Climate change and adaptive land management in southern Africa

Assessments Changes Challenges and Solutions

Product of the first research portfolio of

Southern African Science Service Centre for Climate Change and Adaptive Land Management SPONSORED BY THE

Federal Ministry of Education and Research © University of Hamburg 2018 All rights reserved

Klaus Hess Publishers Göttingen & Windhoek www.k-hess-verlag.de

ISBN: 978-3-933117-95-3 (Germany), 978-99916-57-43-1 (Namibia)

Language editing: Will Simonson (Cambridge), and Proofreading Pal Translation of abstracts to Portuguese: Ana Filipa Guerra Silva Gomes da Piedade Page desing & layout: Marit Arnold, Klaus A. Hess, Ria Henning-Lohmann Cover photographs: front: Thunderstorm approaching a village on the Angolan Central Plateau (Rasmus Revermann) back: Fire in the miombo woodlands, Zambia (David Parduhn)

Cover Design: Ria Henning-Lohmann

ISSN 1613-9801

Printed in Germany

Suggestion for citations:

Volume:

Revermann, R., Krewenka, K.M., Schmiedel, U., Olwoch, J.M., Helmschrot, J. & Jürgens, N. (eds.) (2018) Climate change and adaptive land management in southern Africa – assessments, changes, challenges, and solutions. *Biodiversity & Ecology*, **6**, Klaus Hess Publishers, Göttingen & Windhoek.

Articles (example):

Archer, E., Engelbrecht, F., Hänsler, A., Landman, W., Tadross, M. & Helmschrot, J. (2018) Seasonal prediction and regional climate projections for southern Africa. In: *Climate change and adaptive land management in southern Africa – assessments, changes, challenges, and solutions* (ed. by Revermann, R., Krewenka, K.M., Schmiedel, U., Olwoch, J.M., Helmschrot, J. & Jürgens, N.), pp. 14–21, *Biodiversity & Ecology*, **6**, Klaus Hess Publishers, Göttingen & Windhoek.

Corrections brought to our attention will be published at the following location: <u>http://www.biodiversity-plants.de/biodivers_ecol/biodivers_ecol.php</u>

Biodiversity & Ecology

Journal of the Division Biodiversity, Evolution and Ecology of Plants, Institute for Plant Science and Microbiology, University of Hamburg

Volume 6:

Climate change and adaptive land management in southern Africa

Assessments, changes, challenges, and solutions

Edited by

Rasmus Revermann¹, Kristin M. Krewenka¹, Ute Schmiedel¹, Jane M. Olwoch², Jörg Helmschrot^{2,3}, Norbert Jürgens¹

1 Institute for Plant Science and Microbiology, University of Hamburg 2 Southern African Science Service Centre for Climate Change and Adaptive Land Management 3 Department of Soil Science, Faculty of AgriSciences, Stellenbosch University

Hamburg 2018

Please cite the article as follows:

Posada, R. & Riede, J. (2018) Key Entry Form Application to digitize climate data (keyEntry-App). In: *Climate change and adaptive land management in southern Africa – assessments, changes, challenges, and solutions* (ed. by Revermann, R., Krewenka, K.M., Schmiedel, U., Olwoch, J.M., Helmschrot, J. & Jürgens, N.), p. 31, *Biodiversity & Ecology*, **6**, Klaus Hess Publishers, Göttingen & Windhoek. doi:10.7809/b-e.00299

Key Entry Form Application to digitize climate data (keyEntry-App)

Authors: Rafael Posada^{1*} and Jens Riede¹

- 1 Deutscher Wetterdienst (DWD), Frankfurter Straße 135, 63067 Offenbach, Germany
- * Corresponding author: Rafael.Posada-Navia-Osorio@dwd.de

A frequent issue at the NMSs was the entry of on-paper climate data. CLIMSOFT provides some templates for entering data directly into the databases, but these templates often do not satisfy the requirements of meteorological services. Therefore, an additional open-source tool was designed to facilitate data entry in the partner countries. The app provides users with a web-based interface to enter the data in the same way that they are structured on the on-paper form (Fig. 1). Users can also customize the structure of the forms and create their own templates. It also includes a quality control of absolute limits that checks the meteorological data as they are entered and alerts users if an entered value is implausible.

Similarly to the ACD-App, the keyEntry-App has been developed using Shiny so that it can easily be run

on any PC with a web browser. It has also been hosted on GitHub for download and further development: https:// github.com/sasscal-dwd-apps/keyEntry-App. A detailed manual on how to install the app and how to use it can be found here: https://sasscal-dwd-apps. github.io/keyEntry-App/en/documentation.html

Met. Service Form					Station	Station No. Year Month			nth	Station	Id			Co	Complemented by															
	zmd	• N	OZ304.4		441		2015	• 1	12 -	MWINIL01 - MWINILUNGA MET -				r •	rp			C	reate											
y	Entry For	m L	imits & S	cale Fact	ors							01110						141010	141115	14015	0.011	0.011	0411	_		-				5140.5
	Temp. Max	Temp. min	G Min	52	54	58	EI	E4	Mean DP	GUST	TOTAL	SUNS.	N MEAN	MEAN PRESS.	TEMP.	RH.	1700	0600	Diff	Mean	24Hr. WIND 0800	24Hr. WIND Diff	24Hr. WIND Mean	۲	P	1	L	н	C	EVAP
	270	NA	NA	23	22	23	NA	NA	25	NA	102	-10	7	9688	NA	80	NA	NA	NA	NA	NA	NA	NA	0	3	1	1	0	3	NA
2	275	NA	NA	22	21	22	NA	NA	25	NA	0	-10	7	9678	NA	81	NA	NA	NA	NA	NA	NA	NA	0	3	1	1	0	3	NA
	310	NA	NA	23	22	22	NA	NA	25	NA	34	-10	0	9668	NA	66	NA	NA	NA	NA	NA	NA	NA	8	3	1	1	0	3	NA
	285	NA	NA	22	22	25	NA	NA	25	NA	0	-10	8	9078	NA	85 NA	NA	NA	NA	NA NA	NA	NA	NA NA	0	0	1		0	3	NA
	295	NA	NA	20	24	22	NA	NA	25	NA	NA	-10	0	9674	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	3	1	1	0	3	NA
	285	NA	NA	22	22	23	NA	NA	25	NA	NA	-10	7	9684	NA	79	NA	NA	NA	NA	NA	NA	NA	0	3	1	1	0	3	NA
	295	NA	NA	21	21	23	NA	NA	25	NA	NA	-10	5	9675	NA	71	NA	NA	NA	NA	NA	NA	NA	0	3	2	1	0	3	NA
)	300	NA	NA	23	22	24	NA	NA	25	NA	NA	-10	5	9678	NA	63	NA	NA	NA	NA	NA	NA	NA	0	3	1	1	0	3	NA
)	300	NA	NA	19	21	23	NA	NA	25	NA	NA	-10	0	9692	NA	77	NA	NA	NA	NA	NA	NA	NA	0	3	1	1	0	3	NA
	280	NA	NA	23	22	23	NA	NA	25	NA	NA	-10	7	9681	NA	73	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	0	0	NA
	295	NA	NA	22	22	23	NA	NA	25	NA	NA	-10	0	9670	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	0	0	NA
	285	NA	NA	22	23	24	NA	NA	25	NA	NA	-10	0	9660	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	3	1	1	0	3	NA
	245	NA	NA	21	22	20	NA	NA	20	NA	NA	-10	7	9059	MA	95	NA	NA	NA	NA	NA	NA	NA	0	3	0	0	0	3	NA
	275	NA	NA	21	21	22	NA	NA	24	NA	NA	-10	7	9664	NA	48	NA	NA	NA	NA	NA	NA	NA	0	4	0	0	0	3	NA
	265	NA	NA	21	21	23	NA	NA	25	NA	NA	-10	7	9657	NA	48	NA	NA	NA	NA	NA	NA	NA	0	4	0	0	0	3	NA
5	260	NA	NA	23	22	23	NA	NA	24	NA	NA	-10	0	9675	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	3	1	1	0	3	NA
	255	NA	NA	21	21	23	NA	NA	24	NA	NA	-10	0	9686	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	4	1	1	0	3	NA
)	265	NA	NA	21	21	23	NA	NA	24	NA	NA	-10	0	9684	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	0	0	NA
	270	NA	NA	21	22	22	NA	NA	24	NA	NA	-10	7	9674	NA	76	NA	NA	NA	NA	NA	NA	NA	0	4	1	1	0	3	NA
	265	NA	NA	22	22	22	NA	NA	24	NA	NA	-10	7	9667	NA	91	NA	NA	NA	NA	NA	NA	NA	0	3	1	1	0	3	NA
	250	NA	NA	21	21	22	NA	NA	24	NA	NA	-10	0	NA 9875	NA	84 NA	MA	NA	NA	NA	NA	NA	NA	0	3	1	1 NA	0	3	NA
5	260	NA	NA	21	21	24	NA	NA	24	NA	NA	-10	0	9687	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	3	1	NA	0	3	NA
3	275	NA	NA	21	21	22	NA	NA	24	NA	NA	-10	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	NA	0	0	NA
	270	NA	NA	21	22	22	NA	NA	24	NA	NA	-10	0	9662	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	NA	0	0	NA
5	285	NA	NA	22	22	23	NA	NA	24	NA	NA	-10	7	9677	NA	78	NA	NA	NA	NA	NA	NA	NA	0	3	0	NA	0	3	NA
9	280	NA	NA	23	23	24	NA	NA	24	NA	NA	-10	7	NA	NA	79	NA	NA	NA	NA	NA	NA	NA	0	3	0	NA	0	3	NA
0	295	NA	NA	22	23	24	NA	NA	25	NA	NA	-10	7	NA	NA	79	NA	NA	NA	NA	NA	NA	NA	0	4	3	NA	0	3	NA
I X	325	NA	N/A N/A	22	23	24	NA	NA	24	NA	563	-10	8	NA 9692	NA	05	NA	NA	NA	NA	NA	NA	NA	0	0	0	NA 1	0	0	NA
es. N	245	NA	NA	19	21	23	NA	NA	24	NA	0	-10	0	9657	NA	48	NA	NA	NA	NA	NA	NA	NA	0	0	0	0	0	0	NA
M	8625	NA	NA	680	677	710	NA	NA	761	NA	699	-310	116	251536	NA	1431	NA	NA	NA	NA	NA	NA	NA	8	83	20	15	0	72	NA
AN	278.2	NA	NA	21.9	21.8	22.9	NA	NA	24.5	NA	139.8	-10	3.9	9674.5	NA	75.3	NA	NA	NA	NA	NA	NA	NA	0.3	2.7	0.6	0.7	0	2.3	NA
c	alculate v	alues		E Save	data) [ž Down	oad as '.	csv'	± Dov	mload a	s '.xis'	8	Send data	- a per E-I	vlail							1							<u> </u>

on-paper form to facilitate data entry. It also provides embedded quality control, flagging the values entered that are outside a given threshold.