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Alien plants have invaded large areas (>10 million ha) of 
South Africa (Binns et al. 2001; van Wilgen et al. 2001). 
Much of the affected area supports natural and semi-natural 
ecosystems of environmental and socio-economic 
importance (Le Maitre et al. 2000; Milton et al. 2003; 
Richardson and van Wilgen 2004; van Wilgen et al. 2008). 
Invasive alien plants (IAPs) are thought to have eroded 
the natural capital (i.e. the stock of natural resources, 
such as biodiversity, soils and hydrological cycles, that 
enable ecosystems to provide goods and services into the 
future) of these critical ecosystems by compromising their 
structure and function (Le Maitre et al. 2000; Milton et al. 
2003; Richardson and van Wilgen 2004; van Wilgen et al. 
2008). As a result, much effort has been expended in South 
Africa on controlling and mitigating the spread and impact of 
IAPs and, increasingly, on restoring IAP-damaged ecosys-
tems (Richardson and van Wilgen 2004; Blignaut 2010; van 
Wilgen et al. 2012).

The Nama-Karoo biome occupies 28% (346 100 km2) 
of South Africa’s land area and covers much of the central 
and western regions of the country (Palmer and Hoffman 
1997; Hoffman 2000; Suttie et al. 2005). Large tracts 
(>180 000 km2) of Nama-Karoo rangeland have been 
invaded by alien leguminous trees of the genus Prosopis 
(Richardson and van Wilgen 2004). The trees, which are 
indigenous to the Americas, were introduced into the area 

in the late 1880s to provide shade, fodder and fuel wood 
(Zimmermann 1991; Palmer and Hoffman 1997; Richardson 
and van Wilgen 2004; Zimmermann and Pasiecznik 2005). 
However, their introduction has had serious negative 
environmental impacts (Steenkamp and Chown 1996; 
Richardson et al. 2000; Dean et al. 2002; Richardson and 
van Wilgen 2004; Zimmermann and Pasiecznik 2005; 
Ndhlovu 2011; Ndhlovu et al. 2011; Dzikiti et al. 2013; 
Schachtschneider and February 2013; Shackleton et al. 
2015a, 2015b; Ndhlovu et al. 2016). In many areas, invasive 
Prosopis trees have coalesced to form dense thorny thickets 
that are thought to have displaced indigenous plants and 
substantially altered rangeland vegetation composition, 
diversity and structure (Richardson et al. 2000; Richardson 
and van Wilgen 2004). Like many other plant invasions in 
South Africa’s sparsely populated arid regions (Milton and 
Dean 1998), the processes and impacts of Prosopis invasion 
in the Nama-Karoo have not been adequately studied. 

Large extents of the Nama-Karoo have been 
cleared of Prosopis trees under a government-run IAP 
control programme dubbed ‘Working for Water’ (WfW) 
(Zimmermann and Pasiecznik 2005), whose primary aim is 
to secure South Africa’s water resources by clearing IAPs 
from major watersheds (Le Maitre et al. 2000; Binns et al. 
2001; Le Maitre et al. 2002). Although the justification for the 
WfW programme has been explicitly based on its potential 
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to deliver socio-economic benefits through increased water 
supply and employment (van Wilgen et al. 1998; Binns et al. 
2001; Anon 2006; Hope 2006), there is an implicit assump-
tion that IAP clearings will also result in the restoration of 
ecosystem structure and function in affected areas (Esler 
et al. 2008; Holmes et al. 2008). Very few studies (e.g. 
Saayman and Botha 2007; Ndhlovu et al. 2011, 2016) have 
empirically tested this assumption in Nama-Karoo rangeland. 
None have focused on the impact of Prosopis invasion and 
clearing on vegetation species composition and diversity.

We evaluated the impact of Prosopis invasion (~15% 
canopy cover) and clearing on vegetation species composi-
tion and diversity in Nama-Karoo rangeland on two 
sheep farms in the Beaufort West district of the Western 
Cape province of South Africa. Our objectives were to 
(1) determine the impacts of invasion and clearing on vegeta-
tion species composition and diversity (alien and indigenous 
species richness and cover) and (2) deduce the vegetation 
processes that may have underlain the impacts. To achieve 
these objectives, we addressed the following questions:
•	 How did Prosopis invasion and clearing impact vegetation 

composition and alien and indigenous species richness 
and cover in affected rangeland?

•	 What changes in plant species presence and cover 
underlay the observed impacts?

•	 What vegetation processes could have underlain the 
observed changes?
While we expected Prosopis invasion and clearing to 

significantly impact overall plant species composition and 
diversity at our study site, we had no a priori hypotheses 
concerning underlying species changes. Although Prosopis 
invasion and control have been shown to affect vegetation 
composition and diversity across a range of ecosystems 
(e.g. Kincaid et al. 1959; Cable and Tschirley 1961; Scifres 
et al. 1974; Scifres and Polk 1974; Cable 1976; Tiedemann 
and Klemmedson 1977; Martin and Morton 1993; Ruthven 
2001; Dean et al. 2002; Tiedemann and Klemmedson 2004; 
McClaran and Angell 2006; Pease et al. 2006; Simmons et 
al. 2008; Schachtschneider and February 2013; Shackleton 
et al. 2015a, 2015b), our study was the first to attempt 
an evaluation of plant species responses in Nama-Karoo 
rangeland. We, therefore, lacked sufficient a priori informa-
tion to construct specific hypotheses about species-level 
responses. As a result we adopted an exploratory approach 
and conducted our study without pre-conceived hypotheses.

Materials and methods

Study site
Our study was conducted on the farms De Hoop 
(32°10′13″	 S,	 22°47′5″	 E)	 and	 Brandwag	 (32°11′36″	 S,	
22°48′19″	E),	 located	about	30	km	north-east	of	 the	town	
of Beaufort West in the Western Cape province of South 
Africa. De Hoop farm was still completely covered by 
stands of invasive Prosopis trees at the time of our study 
(June and October 2009), whereas the trees had been 
completely cleared from the neighbouring Brandwag 
farm. Prosopis trees were cleared from Brandwag farm by 
WfW teams between 2003 and 2005. As it was difficult to 
determine the exact years when clearing occurred, clearing 
impacts were considered to relate to conditions 4–6 years 

after clearing. Clearing consisted of felling trees at 100 
mm above ground level and treating stumps with Garlon® 4 
herbicide (triclopyr ester) at a 4% dilution with diesel. Felled 
wood and branches were left lying in the field and no further 
interventions were taken to aid the recovery of indigenous 
vegetation. Both farms were stocked with sheep and the 
vegetation showed signs of degradation from overgrazing. 
Information on the grazing histories of the farms was 
unavailable. Details on vegetation, soils and climate at the 
study site are provided elsewhere (Ndhlovu 2011; Ndhlovu 
et al. 2011, 2016). We used the generic term Prosopis in 
our study because of the uncertainty surrounding Prosopis 
classification to species level in South Africa (see Ndhlovu 
et al. 2011; Mazibuko 2012). 

Sampling and data collection
Sampling and data collection was conducted on Prosopis 
invaded (n = 2), cleared (n = 3) and uninvaded (n = 5) sites 
within Brandwag and De Hoop farms. The sites were speci-
fically selected to be as environmentally uniform as possible 
(see Ndhlovu et al. 2016). Cleared sites were restricted to 
Brandwag and invaded to De Hoop, while uninvaded sites 
occured across both farms. Invaded and cleared sites had 
similar Prosopis tree size-class distributions (determined 
from basal diameters of standing trees in invaded sites and 
tree stumps in cleared sites). The average Prosopis tree 
basal diameter was 110 mm across the sites. Invaded sites 
had an average Prosopis cover of approximately 15%. All 
sites were part of the farmers’ day-to-day management of 
livestock and exhibited similar signs of severe overgrazing. 
As uninvaded sites from Brandwag and De Hoop did not 
exhibit significant compositional difference, management 
differences between the two farms were considered to be 
insignificant. Plant species cover estimates at each of the 
sites were obtained using ten 50 m line-point intercepts 
(see Herrick et al. 2005 and Ndhlovu et al. 2016 for details). 
Species cover referred to the cover of the upper layer of 
each plant species independent of overhanging cover of 
other species (Herrick et al. 2005; Fehmi 2010) and differed 
from canopy and basal cover (the proportion of each 
species at the uppermost and lowermost surfaces of the 
vegetation) measured in Ndhlovu et al. (2016).

Data analysis
Alien and indigenous species cover
Alien and indigenous species cover per transect were 
calculated by summing the percent species cover of the 
individual alien and indigenous species that occurred 
along transects. Likewise, percent plant functional type 
cover per transect were determined by summing the 
individual percent species cover of species classified 
into six functional groups (viz. annual grass, perennial 
grass, annual herb, perennial herb, succulent shrub and 
non-succulent shrub). Mean alien and indigenous cover in 
uninvaded, invaded and cleared sites was calculated by 
averaging transect alien and indigenous species cover. 
Given that the percent cover of individual plant species 
was evaluated independently, grouped species cover could 
exceed 100% (see Fehmi 2010). Species were classified 
as alien or indigenous and grouped into functional types 
using published descriptions (Meredith 1955; Le Roux 
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et al. 1994; Shearing and van Heerden 1994; Esler et al. 
2006). The publications were also used to gather informa-
tion on other species ecological attributes such as dispersal 
mode, habitat preference and interspecific competitiveness. 
Prosopis was excluded from all data sets.

Impact of invasion and clearing on vegetation composition
The impact of invasion and clearing on vegetation composi-
tion was evaluated by comparing plant species composi-
tion in uninvaded, invaded and cleared sites. Differences 
in species composition between uninvaded vs invaded, 
invaded vs cleared and uninvaded vs cleared sites were 
taken to reflect invasion and clearing impacts. Uninvaded 
sites were regarded as representing pre-invasion 
states. Non-metric multidimensional scaling (NMDS; two 
dimensions, Bray–Curtis distances) was used to visually 
represent compositional relationships between sites, 
whereas statistical significance was assessed using 
one-way analysis of similarities (ANOSIM; sequential 
Bonferroni significance, 10 000 permutations, Bray–Curtis 
distances). NMDS is an ordination method that organises 
samples in multidimensional space according to composi-
tional similarity (Kruskal 1964). The NMDS results are 
displayed as two-dimensional diagrams in which composi-
tionally similar sites are plotted near each other and 
dissimilar sites farther apart. ANOSIM is a non-parametric 
procedure that tests for significant differences between 
two or more multivariate groups (Clarke 1993). The NMDS 
analyses were conducted using the vegan package 
(Oksanen et al. 2015) in R (R Core Team 2014). The 
ANOSIM analyses were conducted in the Paleontological 
Statistics Software Package for Education and Data 
Analysis (PAST; Hammer et al. 2001).

The vegetation dynamics that underlay species composi-
tion changes during invasion and clearing were deduced 
from differences in the mean percent cover of the 
species responsible for most of the compositional differ-
ences between uninvaded, invaded and cleared sites. 
Differences in mean percent cover of species in uninvaded 
vs invaded, invaded vs cleared and uninvaded vs cleared 
sites were taken to be the result (and thus indicative) of 
plant species composition changes caused by Prosopis 
invasion and clearing. Plant species responsible for most 
(i.e. ~90%) of the compositional differences between sites 
were identified and ranked using similarity of percentage 
(SIMPER) analysis. SIMPER is a multivariate technique 
that ranks taxa according to their contribution to Bray–Curtis 
dissimilarities between contrasted groups (Clarke 1993). 
The SIMPER analyses were conducted in PAST.

Impact of invasion and clearing on alien and indigenous 
species richness and cover
The impact of invasion and clearing on alien and indigenous 
species richness was determined by comparing alien 
(other than Prosopis) and indigenous species richness in 
uninvaded vs invaded, invaded vs cleared and uninvaded 
vs cleared sites. Comparisons were made using the 
Compare Diversities module in PAST (1 000 bootstrap 
randomisations; Hammer et al. 2001). Compare Diversities 
computes a number of diversity indices for paired samples 
and statistically compares them through permutation or 

bootstrap randomisation (Hammer et al. 2001). Species 
frequency per site data (i.e. number of transects per site 
along which a species was present) were used to conduct 
richness comparisons. 

Transect data from uninvaded, invaded and cleared 
sites were tested for sampling saturation (Magurran 
2004) prior to species richness estimation using species 
accumulation curves (Mao tau sample-based rarefaction; 
Colwell et al. 2004) generated using PAST. The curves 
demonstrated that, although additional species would have 
been discovered with more transects, the available data 
were sufficient to determine differences in species richness 
between the sites (Figure 1). 

The minimum species richness estimates calculated 
from sample-based line point intercept data (Herrick et 
al. 2005) were supplemented by statistically estimated 
species richness (minimum predicted numbers of species 
based on the sample data; Magurran 2004). The estimated 
species richness values were calculated using the program 
EstimateS version 8 (10 000 randomisations with default 
settings; RK Colwell, available at http://purl.oclc.org/
estimates). Three estimators of species richness were 
used: incidence-based coverage estimator (ICE; Chao et 
al. 2000), Chao2 richness estimator (Chao 1984), and the 
second-order jackknife richness estimator (Jackknife 2; 
Burnham and Overton 1979). Three richness estimators 
were used concurrently to cross-check (triangulate) results 
(see Yurkov et al. 2011 for the rationale behind triangulating 
richness estimators). 

Presence–absence data derived from alien and 
indigenous species cover were used to determine statis-
tically estimated species richness. The impacts of 
invasion and clearing on estimated alien and indigenous 
species richness were evaluated by comparing means of 
estimated richness in uninvaded vs invaded, invaded vs 
cleared and uninvaded vs cleared sites. The significance 
of the differences was assessed using the one-way 
ANOVA via randomisation test in the software package 
Resampling Procedures 1.3 (10 000 randomisations; 
DC Howell, University of Vermont, available at http://www.

Figure 1: Species accumulation curves (Mao tau sample-based 
rarefaction) for uninvaded (n = 5), invaded (n = 2) and cleared 
(n = 3) sites near Beaufort West in the Western Cape province of 
South Africa
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uvm.edu/dhowell/statPages/Resampling/Resampling.
html). Differences were considered significant at p ≤ 0.05. 
Non-parametric randomisation (Manly 1997) was used 
because the data were non-normal. Normality was tested 
using the Shapiro–Wilk test (Shapiro and Wilk 1965). 
Variation around means was expressed in standard errors. 

The effects of Prosopis invasion and clearing on 
the abundance of alien and indigenous species were 
determined by comparing mean alien and indigenous 
species cover in uninvaded, invaded and cleared sites. 
The vegetation dynamics that underlay the observed alien 
and indigenous species cover changes were deduced from 
differences in mean alien and indigenous plant functional 
type and species cover between the sites. Cover differ-
ences between uninvaded vs invaded, invaded vs cleared 
and uninvaded vs cleared sites were taken to represent 
the impacts of invasion and clearing. Alien and indigenous 
plant functional types whose mean cover differences tested 
significant were analysed to species level. The relative 
magnitudes of the vegetation changes were evaluated by 
considering the extents of the cover changes that were 
associated with them. Means and standard errors were 
calculated using the program PAST, whereas the signif-
icance of differences in plant functional type and species 
cover was assessed using Resampling Procedures 1.3 
(one-way ANOVA, 10 000 randomisations).  

Adjustments for multiple comparisons
No adjustments for multiple comparisons were conducted 
for analyses at species level. As our study was exploratory 
(i.e. data were collected without pre-specified hypotheses), 
we considered multiple comparison adjustments 
unnecessary and even counterproductive (see Bender 
and Lange 2001). Adjustments for multiple comparisons 
reduce the number of false positives (incorrectly rejected 
null hypotheses) during statistical tests (MacDonald 2009). 
However, the adjustments also simultaneously increase 
the number of false negatives (incorrectly accepted null 
hypotheses; MacDonald 2009). As a result, when multiple 
comparison adjustments are applied to large data sets, 
such as in our study, the power of statistical tests to detect 
real differences may become unacceptably low (Bender 
and Lange 2001; MacDonald 2009). In such situations, it is 
usually more costly to use multiple-comparison procedures 
that ignore real differences than to use procedures that 
occasionally misclassify non-significant differences (Bender 
and Lange 2001). The cost of a false positive is just a few 
more experiments, while that of a false negative could entail 
missing a hugely important discovery (MacDonald 2009). 
This approach is, however, not free from controversy and is 
currently an area of active research (MacDonald 2009).

Results

Impact of invasion and clearing on vegetation 
composition
As expected, Prosopis invasion and clearing altered plant 
species composition in affected rangeland. The composition 
changes were, however, not substantial. Clearing caused 
the greatest change in species composition. Plant species 
composition in cleared rangeland had not reverted to the 

pre-invasion state after more than four years. There were 
significant dissimilarities in species composition between 
uninvaded vs invaded (R = 0.21, P < 0.001), invaded vs 
cleared (R = 0.31, P < 0.001) and uninvaded vs cleared 
sites (R = 0.27, P < 0.001). The greatest dissimilarity in 
species composition was between invaded vs cleared 
sites (overall average dissimilarity = 62%) followed by 
uninvaded vs invaded (overall average dissimilarity = 57%) 
and uninvaded vs cleared (overall average dissimilarity = 
56%) sites. The overall average dissimilarities (Bray–Curtis 
dissimilarity measures*100) were derived from pair-wise 
SIMPER group comparisons (Clarke 1993). Although the 
95% NMDS confidence ellipses around invaded (II) and 
cleared (III) transects were separated from each other, 
there was some overlap between the two and uninvaded (I) 
transects (Figure 2).The stress value for the NMDS was 
relatively high (0.231; Figure 2), signifying that although 
the ordination results were generally usable, too much 
credence was not, however, to be placed on their details 
(see McCune et al. 2002).  

Most of the change in species composition during 
invasion was driven by declines in the cover of the annual 
grass Aristida adscensionis L. and the non-succulent 
shrub Pentzia incana (Thunb.) Kuntze and increases in the 
cover of the annual and perennial grasses Chloris virgata 
Sw. and Cynodon dactylon (L.) Pers. (Supplementary 
Table S1). Minor compositional changes were linked to 
reductions in the cover of the non-succulent shrubs Felicia 
muricata (Thunb.) Nees and Rosenia humilis (Less.) 
K.Bremer and increases in the cover of the annual grass 
Setaria verticillata (L.) P.Beauv. and the non-succulent 
shrubs Lycium cinereum Thunb., Salsola tuberculata 
Fenzl ex Moq., Atriplex lindleyi Moq., Bassia salsoloides 
(Fenzl) A.J.Scott, Lycium prunus-spinosa Dunal and 
Salsola calluna Drege (Supplementary Table S1). Invasion 
displaced the annual grass Tragus berteronianus Schult. 
and facilitated the establishment of the non-succulent shrub 
Pentzia lanata Hutch. (Supplementary Table S1).

Plant species compositional change after clearing was 
driven mainly by increases in the cover of the annual grass 
A. adscensionis, the non-succulent shrub P. incana, and 
the perennial grasses Eragrostis obtusa Munro ex Ficalho 
& Hiern and C. dactylon (Supplementary Table S2). 
Other minor changes included increases in cover of 
the annual grasses S. verticillata, the perennial grass 
Eragrostis lehmanniana Nees and the non-succulent 
shrubs, L. cinereum and F. muricata, and declines in the 
annual grass C. virgata and the non-succulent shrubs 
P. lanata, L. prunus-spinosa, A. lindleyi, B. salsoloides, 
and S. tuberculata (Supplementary Table S2). Clearance 
facilitated the re-establishment of the annual and perennial 
grasses T. berteronianus and E. obtusa (Supplementary 
Table S2). 

Cleared rangeland differed mainly from uninvaded 
rangeland in having a lower cover of the non-succulent 
shrub P. incana and higher cover of the annual grass 
A. adscensionis and the perennial grasses E. obtusa 
and C. dactylon (Supplementary Table S3). Other minor 
differences included higher cover of the annual grasses 
C. virgata, T. berteron-ianus and S. verticillata, the perennial 
grass E. lehmanniana, the alien annual herb Medicago 
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laciniata (L.) Mill. and the non-succulent shrubs F. muricata, 
L. cinereum, L. prunus-spinosa, L. oxycarpum and 
Asparagus retrofractus L., and lower cover of non-succulent 
shrubs R. humilis and S. tuberculata (Supplementary 
Table S3).

Impact of invasion and clearing on alien species 
richness and cover 
Invasion did not change the richness of alien species (three 
to four species) but increased their cover from 0.44% to 
2% (Figure 3). Clearing reduced alien species richness 
by one to two species and cover from 2% to 1% (Figure 
3). Alien species richness declined to below pre-invasion 
levels after clearing while alien species cover declined to 
pre-invasion levels. There was no significant difference in 
alien species richness (ICE richness F = 2.24, P = 0.136; 
Chao2 richness F = 0.05, P = 0.839; Jackknife 2 richness 
F = 1.10, P = 0.292) between uninvaded and invaded sites 
(Table 1). Mean alien species cover in invaded sites (2.18 ± 
0.49%) was significantly higher (F = 20.08, P < 0.001) 
than in uninvaded sites (0.44 ± 0.14%). Cleared sites had 
mean alien species cover (1.08 ± 0.35%) significantly lower 

(F = 3.47, P = 0.051) than invaded sites. Cleared sites had 
significantly lower alien species richness (ICE richness 
F = 90.51, P < 0.001; Chao2 richness F = 25.05, P < 0.001; 
Jackknife 2 richness F = 16.53, P < 0.001) than invaded 
sites (Table 1). Cleared sites had significantly fewer alien 
species (ICE richness F = 15.12, P < 0.001; Chao2 richness 
F = 28.54, P < 0.001; Jackknife 2 richness F = 18.05, 
P < 0.001) than uninvaded sites (Table 1). 

The gain in alien species cover during invasion and the 
loss after clearing were linked to increases and declines in 
cover of the non-succulent shrub A. lindleyi. The reduction 
in alien species cover after clearing was counteracted to a 
lesser extent by an accompanying increase in the cover of 
the alien annual herb M. laciniata. The cover of the third 
alien species, the non-succulent shrub Atriplex semibaccata 
R.Br., was not affected by invasion or clearing. Mean cover 
of A. lindleyi differed significantly between uninvaded vs 
invaded (F = 31.369, P < 0.001) and invaded vs cleared 
sites (F = 24.763, P < 0.001; Table 1). The mean cover of 
M. laciniata was significantly higher (F = 5.28, P = 0.037) 
in cleared than in invaded sites (Supplementary Table S4). 
There was no significant difference in the mean cover of 

Figure 2: Two-dimensional non-metric multidimensional scaling (NMDS) plot showing plant species composition relationships between 
uninvaded (n = 5), invaded (n = 2) and cleared (n = 3) sites near Beaufort West in the Western Cape province of South Africa. Also shown 
are 95% confidence ellipses (I = uninvaded, II = invaded and III = cleared)
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A. semibaccata between uninvaded and invaded sites 
(F = 1.51, P = 0.306) and invaded and cleared sites 
(F = 1.19, P = 0.456; Supplementary Table S4). 

Impact of invasion and clearing on indigenous species 
richness and cover
Invasion reduced the richness of indigenous species by 
six to seven species but did not affect total cover (Figure 
3). Clearing increased indigenous species richness 
by between 10 and 15 species and cover from 65% to 
100% (Figure 3).  Indigenous species richness in cleared 
rangeland reverted to the pre-invasion level (between 
40 and 47 species), whereas cover remained 36% higher 
than the pre-invasion level (i.e. 65%) after more than four 
years after clearing (Figure 3). Indigenous species richness 
was significantly lower (observed richness P < 0.001; ICE 
richness F = 148.48, P < 0.001; Chao2 richness F = 14.76, 
P < 0.001; Jackknife 2 richness F = 35.59, P < 0.001) 
in invaded than uninvaded sites (Table 1). There was 
no significant difference (F = 0.00, P < 1.000) in mean 
indigenous species cover between uninvaded (64.60 ± 
4.09%) and invaded sites (64.64 ± 7.80%). Indigenous 

species richness was significantly higher (observed 
richness P < 0.001; ICE richness F = 90.51, P < 0.001; 
Chao2 richness F = 25.50, P < 0.001; Jackknife 2 richness 
F = 16.53 P < 0.001) in cleared than invaded sites (Table 1). 
Mean indigenous species cover in cleared sites (100.23 ± 
5.31%) was significantly higher (F = 14.95, P < 0.001) 
than in invaded sites. There was no significant difference 
(observed richness P = 0.356; ICE richness F = 0.03, P = 
0.866; Chao2 richness F = 3.64, P = 0.059; Jackknife 2 
richness F = 1.18, P = 0.292) in indigenous species 
richness in uninvaded and cleared sites (Table 1). Cleared 
sites had mean indigenous species cover significantly 
higher (F = 27.06, P < 0.001) than uninvaded sites. 

There was no change in the cover of indigenous 
grasses, herbs and shrubs during invasion. The increase 
in indigenous species cover after clearing was linked to 
increases in cover of the annual grasses A. adscensionis 
and T. berteronianus and, to a lesser extent, the perennial 
grasses E. obtusa and E. lehmanniana. Indigenous 
species cover in cleared rangeland was higher than the 
pre-invasion level as a result of higher cover of the annual 
grasses A. adscensionis, C. virgata and S. verticillata, 
perennial grasses E. obtusa and C. dactylon and the 
perennial herb Galenia pubescens (Eckl. & Zeyh.) Druce. 
There was no significant difference in mean annual 
grass (F = 0.04, P = 0.857), perennial grass (F = 1.67, 
P = 0.212), annual herb (F = 0.17, P = 0.753), perennial 
herb (F = 1.15, P = 0.356), succulent shrub (F = 0.00, 
P = 1.000), and non-succulent shrub cover (F = 0.56 
P = 0.466) between uninvaded and invaded sites 
(Supplementary Table S5). Only indigenous annual and 
perennial grasses had significantly different mean cover 
(F = 10.88, P = 0.079, F = 13.58, P < 0.001) in invaded 
and cleared sites (Supplementary Table S6). Of the 
annual and perennial grasses present in the study sites 
A. adscensionis (F = 18.42, P < 0.001), T berteronianus 
(F = 6.99, P = 0.004), E. obtusa (F = 16.14, P < 0.001) 
and E. lehmanniana (F = 9.38, P < 0.001) had signifi-
cantly different mean cover in invaded and cleared sites 
(Supplementary Table S6). Indigenous annual grasses 
(F = 2.30, P < 0.001), perennial grasses (F = 40.33, 
P < 0.001) and perennial herbs (F = 4.97, P = 0.052) had 
significantly different cover in uninvaded and cleared 
sites (Supplementary Table S7). At species level, the 
annual grasses A. adscensionis (F = 11.95, P = 0.001), 

Table 1: Comparison of plant species richness in uninvaded (n = 5), invaded (n = 2) and cleared sites (n = 3) sites near Beaufort West in 
the Western Cape province of South Africa. Variation around mean estimated species richness is expressed in standard errors. Different 
superscript letters within a row denote significantly different values at P	≤	0.05	(one-way	ANOVA	via	randomisation)

Species richness estimator Uninvaded Invaded Cleared
Alien species
Observed richness 3 3 2
ICE estimated richness 3 ± 0.14a 3 ± 0.25a 2 ± 0.15b

Chao 2 estimated richness 2 ± 0.11a 2 ± 0.19a 1 ± 0.08b

Jackknife 2 estimated richness 3 ± 0.15a 4 ± 0.39a 2 ± 0.19b

Indigenous species
Observed richness 43a 27b 40a

ICE estimated richness 46 ± 0.70a 31 ± 1.12b 46 ± 1.17a

Chao 2 estimated richness 43 ± 0.98a 36 ± 1.75b 46 ± 1.17a

Jackknife 2 estimated richness 47 ± 1.65a 30 ± 2.10b 44 ± 2.68a

Figure 3: Mean percent cover (±SE) of alien and indigenous 
plant species in uninvaded (n = 5), invaded (n = 2) and cleared 
(n = 3) sites near Beaufort West in the Western Cape province of 
South Africa. Significance was determined by one-way ANOVA via 
randomisation
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C. virgata (F = 5.58, P = 0.005) and S. verticillata (F = 7.07, 
P = 0.009), perennial grasses E. obtusa (F = 18.42, 
P < 0.001) and C. dactylon (F = 18.42, P < 0.001) and the 
perennial herb G. pubescens (F = 18.42, P < 0.001) had 
significantly different mean cover in uninvaded and cleared 
sites (Supplementary Table S7).

Discussion 

Several studies have shown that Prosopis invasion and 
clearing can strongly influence the composition, diversity 
and structure of understory or adjacent vegetation 
(e.g. Kincaid et al. 1959; Cable and Tschirley 1961; Scifres 
et al. 1974; Scifres and Polk 1974; Cable 1976; Tiedemann 
and Klemmedson 1977; Martin and Morton 1993; Ruthven 
2001; Dean et al. 2002; Tiedemann and Klemmedson 2004; 
McClaran and Angell 2006; Pease et al. 2006; Simmons et 
al. 2008; Schachtschneider and February 2013; Shackleton 
et al. 2015a, 2015b). Most of the studies were conducted 
in semi-arid, arid and desert rangelands in the southern 
and south-western USA. Our study is the first to report on 
the impact of Prosopis invasion and clearing on vegeta-
tion species composition and diversity in South Africa’s 
semi-arid Nama-Karoo rangeland. It augments our earlier 
work on the impact of Prosopis invasion and clearing on 
Nama-Karoo rangeland grazing capacity (Ndhlovu et al. 
2011) and vegetation soil cover (Ndhlovu et al. 2016).

Impact of invasion and clearing on plant species 
composition
Our results confirmed that Prosopis invasion and clearing 
could alter plant species composition in Nama-Karoo 
rangeland. Species composition change during invasion 
involved concomitant increases and decreases in cover 
of different grass and shrub species. This was probably 
because, while Prosopis trees generally compete with 
plants in their understory and neighbourhood for light, 
moisture and nutrients (Tiedemann and Klemmedson 1977; 
Meyer and Bovey 1986), they also act as nurse plants for 
other subcanopy species by creating ideal microhabitats via 
nitrogen fixation and shading (Ruthven 2001). 

For example, while the decline in the annual grass 
A. adscensionis during invasion was most likely caused 
by competition for light (shading) from invading Prosopis 
trees the increases in the annual grasses C. virgata and 
S. verticillata, the perennial grass C. dactylon and the 
non-succulent shrubs A. lindleyi and S. tuberculata were 
most probably in response to the establishment of favour-
able environmental conditions in the subcanopies and 
neighbourhoods of the trees. Aristida adscensionis performs 
poorly in shade (Varshney 1968), whereas C. virgata, 
C. dactylon and the alien non-succulent shrub A. lindleyi 
tolerate shade and are hardy colonisers of bare or disturbed 
soil (Le Roux et al. 1994; Shearing and van Heerden 1994; 
Esler et al. 2006). Setaria verticillata thrives in nitrogen-
enriched shaded environments and S. tuberculata can 
withstand low moisture conditions (Le Roux et al. 1994; 
Shearing and van Heerden 1994; Esler et al. 2006). 
Prosopis trees, by denuding their neighbourhood of vegeta-
tion cover (Gibbens et al. 1986), enriching their subcanopy 
with nitrogen and other soil nutrients (Tiedemann and 

Klemmedson 1973; Barth and Klemmedson 1982; 
Gadzia and Ludwig 1983; Klemmedson and Tiedemann 
1986; Frias-Hernandez et al. 1999; Geesing et al. 2000; 
Reyes-Reyes et al. 2002) and lowering moisture content 
in surrounding soil (Tiedemann and Klemmedson 1973, 
1977; Jacoby et al. 1982), provide ideal conditions for the 
establishment and increase of such species. The increase 
in cover of S. verticillata would have likely been tempered 
by lowered soil moisture as the annual grass thrives in 
less dry conditions (Rutherford et al. 2014). The seeds of 
these species are dispersed on animal hair or in dung, and 
were also probably concentrated beneath Prosopis trees by 
livestock resting in the shade of canopies. Similar patterns 
in the distribution of zoochoric plant species have been 
observed in other arid areas (e.g. Milton and Dean 1995). 

Prosopis trees could have caused some of the species 
composition changes that occurred during invasion 
indirectly. The loss of A. adscensionis as a result of shading 
by Prosopis trees, for example, could have intensified 
grazing pressure on the non-succulent shrub P. incana and 
led to its decline. Pentzia incana, similar to A. adscensionis, 
is resilient to heavy grazing and is an important component 
of forage production in overgrazed rangeland (Le Roux 
et al. 1994; Shearing and van Heerden 1994; Esler et al. 
2006). Likewise, the non-succulent shrubs L. cinereum 
and L. spinosum, which produce small edible fruits, could 
have increased as a result of increased dispersal by birds 
perching on invading Prosopis trees (see Dean et al. 
2002; Milton et al. 2007; Iponga et al. 2009). However, this 
advantage could have been limited as the steep angles of 
Prosopis canopies are thought to discourage maximum 
utilisation of the trees by birds (Dean et al. 2002). 

The increases in the annual grasses A. adscensionis, 
S. verticillata, T. berteronianus, the perennial grasses 
E. obtusa, C. dactylon, E. lehmanniana and the non- 
succulent shrubs P. incana, L. cinereum and F. muricata 
that drove species composition change after clearing 
were most likely in response to the release of the species 
from Prosopis competition. In the case of the annual 
grasses A. adscensionis and T. berteronianus, and the 
perennial grasses E. obtusa and E. lehmanniana, which 
are shade intolerant (Varshney 1968; Klink and Joly 1989; 
Veenendaal et al. 1993), increases in cover after clearing 
were most certainly linked to cessation of shading. Increase 
in S. verticillata was most likely linked to increase in soil 
moisture following Prosopis clearing. The annual grass 
prefers wetter conditions (Rutherford et al. 2014). The 
increase in cover of the grasses could have reduced the 
grazing pressure on the comparatively less palatable 
non-succulent shrubs P. incana and F. muricata and led 
to their increase. In addition, the increase in cover of the 
above-mentioned grasses could have led to the declines in 
the annual grass C. virgata, the alien herb A. lindleyi and 
the non-succulent shrubs P. lanata, L. prunus-spinosa, 
B. salsoloides and S. tuberculata through increased 
interspecific competition for soil moisture. The annual grass 
C. virgata and the alien herb A. lindleyi are poor competitors 
that naturally occur in disturbed or bare areas denuded of 
competing plants (Le Roux et al. 1994; Shearing and van 
Heerden 1994; Esler et al. 2006). Soil moisture is the most 
important limiting factor in the Nama-Karoo (Milton 1995).
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The higher-than-usual grass cover in cleared rangeland 
was probably a legacy of Prosopis soil nutrient enrich-
ment. Prosopis trees accumulate soil nutrients such as 
carbon, nitrogen, magnesium, potassium and phosphorous 
under their canopies (Tiedemann and Klemmedson 
1973; Frias-Hernandez et al. 1999; Geesing et al. 2000; 
Reyes-Reyes et al. 2002). Non-succulent shrubs could have 
declined in response to increased competition from grasses. 
Competition between grasses and woody plants is critical in 
arid and semi-arid areas (Jacoby et al. 1982; Milton 1995).

Impact of invasion and clearing on alien and 
indigenous species richness and cover
The alien flora of the Nama-Karoo reflects the region’s 
climate and economics (Milton and Dean 1998). 
Unpredictable and quantitatively variable rainfall (Milton and 
Dean 1998; Esler et al. 2008) has ensured a sparse alien 
flora while widespread livestock production has resulted 
in the domination of the flora by introduced livestock-
dispersed forage species (Milton and Dean 1998). This 
appears to be also the case at our study site.

Despite being severely degraded, our study site had only 
three alien species (besides Prosopis), viz. the opportunistic 
short-lived annual herb M. laciniata and the drought-tolerant 
non-succulent shrubs A. lindleyi and A. semibaccata. 
All three invasive alien species were either dispersed 
unintentionally by livestock or deliberately introduced into 
the Nama-Karoo to increase livestock carrying capacity. 
Medicago laciniata was probably unintentionally introduced 
into the region from Mediterranean North Africa in about 
2000 BP with the spread of the herding culture, while the 
Atriplex species were intentionally imported from Australia 
and introduced into Nama-Karoo rangeland between 1860 
and 1890 (Milton and Dean 1998).

Invasion by Prosopis probably raised alien species 
cover (i.e. A. lindleyi cover) by directly creating favourable 
environmental conditions and indirectly altering competition 
dynamics. Atriplex lindleyi competes poorly against 
indigenous species (Milton and Dean 1998). However, in 
cases were indigenous species cover is reduced, either by 
overgrazing or drought, A. lindleyi has been observed to 
regenerate profusely from seed (Milton and Dean 1998). 
The cue for A. lindleyi seeds to break dormancy is provided 
by moisture and nitrogen (Milton and Dean 1998). Prosopis 
trees fix nitrogen (Frias-Hernandez et al. 1999; Geesing 
et al. 2000; Reyes-Reyes et al. 2002) and considerably 
reduce indigenous vegetation cover and species richness 
in Nama-Karoo rangeland through shading and competition 
for soil moisture and nutrients (Dean et al. 2002; Ndhlovu 
et al. 2016). 

The decrease in A. lindleyi cover after clearing was most 
likely caused by increased competition from indigenous 
grasses. Like A. lindleyi the indigenous annual grasses 
A. adscensionis and T. berteronianus and perennial 
grasses E. obtusa and E. lehmanniana colonise disturbed 
ground. This shared adaptation could have led to intense 
competition between the alien herb and indigenous grass 
species in the open and disturbed habitat created by 
Prosopis clearing. The increase in indigenous grass species 
cover after clearing most likely resulted from the release 
of the grasses from Prosopis shading and competition for 
soil moisture. Overall indigenous vegetation cover also 

increased after clearing, probably also in response to the 
removal of Prosopis competition.

Invasion appeared to have had no overall effect on 
indigenous vegetation cover at our study site. However, 
this lack of overall effect was underlain by a dynamic 
balance between decline in the cover of grasses negatively 
affected by Prosopis invasion (e.g. A. adscensionis and 
T. berteronianus) and an accompanying increase in the 
cover of grass species positively affected by invasion 
(e.g. C. virgata, S. verticillata and C. dactylon). This dynamic 
balance was most probably serendipitous and would likely 
not occur at Prosopis covers higher than at our study site 
(i.e. greater than 15% cover; see Ndhlovu et al. 2016).

Conclusion

Our results suggest that in heavily grazed Nama-Karoo 
rangeland Prosopis invasion and clearing can significantly 
change rangeland species composition. Invasion and 
clearing seem to have no effect on alien species richness, 
although clearing at our study site resulted in a slight 
decline in alien species richness. Very few alien species 
can successfully establish themselves in the Nama-Karoo 
because of its unpredictable and quantitatively variable 
rainfall (Milton and Dean 1998; Esler et al. 2008). Invasion, 
however, seems to increase alien species cover, whereas 
clearing reduces it to pre-invasion levels. On the other 
hand, invasion appears to reduce indigenous species 
richness, whereas clearing restores it to pre-invasion levels. 
Invasion, however, appears to have no effect on indigenous 
species cover. This lack of effect could be peculiar to our 
study site, the result of a site-specific balance between 
a decline in the cover of grasses negatively affected by 
Prosopis invasion and the accompanying increase in the 
cover of positively affected grasses. There are indica-
tions that this is not the case at higher Prosopis cover 
were the negative impacts of the invasive trees on 
understory vegetation outweigh the positive (see Ndhlovu 
et al. 2016). Lastly, clearing increases indigenous species 
cover to above pre-invasion levels. The higher-than-usual 
indigenous species cover could be the transient legacy of 
Prosopis soil nutrient enrichment (see Ndhlovu 2011).
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Table S1: Percent contributions to Bray–Curtis compositional dissimilarity and mean percentage 

cover of different plant functional types and species in uninvaded (n = 5) vs invaded (n = 2) sites 

near Beaufort West in the Western Cape province of South Africa. Species cover refers to the cover 

of the upper layer of each plant species independent of overhanging cover of other species 

Functional type/species 
 Mean percentage cover 

% contribution to dissimilarity Uninvaded Invaded 

Non-succulent shrub    

Pentzia incana 17.52 17.80 13.40 

Lycium cinerium 6.24 4.12 4.18 

Felicia muricata 3.03 1.84 1.27 

Salsola tuberculata 2.92 1.40 1.73 

Atriplex lindleyi 2.78 0.20 1.82 

Bassia salsoloides 2.59 0.36 1.45 

Pentzia lanata 2.27 0.00 2.09 

Rosenia humilis 2.24 1.88 0.27 

Lycium prunus-spinosa 1.74 0.32 1.45 

Salsola calluna 1.41 0.68 0.73 

    

Annual grass    

Aristida adscensionis 22.05 25.20 16.45 

Chloris virgata 10.70 1.88 9.45 

Setaria verticillata 1.46 0.16 1.18 

Tragus berteronianus 0.95 0.64 0.00 

    

Perennial grass    

Cynodon dactylon 8.49 2.96 6.45 
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Table S2: Percent contributions to Bray–Curtis compositional dissimilarity and mean percentage cover 

of different plant functional types and species in invaded (n = 2) vs cleared (n = 3) sites near Beaufort 

West in the Western Cape province of South Africa. Species cover refers to the cover of the upper 

layer of each plant species independent of overhanging cover of other species 

Functional type/species 
Contribution to  

dissimilarity (%) 

Mean percentage cover 

Invaded Cleared 

Annual grass    

Aristida adscensionis 26.00 16.45 39.77 

Chloris virgata 7.39 9.45 3.85 

Setaria verticillata 2.29 1.18 1.69 

Tragus berteronianus 1.56 0.00 1.38 

    

Non-succulent shrub    

Pentzia incana 10.84 13.40 14.10 

Lycium cinerium 5.10 4.18 4.92 

Felicia muricata 4.97 1.27 5.38 

Pentzia lanata 2.27 2.09 1.08 

Lycium prunus-spinosa 2.04 1.45 1.38 

Atriplex lindleyi 1.88 1.82 0.08 

Bassia salsoloides 1.71 1.45 0.46 

Salsola tuberculata 1.69 1.73 0.15 

    

Perennial grass    

Eragrostis obtusa 8.21 0.00 7.54 

Cynodon dactylon 7.84 6.45 7.92 

Eragrostis lehmanniana 3.13 0.09 3.46 
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Table S3: Percent contributions to Bray–Curtis compositional dissimilarity and mean percentage 

cover of different plant functional types and species in uninvaded (n = 5) vs cleared (n = 3) sites 

near Beaufort West in the Western Cape province of South Africa. Species cover refers to the cover 

of the upper layer of each plant species independent of overhanging cover of other species 

Functional type/species 
Contribution to  

dissimilarity (%) 

Mean percentage cover 

Uninvaded Cleared 

Non-succulent shrub    

Pentzia incana 13.89 17.80 14.10 

Lycium cinerium 5.97 4.12 4.92 

Felicia muricata 5.79 1.84 5.38 

Rosenia humilis 2.17 1.88 0.85 

Salsola tuberculata 1.63 1.40 0.15 

Lycium prunus-spinosa 1.52 0.32 1.38 

Asparagus retrofractus 1.37 0.64 0.92 

Lycium oxycarpum 1.21 0.04 1.08 

Pentzia lanata 1.06 0.00 1.08 

    

Annual grass    

Aristida adscensionis 24.55 25.20 39.77 

Chloris virgata 3.88 1.88 3.85 

Tragus berteronianus 1.97 0.64 1.38 

Setaria verticillata 1.82 0.16 1.69 

    

Perennial grass    

Eragrostis obtusa 8.91 0.12 7.54 

Cynodon dactylon 8.41 2.96 7.92 

Eragrostis lehmanniana 3.49 0.32 3.46 

    

Annual herb    

Medicago laciniata 1.07 0.20 1.00 
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Table S4: Mean percent alien plant functional type and species cover in uninvaded (n = 5), invaded 

(n = 2) and cleared (n = 3) sites near Beaufort West in the Western Cape province of South Africa. 

Different superscript letters along the rows denote significantly different values at P ≤ 0.05 (one-way 

ANOVA via randomisation). Species cover refers to the cover of the upper layer of each plant 

species independent of overhanging cover of other species 

Functional type/species 
Mean percentage cover 

 Uninvaded Invaded 

Plant functional type   

Annual herb 0.20 ± 0.10a 0.09 ± 0.09a 

Non-succulent shrub 0.24 ± 0.11a 2.09 ± 0.46b 

   

Non-succulent shrub   

Atriplex lindleyi 0.20 ± 0.10a 1.82 ± 0.37b 

Atriplex semibaccata 0.04 ± 0.04a 0.27 ± 0.27a 

   

 Invaded Cleared 

Plant functional type   

Annual herb 0.09 ± 0.09a 1.00 ± 0.36b 

Non-succulent shrub 2.09 ± 0.46a 0.08 ± 0.08b 

   

Annual herb   

Medicago laciniata 0.09 ± 0.09a 1.00 ± 0.36b 

   

Non-succulent shrub   

Atriplex lindleyi 1.82 ± 0.37a 0.08 ± 0.08b 

Atriplex semibaccata 

 

0.27 ± 0.27a 0.00a 
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Table S5: Mean percent indigenous plant functional type cover in uninvaded (n = 5) vs invaded 

(n = 2) sites near Beaufort West in the Western Cape province of South Africa. Different superscript 

letters along the rows denote significantly different values at P ≤ 0.05 (one-way ANOVA via 

randomisation). Species cover refers to the cover of the upper layer of each plant species 

independent of overhanging cover of other species 

Plant functional type1 
Mean percentage cover 

 Uninvaded Invaded 

   

Annual grass 27.84 ± 1.92a 27.09 ± 3.67a 

Perennial  grass 4.40 ± 0.81a 6.55 ± 1.70a 

Annual herb 0.28 ± 0.10a 0.36 ± 0.21a 

Perennial herb 0.12 ± 0.07a 0.15 ± 0.27a 

Succulent shrub 0.27 ± 0.15a 0.08 ± 0.08a 

Non-succulent shrub 30.92 ± 2.76a  27.45 ± 3.06a 

   

 
1 Since all differences in mean percent cover were not statistically significant at plant functional type 

level, the analyses did not extend to species level.
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Table S6: Mean percent indigenous plant functional type and species cover in invaded (n = 2) vs 

cleared (n = 3) sites near Beaufort West in the Western Cape province of South Africa. Different 

superscript letters within each row denote significantly different values at P ≤ 0.05 (one-way ANOVA 

via randomisation). Species cover refers to the cover of the upper layer of each plant species 

independent of overhanging cover of other species 

Functional type/species 
Mean percentage cover 

 Invaded Cleared 

Plant functional type   

Annual grass 27.09 ± 3.67a 46.69 ± 4.49b 

Perennial  grass 6.55 ± 1.70a 20.31 ± 3.21b 

Annual herb 0.36 ± 0.21a 0.85 ± 0.34a 

Perennial herb 0.15 ± 0.27a 0.46 ± 0.17a 

Succulent shrub 0.08 ± 0.08a 0.08 ± 0.08a 

Non-succulent shrub 27.45 ± 3.06a 31.62 ± 2.58a 

   

Annual grass   

Aristida adscensionis 16.45 ± 2.22a 39.77 ± 4.63b 

Chloris virgata 9.45 ± 1.85a 3.85 ± 0.60b 

Tragus berteronianus 0.00a 1.38 ± 0.48b 

Setaria verticillata 1.18 ± 0.76a 1.69 ± 0.78a 

   

Perennial grass   

Eragrostis obtusa 0.00a 7.54 ± 1.72b 

Eragrostis lehmanniana 0.09 ± 0.09a 3.46 ± 1.01b 

Cynodon dactylon 6.45 ± 1.64a 7.92 ± 1.67a 

Aristida congesta 0.00a 0.46 ± 0.34a 

Fingerhuthia africana 0.00a 0.31 ± 0.18a 

Cenchrus ciliaris 0.00a 0.15 ± 0.15a 

Stipagrostis ciliata 

 

0.00a 0.08 ± 0.08a 
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Table S7: Mean percent indigenous plant functional type and species cover in uninvaded (n = 5) 

vs cleared (n = 3) sites near Beaufort West in the Western Cape province of South Africa. 

Different superscript letters along the rows denote significantly different values at P ≤ 0.05 (one-

way ANOVA via randomisation). Species cover refers to the cover of the upper layer of each 

plant species independent of overhanging cover of other species 

Functional type/species 
Mean percentage cover 

 Uninvaded Cleared 

Plant functional type   

Annual grass 27.84 ± 1.92a 46.69 ± 4.49b 

Perennial  grass 4.40 ± 0.81a 20.31 ± 3.21b 

Annual herb 0.28 ± 0.10a 0.85 ± 0.34a 

Perennial herb 0.12 ± 0.07a 0.46 ± 0.17b 

Succulent shrub 0.27 ± 0.15a 0.08 ± 0.08a 

Non-succulent shrub 30.92 ± 2.76a 31.62 ± 2.58a 

   

Annual grass   

Aristida adscensionis 25.20 ± 1.88a 39.77 ± 4.63b 

Chloris virgata 1.88 ± 0.37a 3.85 ± 0.60b 

Tragus berteronianus 0.64 ± 0.18a 1.38 ± 0.48a 

Setaria verticillata 0.16 ± 0.76a 1.69 ± 0.78b 

   

Perennial grass   

Eragrostis obtusa 0.12 ± 0.07a 7.54 ± 1.72b 

Cynodon dactylon 2.96 ± 0.81a 7.92 ± 1.67b 

Eragrostis lehmanniana 0.32 ± 0.16a 3.46 ± 1.01a 

Aristida congesta 0.00a 0.46 ± 0.34a 

Cenchrus ciliaris 0.00a 0.15 ± 0.15a 

Sporobolus iocladus 0.04 ± 0.04a 0.15 ± 0.11a 

Stipagrostis ciliata 0.28 ± 0.10a 0.08 ± 0.08a 

Sporobolus fimbriatus 0.04 ± 0.04a 0.00a 

Stipagrostis obtusa 0.24 ± 0.11a 0.23 ± 0.13a 

Fingerhuthia africana 0.32 ± 0.16a 0.31 ± 0.18a 

   

Perennial herb   

Galenia pubescens 0.00a 0.23 ± 0.13b 

Drosanthemum hispidum 0.27 ± 0.15a 0.08 ± 0.08a 

Blepharis capensis 0.00a 0.08 ± 0.08a 

Ammocharis coranica 0.00a 0.08 ± 0.08a 

 




