

selection, which would reduce levels of substitution.  However, this is unlikely as all the regions 

sampled are spacers, and thus likely to be under few if any selective constraints.  Indeed all the 

regions are typically used in population analyses (Sunnucks 2000).  In addition, the psbA-trnH region 

shows sufficient variation between A. pillansii and A. dichotoma to resolve a convincing phylogeny, 

again arguing against a pervasive slowdown in rates as a potential explanation. 

An alternative is that the species has experienced a recent, drastic bottleneck.  Based on our simple 

calculations of expected diversity, it is estimated that the severe bottleneck event experienced by 

A.pillansii occurred within the time frame of 1000 to 100 years before present. A broad range of 

mutation rates were used given that the origin of land plants cannot be pushed back that far. Given 

more time, the probability of attaining zero mutations could have been calculated using a 

conservative coalescent approach. The bottleneck event may have been as the result of the 

Medieval Climate Anomaly that occurred between 900 and 1400 years before present (Stager et al. 

2012). Tyson et al. (2000) suggests that the overall mean temperature over the winter rainfall zone 

of Southern Africa experienced a 3 to 4 degree Celsius (°C) increase in temperature. Within arid and 

semi-arid regions, organisms are at their tolerance limits, and may not have the ability to continue to 

exist under warmer conditions (Noble and Gitay 1996). This may have been the scenario that caused 

A.pillansii to experience a severe bottleneck.  

The low cpDnA diversity within A.pillansii suggests that the species experienced a decrease of its 

effective size which was followed by a population growth (Fedorov and Stenseth 2001) which may 

have been caused by a severe bottleneck.  The lack of variation implies that the species survived in a 

single refugium from which it recently expanded and this idea is supported by the presence of a 

single haplotype across the chloroplast regions (Stevens and Hogg 2003). A similar study by 
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Tollefsrud et al. (2008) used palaeoecological and genetic data to infer that the northern range of 

Picea abies survived the glacial period from a solitary refugium. 

With the bottleneck event suggested to have occurred between 100 to 1000 years ago, it would 

therefore be logical for the recent expansion of the species to have occurred within the same period. 

One possible explanation for the expansion is the Little Ice Age that occurred 700 years before 

present (Tyson et al. 2000).Stager et al. (2012) reports remarkably wetter conditions during the 

majority of the last 7 centuries.  Isotope evidence of the Little Ice Age presented by Tyson et al. 

(2000) is found within Namibia, the Namib Desert, the Northern Western regions of South Africa and 

the Western Cape Province. The regions mention encompasses the entire spatial range of A.pillansii 

is located which provides additional support for the expansion of the species being as a result of the 

Little Ice Age. 

However, because no significant variation was identified, it was not possible to evaluate the gene 

flow between the populations and the significance of the recent expansion of the species. The 

results of the molecular analysis showed that the individuals of the different populations have 

significantly low levels of genetic differences amongst each other and when compared to the 

individuals of the other populations.  One possible reason for the lack of the genetic diversity within 

A.pillansii was as a result of the species experiencing a bottleneck event prior to its most recent 

expansion. It has been demonstrated by Leimu et al. (2006) that species with small population sizes 

which are isolated from one another often have a lower genetic diversity when compared to those 

with larger population sizes. This is suggested to be as a result of the species being affected by a 

bottleneck and/or genetic drift (Leimu et al. 2006). The analysis carried out by Leimu et al. (2006) 

suggests that population size could be as a crucial variable in understanding the differences in 

genetic diversity between populations. When a population has undergone a bottleneck event and as 

a result has remained small for several generations, the resultant loss of rare alleles is a primary 

factor in the reduced genetic variation within that population (Barrett and Kohn 1991). According to 

Jansson and Dynesius (2002), climate change has negatively influenced the genetic divergence of 

species within southern Africa. In comparison with its sister species, A.pillansii has a lower genetic 

diversity than A.dichotoma. This has been observed within the species Corylus avellana. In 

comparison with its sister species, many chloroplast DNA haplotypes are not observed as a result of 

the species experiencing bottleneck events during the glacial periods (Palmé & Vendramin 2002). In 

their study, Palmé & Vendramin (2002) identified that geographical distributions influenced the 

variation of the chloroplast haplotypes within Corylus avellana and its sister taxa. 
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4.1 Implications for the species 

From the analysis it suggests that A.pillansii had gone through a bottleneck prior to its recent 

expansion. This has resulted in the species losing its genetic diversity which is apparent in the lack of 

genetic variation within and among its dominant populations. This loss of genetic diversity is 

suggested to be influenced through genetic drift and inbreeding (Charlesworth and Charlesworth 

1999). Inbreeding within populations has the potential to influence the accumulation of deleterious 

recessive genes. These genes may have an effect on the ability of the species to withstand 

environmental stress (Lacy 1997).  Inbreeding has the potential to increase the vulnerability to 

harmful diseases, decrease the ability to compete for resources, decrease fecundity and increase 

mortality (Keller and Waller 2002).  With inbreeding, the unfavorable traits are expressed in the 

offspring due to the similarities of the parental genomes (Keller and Waller 2002). The increasing 

similar the parental genomes are the more consistent the unfavorable traits are expressed in the 

offspring. This will produce offspring that are less fit in terms of adaptations and survival to 

environmental and climatic changes. 

The loss of allelic diversity is influenced by the levels of genetic variation present in the population 

prior to the bottleneck event (Kramer and Sarnelle 2008).  The Allee effect is described as the 

reduction of the growth rate of a population as the density of that population declines (Courchamp 

et al. 1999). The Allee effect has the ability to limit the genetic loss by limiting the minimum effective 

size of the population (Maruyama and fuerst 1985). The minimum effective size of the population is 

maintained throughout the bottleneck which in turn determines the genetic composition of the 

population after the bottleneck. This influences the genetic variation of the resultant population 

(Wade and McCauley 1988; Nei et al. 1975) 

Climate change has the potential to influence the ability of species to be adapted to a set of 

conditions (both climatic and environmental) within a specific region (Bellard et al. 2012).It has been 

suggested that within southern Africa there would be an increased frequency of harsh climatic 

events which include droughts (Hoffman et al. 2009) particularly in the winter rainfall zone of 

southern Africa where A.pillansii is found.  

It is suggested that the survival of a species throughout severe instances of drought is largely 

influenced by genetic differences present within the species (Gutshick and BassirRad 2003, 

McDowell et al. 2008). During periods of drought there are dramatic changes to the environment in 

terms of the relative niches a species could occupy as well as the availability of resources.  
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Haensler et al. (2011) had projected using Regional Climate (RCM) a climate change of a 30 to 50% 

drying which would take effect at the end of the twenty-first century. In addition, (Stager et al. 2012) 

reports from model simulations which suggest an increase in the aridity within the winter rain fall 

zone of South Africa. The suggested increase in aridity is said to decrease the total runoff by a 

maximum of 30% by the year 2050 (Stager et al. 2012).This could be detrimental to the numerous 

plant species that are endemic to the Succulent Karoo (Meadows 2006; Stager et al. 2012). A 

successful drought strategy that increases a species resistance to a drought includes the avoidance 

of tissue dehydration and the maintenance of their tissue water potential (Chaves et al. 2009). These 

drought survival strategies are associated with adaptive traits that arise from the buildup of 

beneficial genes and the removal of deleterious genes through the process of selection. This usually 

arises within a population that has a high level of genetic diversity. 

In the case of a species like A.pillansii which has a low genetic diversity, the chances of surviving an 

extreme climatic event such as a drought are dangerously low. The populations of A.pillansii are 

relatively isolated from one another which make them inherently more susceptible to environmental 

and climatic fluctuations (Keller and Waller 2002). The nature of the populations being isolated from 

one another may result in related individuals producing offspring (Eldrige et al., 1999; Lynch, 1996; 

Slate et al., 2000; Keller and Waller 2002) that could possess an accumulation of deleterious genes 

which would not collectively produce a successful response for survival to periods of droughts. The 

overall ability of a species to adapt to a climatic change event such as a drought is the presence of a 

percentage of genetic variation within the population (Booy et al. 2000) 

The future for A.pillansii does not look bright unless conservation efforts are greatly increased. At 

present there has been a steady decline in the number of individuals in a population which amongst 

other factors has been attributed to drought stress as a result of climate change (Bolus et al. 2010). 

This impact is likely to continue without the proper intervention by the relative authorities. For the 

continued survival of the species, conservation efforts need to be focused on the ability of the 

species to be able to adapt to a changing environment. Such efforts should be concerned with 

increasing the low genetic variation within the species (Hendrik and Kalinowski 2000). Genetic 

restorations of populations with low genetic diversity may benefit from the introduction of 

individuals that are from a related subspecies (Hendrik and Kalinowski 2000). This process will aid in 

avoiding extinction of the species as well as the removal of deleterious genes and allow the species 

with sub-populations to attain a normal level of genetic variation. At present there is a lack of 

information which provides an example of whether this genetic restoration initiative has occurred 

with A.pillansii and a related species.  
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5. The way forward 

Using the standard genetic markers to identify variation with the nuclear and chloroplast regions has 

not been successful. To identify greater variation for the nuclear and chloroplast gene sequences, 

microsatellites could be used. Microsatellites are sequences that are composed of a single sequence 

of no more 6 bases long (Litt and Luty 1989).  Microsatellites are progressively replacing or being 

used in conjunction with other DNA markers (Bowcock et al., 1994; Goletti et al., 1994; Taylor et 

al.1994; Estoup et al., 1996). They have been identified within the genomes of each organism that 

has thus far been analyzed (Weber and May 1989). Designing a set of species-specific microsatellites 

will potentially increase the chance of gathering information on the expansion of the population of 

Aloe pillansii which would allow us to infer on the time of the expansion and the direction of that 

expansion. Molecular and phylogeographical data that explores the expansion of the species would 

provide insights into whether the expansion of the species was coupled with the expansion of the 

winter rainfall regime as well as whether the expansion of the species was in fact northward which 

would suggest that the southernmost population served as the ancestral population. 

Distribution models provide evolutionary and ecological insights into a species’ history as well as to 

predict the species distributions through time and space (Potts 2011). These models incorporate 

numerical data that make use of both the species occurrence or the abundance of a species in 

relation to its environmental estimates (Elith and Leathwick 2009). This concept of analysis may 

provide insights into the historical and future geographic distributions of A.pillansii. The future 

geographic distribution of a species is associated with soil, climate and an array of additional physical 

factors (Merow et al. 2013). This would suggest that the distribution has the potential to change in 

response to a shift in the prevailing climate.  Distribution models can therefore be developed to 

allow for predictions of the response of the species distribution to climate change (Merow et al. 

2013). 
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6. Conclusions 

In this study it was found that there was a lack of chloroplast haplotypes within and between the 

individuals of the populations of A.pillansii which suggested a lack of variation. In comparison with a 

sister species A.dichotoma, the lack of variation was suggested to be as a result of A.pillansii 

experiencing a bottleneck event prior to its recent expansion.The bottleneck event has been 

suggested to have occurred within the time frame 0f 100 to 1000 years before present. Based on the 

lack of the variation observed within the species, it is suggested that A.pillansii experienced a severe 

bottleneck event. It remains unclear as to whether the expansion of the species coincided with the 

expansion of the winter rainfall regime that occurred throughout the Holocene era. For species that 

lack variation, inbreeding and gene drift are serious issues to contend with. Inbreeding results in a 

buildup of unfavorable alleles that affect the ability of the species to adapt to environmental and 

climatic conditions. To completely understand the population history of A.pillansii further research is 

required 
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