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1. Introduction

ABSTRACT

The Brandberg Complex represents an anorogenic ring complex of the intra-plate type emplaced during Jurassic-Cretaceous
times at a high level in the crust. At the present level of erosion the complex exhibits a number of subvolcanic, magmatic centres
which are entirely granitic in composition. Metaluminous granites and quartz-monzonitic rocks were emplaced as cone-sheets
outside the later caldera or as thick, ring-shaped sheets. Peraluminous granites occupy the central part of the complex and are fol-
lowed by peripheral peralkaline granites. All rock types associated with the Brandberg Complex carry significant mineralogical
and geochemical features of HHP, A-type granites with anomalous high levels for HFS- and LIL-elements. Several types of post-
magmatic, hydrothermal alteration processes were recognised which are similar to those associated with anorogenic complexes
in Nigeria. Depending on the initial chemical composition of the crystallising granite and its metasomatising hydrothermal
fluids, processes of potassium metasomatism, sodium metasomatism, greisen-type alteration, tourmalinisation and chloritisation
have been recognised. Cationic exchange processes led to the breakdown of the primary mineral assemblages in the granite and
the generation of hydrothermal mineral parageneses, locally associated with deposition of Zn, Sn, Nb, Y and REE ore minerals.
The spectrum of subsolidus minerals in these assemblages is characterised by the occurrence of albite (An 0.6-3.2), reddened
maximum microcline, the destabilisation of early crystallising biotite to micas of the siderophyllite-zinnwaldite series and lo-
cally concentrations of tourmaline. Fenitised granites carry hydrothermal zincian fluor-arfvedsonite and stanniferous aegirine as
newly generated minerals and occur in layered, agpaitic rock series of the Amis Complex, a mineral stratified satellite intrusion
in the southwestern periphery of Brandberg. The following types and styles of mineralisation were identified: Dispersed Nb, Ta,
REE-mineralisation; Disseminated Sn-mineralisation; Fissure and vein controlled sulphide/oxide (Zn/Sn-mineralisation). Min-
eralisation in the Brandberg Complex is generally limited to zones where post-magmatic rock-fluid interaction processes acted
long and were intense enough to allow the generation of ore minerals. Alteration zones occur in the roof zones of the complex,

along the contacts and margins of individual intrusions, and in adjacent country rock.

1. Introduction

The Brandberg Complex belongs to the Damaraland Alka-
line Province in Namibia consisting of over twenty Jurassic-
Cretaceous, anorogenic complexes of the intraplate type.
They represent high level, subvolcanic ring complexes ex-
posed in a northeast-trending zone, approximately 350 km
long and 130 km wide (Fig. 1). The complexes have intruded
into Damaran metasedimentary rocks and granites of late Pan
African age (600 - 460 Ma), Karoo sediments and volcanic
rocks. Cloos (1911, 1919, 1929) was the first to recognise
that some of the granitic complexes (Erongo, Spitzkoppie
and Brandberg) are “young granite plutons” and postulated
a Mesozoic emplacement age. The complexes are aligned
along three major, northeast -trending zones (Fig. 1), repre-
senting basement lineaments which to some extent have con-
trolled the emplacement of the ring complexes. The northern
line includes Messum, Brandberg, Okonjeje, Kwaggaspan,
Otjihorongo, Paresis and Okorusu (Fig. 1). Among these
Brandberg forms a dominant granite massif rising 2000 m
above the plains of the Namib desert, with Konigstein peak
(2573 m), the highest mountain in Namibia. The oval shaped
complex covers an area of -420 km? and has approximate
dimensions of 26 x 21 km (Fig. 2). Due to the inaccessibility
of the mountain and the lack of water only limited work has
been carried out in the past. It originally was described by
Cloos and Chudoba (1931) and Hodgson (1972, 1973), fol-
lowed by two short communications of Von Knorring (1985)
and Schlag and Willgallis (1988).

The aim of the present study was to carry out geological
mapping (sheet 2114 AB and BA, open file maps 1 :50000
-Geological Survey Windhoek, Namibia), petrological, min-
eralogical and geochemical investigations and to evaluate the
potential for oxide/sulphide mineralisation in Mesozoic alka-
line granites in Namibia.

Compared with other complexes of the Damaraland Alka-
line Province the Brandberg Massif is almost entirely com-
posed of granitic rocks. Outcrops of syenitic, gabbroic and
carbonatitic rocks, commonly associated with other alkaline
complexes of the province are not known from Brandberg.
The dominant granitic composition and the presence of hy-
drothermal alteration is comparable to Mesozoic ring com-
plexes in Nigeria which are known to contain economic po-
tential for disseminated and vein controlled Sn, Zn, Pb, Nb
and REE mineralisation.

2. Emplacement and Structural Control of the
Damaraland Alkaline Complexes

The Brandberg belongs to the group of Mesozoic alkaline
ring complexes of the Damaraland Alkaline Province (Fig. 1)
which are dominantly composed of oversaturated rock types,
in contrast to the undersaturated complexes (Etaneno), basic
complexes (Messum, Doros, Wolfsgrund), mixed acid/basic
types (Cape Cross, Paresis) and centres including carbona-
tites (Ondumakorume, Osongombe, Kalkfeld, Okorusu).
The complexes are aligned along a northeast-trending, 130
km wide and 350 km long zone which coincidences with the
dominant north-easterly strike direction of Precambrian line-
ament zones. Marsh (1973) and Prins (1981) suggested that
the northeast-striking direction of Mesozoic ring complexes
correlates with the direction of transform faults which devel-
oped during the rifting of Gondwanaland. Black ez al. (1985)
has pointed out that the distribution pattern of anorogenic,
intra-plate complexes may be linked with anorogenic mag-
matism associated with distention processes, which resulted
in rifting and the formation of ridges. In this model the com-
plexes are either aligned along the future ridge (Black et al.
1972), or along continental extensions of transform faults
(Marsh, 1973). In contrast, Bowden and Turner (1974) and
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Fig. 1: Generalised geological map of the Damaraland Alkaline Province and the distribution of Mesozoic ring complexes.

Van Breemen and Bowden (1973) have interpreted the linear
nature of the Niger-Nigeria line of complexes, and the fact
that the emplacement ages for these complexes are getting
younger towards the coast, in terms of a northward moving
African plate over a stationary mantle plume (“hot spot”).
Giret and Lameyre (1985) pointed out that it is generally ac-
cepted that continental rifting starts with an uplift which is
followed by alkaline magmatic activity and postulated that
uplift and alkaline magmatism is controlled by a system of
“lithospheric shear openings” (mega-gashes) and not by a
rising mantle plume (Giret et Lameyre, 1985).
Northeast-trending zones of crustal weakness, along which
the complexes are aligned, date back to early Pre-Damaran
times at a stage of initial graben formation. Reactivation of
these lineaments has occurred at several stages in the history
of the Damara Orogen and the latest activity is believed to
be associated with the break-up of Gondwanaland, which in

the southern part of the province resulted in the reactivation
of the Cape Cross - Uis graben (Northern Tin Belt) imme-
diately south of Brandberg and Messum (Diehl, 1986). The
Brandberg complex is sited at the northern shoulder of this
old half-graben system and mainly has intruded into post-
tectonic, orogenic two-mica granite of late Pan African age
and overlaying Permian-Jurassic sediments and volcanics.
In addition to these old basement lineaments which mainly
have controlled the emplacement of the ring complexes, a
number of Mesozoic, northwest-southeast and north-south
striking faults have been recognised in the south-western
portion of the province (Dichl, 1986). Prins (1981) has inter-
preted the north-south trending lineaments as a series of up
and downwarps, parallel to the coastline during early open-
ing of the Atlantic Ocean. On the other hand, it is obvious
that the northwest-southeast direction, parallel to the recent
coastline has to some extent contributed to the emplacement
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Fig. 2 Sutellite image of the Brandberg Complex (Produced and permission for publication granted by the Satellite

Application Centre, MIKOMTEK, CSIR},

mechanism (Cloos and Chudoba, 1931, p. 60). Early quartz-
monzonitic centres towards the north of the Brandberg Com-
plex are aligned along this trend (Fig. 5).

3. Age of the Damaraland Complexes

Limited isotopic investigations have been carried out but the
K/Ar isotope work of Siedner and Miller (1968) and Siedner
and Mitchell (1976) indicates a range in ages for Okonjeje
(164 Ma, gabbro), Paresis (136 Ma, basalt), Doros (125 Ma,
gabbro) and Messum (123 Ma, basalt). Burger et al. (1965)
reported a K/Ar-age for a biotite (190 18) Ma from a vug in
Klein Spitskop granite containing aquamarine.

If comprehensive isotopic dating should proof that emplace-
ment ages of the complexes are getting younger towards the
coast, like in Nigeria (Bowden et al. 1976), which would fit
the “hot spot” model of Bowden and Karche (1984) proposed
for the Niger-Nigeria Anorogenic Province, it would cast some
doubt on the alternative “transform fault” model of Marsh
(1973) and Prins (1981).

4. Geological setting and magmatic evolution
4.1 General

The Brandberg ring complex represents an eroded, conti-
nental volcano emplaced into late Precambrian granites and
metasedimentary rocks of the Damara Sequence, unconform-
ably overlain by sediments and volcanics of the Karoo Se-
quence (Fig. 3). Along the southern and western margins of the

complex remnants of the Karoo strata consisting of hornfelsed
mud- and siltstones of the Prince Albert Formation and con-
glomerates of the Hungurob Formation are affected by contact
metamorphism and to a lesser extent by contact metasoma-
tism. The sediments are conformably overlain by basaltic lava
flows and ignimbritic quartz latites forming a dark-coloured
peripheral rim. Sediments and volcanics generally dip 2-50
towards the complex with a sudden increase to 2-500 in the
vicinity of the contact (Fig. 4).

Pelitic metasediments of the Amis River Formation (up-
per Khomas Group, Damara Sequence) composed of biotite-
schist, calc silicate and quartzite occur along the north-western
and western margins (Figs 2 and 3). The country rock to the
north, east and south of Brandberg consists of syn- to post-tec-
tonic granites which dominantly have intruded at the close of
the Pan African event about 500 Ma ago.

4.2 Magmatic evolution

The Brandberg is believed to have a magmatic evolution
similar to that of other granitic alkaline ring complexes de-
scribed by Lameyre and Bonin (1985) and Bowden (1985).
The formation of the Brandberg Alkaline Complex classi-
cally began with initial doming of the crust which resulted in
the formation of cone fractures and was followed by the em-
placement of cone sheets and dykes. Earliest volcanic activity
presumably started with predominantly pyroclastic products
and flows of rhyo-dacitic composition. According to Bonin’s
(1982) emplacement model for alkaline ring complexes, the
pre-caldera stage of a complex is followed by the volcanic
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3. Age of the Damaraland Complexes

Fig. 4 Karoo sediments (sed) and volcanics (vol) dipping fo-
witrds the comiplex {Numas Kavine), Note the mcrease indip
i the vicinity of the breccia zone (br) associated with coul-

dron subsidence along the mayor caldera fault.

stage which generally initiates violently with eruptions of
pyroclastic material and ignimbrites (Bonin, 1982 ; Bowden
1985). The emptying of the magma chamber resulted in sur-
face cauldron subsidence and the extrusion of intra caldera
ignimbrite flows (caldera-stage). At the plutonic stage, gra-
nitic magma was channelled upwards and emplaced as thick
sheets at higher levels. This stage was followed by succes-
sive subsidence and intrusion of the next granitic magma
pulse from the same magma chamber. Renewal of doming
resulted in the formation of a new centre expressed by early
cone sheets of monzonitic or monzo-granitic composition
and ended with the emplacement of a central dome or plug-
like intrusion. The emplacement of alkaline granites was fol-
lowed by a peripheral intrusion of a laccolithic, perfectly lay-
ered, peralkaline granite and associated dykes. Finally, late
radial fractures were filled by olivine- and quartz-dolerites.

4.3 Magmatic centres

In the Brandberg Complex eight major cycles of subvol-
canic/magmatic activity are recognised which are expressed
by magmatic centres.

The pre-caldera stage with the formation of circular dykes
outside the later caldera is represented by three subvolcanic
centres (1A, 1B, 1C, Fig. 5). They occur towards the north-
east of the massif as distinctive cone sheets which have been
largely obliterated by post-caldera intrusions (Fig. 3). The
individual sheets dip 30-50° towards their centre and consist
of porphyritic quartz monzonite partly transitional to monzo-
granite porphyry and have intruded into Pan African granite.
The quartz monzonite porphyries are believed to represent
subvolcanic equivalents of quartz-latitic ignimbrite (rhyo-
dacite) flows initiating the early volcanic, pre-caldera stage
of the Brandberg Complex.

Sinking of the updomed area and subsequent updoming led
to the development of a master caldera fault (2 in Fig. 5)
which resulted in the formation of surface cauldron subsid-
ence. Intensive brecciation associated with the master caldera
fault is most intense in the southern and eastern part, but ab-
sent along the north-eastern contact with Pan African granite.
Due to the level of erosion, the intra-caldera volcanic stage

Fig. 5: Evolution of subvolcanic and magmatic centres commen-
cing with the emplacement of quartz monzonitic rocks of the
pre-caldera stage (centres 1A, B, C) and subsequent caldera
formation (2), followed by granitic centres (3-6) of the plu-
tonic stage and a later circular centre (7) of quants monzonitic
rocks, Centre 8 dominantly consists of agpaitic granites and
metasomatites.

is not preserved at Brandberg but indicated by the presence
of ignimbrite feeder-dykes.

The system entered the plutonic stage with the emplace-
ment of acid magma as a cupola sheet underlying the vol-
canics. Centre 3A (Fig. 5) started with the intrusion of hy-
persolvus fayalite-hedenbergite granite preserved as outer
ring-dyke towards the east and west of the complex. The
hypersolvus stage was followed by the intrusion of the eden-
ite-augite granite ring-dyke (3B). Caused by updoming and
subsequent subsidence, the granites were emplaced as volu-
minous ring-shaped sheets of slightly different composition,
texture and grain size. The next evolutionary stage in the his-
tory of the complex is expressed in the generation of centre
4. Magmatic activity started again with the formation of cone
fractures which are partly occupied by dykes of hypersolvus
fayalite-hedenbergite granite and followed subsequently by
the emplacement of horizontal sheets of hornblende-biotite
granite and a hornblende-biotite granite ring dyke (Fig. 2).
The next magmatic cycle (centre 5) initiated with the devel-
opment of ring fractures in the central part of the complex
and the intrusion of cupola-like sheets of originally horn-
blende-bearing biotite granite which have been transformed
to biotite granite under the influence of late-stage fluidising
processes.

The cupola sheets of slightly peraluminous granite are in-
truded by stocks of peraluminous biotite granite in the central
areas of the complex (centre 6).

A circular stock of alkali quartz monzonite in the Naib Ra-
vine (centre 7) possibly marks the beginning of a new vol-
canic stage in the history of the complex.

A perfectly layered, laccolithic body (centre 8), intrusive
into alkali granite and country rock occurs in the Amis Valley
towards the south-western periphery of the massif. It is com-
posed of a perfectly layered series of predominantly peral-
kaline arfvedsonite- and aegirine-arfvedsonite granites with
subordinated alkali granite layers. In the vicinity of the Amis
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Complex the granites and country rock are highly altered to
peralkaline metasomatites displaying the characteristic fea-
tures of fenite, often found in carbonatite complexes.

Towards the east of the Brandberg massif a ring fracture,
13.5 km in diameter and clearly visible on the landsat image
(Fig. 2), overlaps the complex (9).

5. Petrography and mineralogy of the principal
rock types

5.1 Quartz-monzonitic rocks

5.1.1 Quartz monzonite porphyry
The quartz monzonite porphyries of the pre-caldera stage
occur towards the north and northeast of the massif (Fig. 6).
The cone sheets have intruded into late Pan African granite
and vary in thickness from 1.5-45 m and dip at angles be-

Fig. 6z Cone sheets of guanz momeonitic composition. nonheast
of the Brandberg massif, partly obliternted by post caldera
sluge grumiles

tween 30 - 50° towards their centre. The smaller centres (1A
and 1B in Fig. 5) are up to 4 km in diameter and consist of a
single 4 - 6 m wide, bluish-grey, fine grained dyke of quartz
monzonite porphyry, often irregular and discontinuous along
a cone fracture (Fig. 3).

The Gomatsarab centre (1C in Fig. 5) occurs towards the
northeast of the massif and is 50 per cent obliterated by later
post-caldera intrusions (Fig. 3). The outermost of five single
cone sheets is up to 45 m thick and consists of dark grey, fine
to medium grained, porphyritic quartz monzonite transitional
towards monzo-granite. Petrographically the rock is com-
posed of glomerophyric aggregates of strongly zoned phen-
ocrysts of andesine, (Figs 7 and 8) andesine-labradorite and
oligoclase phenocrysts, up to 3 cm in length, together with
phenocrystic hornblende of edenitic composition, rimmed
by ferro-actinolite, often with a ferro-hedenbergite core. The
groundmass consists of granophyric intergrown quartz and
alkali feldspar, biotite, partly replaced by chlorite, and oc-
casionally tiny flakes of brown hornblende. Apatite is a com-
mon accessory together with minor zircon and magnetite. To-
wards their centre the individual cone sheets are thinner (3-6

Fig: T: Photomicrograph of altered, porphvaritic guanz monzoniie
(magmication x 20, XPL)  Glomerophyric aggregate ol
oligociase-andesine (Anzsay) (olig) ond sctinolitic horn
blende (ac) n a granophync quartefalkal leldspar matny

m wide) and exhibit some textural and mineralogical changes
caused by devitrification processes.

Some of the dykes contain phenocrysts of oligoclase and
andesine-labradorite and decomposed clinopyroxene which
is partly replaced by ferro-actinolite and aggregates of bi-
otite, set in a devitrified, spherulitic matrix. The spherulites
consist of fibrous, radially arranged K -feldspar crystals and
extremely fine, fibrous needles, probably of pyroxene and
magnetite, forming curved and radiating needles, resembling
spinifex texture. The matrix between the spherulites is com-
posed of quartz, alkali feldspar and biotite.

A medium grained, greyish-red, porphyritic hornblende-
biotite monzogranite forms the innermost cone sheet. Highly
embayed and resorbed plagioclase phenocrysts, occasionally
up to 5 cm in length, range in composition from andesine
to oligoclase. Reverse zoning is prevalent in the larger crys-
tals. The mafic assemblage invariably include phenocrystic
or poikilitic, edenitic hornblende and biotite partly replaced
by chlorite. The groundmass is felsic, chiefly composed of
quartz and turbid K-feldspar. Accessory minerals in addition
to the usual apatite, are iron oxides and calcite.

The pre-caldera stage quartz monzonite porphyries com-
prise a general trend from quartz monzonitic at the periphery
(SiO, ~65 wt per cent) transitional to monzogra—nite (SiOF
68-70 wt per cent) towards the centre. Based on mineralogi-
cal and geochemical data, the porphyries are interpreted as
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Fig 8: Photomicrograph of porphyveitic quarty monzonite (mag-
mification 1 20, XPL). Loned mndesme-olipoolnse (olig) ma
granophyric quorz/alicali feldspar matnx,

subvolcanic equivalents of quartz latitic flows which form
the remnant roof rocks of the Brandberg massif.

Quartz-monzonitic rocks generally occupy early cone frac-
tures which have been developed at the pre-caldera volcanic
stage of the Brandberg Complex. So far, the Gomatsarab,
Nuwuarib and Umoab quartz monzonites are the only known
occurrences of subvolcanic rocks which show compositional
similarities with ignimbritic quartz-latite flows of the Etend-
eka Formation described by Milner (1988). It can be specu-
lated that at least some of the Etendeka quartz-latite flows,
northwest of the Brandberg Complex are associated with
pre-caldera and caldera-stage volcanism in connection with
intra-plate, Mesozoic alkaline ring complexes of the Dama-
raland Province.

5.1.2 Quartz Monzonite

A 2,5 km wide, circular centre, entirely composed of al-
kali quartz monzonite occurs in the Naib Ravine towards the
west of the complex and has intruded into edenite-augite and
hornblende- biotite granite (Fig. 3). The melanocratic rock
is medium grained with finer grained margins and consists
of plagioclase, alkali feldspar, hornblende, pyroxene, biotite
and quartz. Perfectly zoned plagioclases ranging from andes-
ine to oligoclase occur together with K-feldspar of a compo-

Fig: 9:

Cetre st X

Photomien Eruphn of quartg maneonine fodm the Nilb
+. AFL)

alkal leldspir (k1sp), quarkz (ge), pyr
ferTiy

Rhombic aligoglase (ofig

VAT re-

CPxh ety

placed by actimolie amd magnoetiie (m

Fig. 10: Photomicrograph of quart: monzomite from the Naib
centre (magnification x 20, XPL). Plagioclise (plag), alkali
feldspar (kfspl, diopsidic hedenbergite (hd) and magnetite

{mJ.

sitional range from orthoclase-perthite to microcline-perthite
(Fig. 9).

Both feldspars show a rhombic shape resembling that of
phenocrysts in equivalent effusive quartz latites from the
top of Brandberg. Relatively fresh pyroxene of the diopsite-
hedenbergite series, rimmed by ferro-actinolite occurs in
patches together with iron ore, apatite and biotite which re-
places a greenish-brown, highly altered hornblende (Fig. 10).
The feldspars are typically myrmekitic overgrown from the
rim towards the core. Patches of granophyric and wormlike
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intergrown quartz and alkali feldspar occasionally contain
quartz phenocrysts. Apatite is an abundant accessory reach-
ing concentrations up to 1.5 wt per cent.

The Naib quartz monzonite was formed at a relatively late
stage in the history of the Brandberg Complex and possibly
marks the beginning of a new volcanic period which presum-
ably commenced with the eruption of chemical equivalent
quartz-latitic material.

5.2 Granite

5.2.1 Introduction

Alkali granite is the most abundant and characteristic
rock type of the Brandberg Complex previously described
as a “homogeneous, main mass of undifferentiated granite”
(Hodgson, 1973). Ninety per cent of the massif is formed by
ring-shaped and sheet-like intrusions of fayalite- hedenber-
gite granite, hornblende-pyroxene granite, hornblende biotite
granite and biotite granite. They comprise a series of alkali
granites with variable texture, mineralogy, chemical compo-
sition and differences in the proportions and composition of
their amphiboles and micas. Perthitic alkali feldspars gen-
erally dominate over plagioclase. All categories of Shand’s
classification have been recognised including peraluminous,
metaluminous and peralkaline alkali granites (see Fig. 35).
The peraluminous types are characterised by the presence of
mica, topaz and/or tourmaline. Metaluminous granites typi-
cally contain hornblende/clinopyroxene assemblages where-
as in peralkaline granites sodic amphibole (arfvedsonite),
sodic pyroxene (aegirine) and zirconium- and titanium sili-
cate minerals are dominant.

Using the nomenclature of Bonin (1982), based on the
classification of Tuttle and Bowen (1958), the granites can be
subdivided into three main groups according to the content
and composition of their feldspars:

hypersolvus granite (one feldspar)

metaluminous (fayalite, pyroxene)
hyperaluminous (biotite)

subsolvus granite (two feldspars)

hyperaluminous (biotite)
hyperalkaline (arfvedsonite, aegirine)
transolvus granite (ternary feldspar, sodic plus
potassium feldspar)
hyperaluminous (biotite)

5.2.2 Fayalite hedenbergite granite

Fayalite bearing granite outcrops towards the southeast and
west of the massif as remnants of an early outermost ring in-
trusion and occurs as ring dykes around the biotite bearing
granites of the central area (Fig. 3). Enclaves of fayalite bear-
ing granite were recognised in hornblende-pyroxene granite
along the northern contact zone of the complex. When rela-
tively fresh, fayalite granite has a distinct bluish-green colour
and weathers brownish-black, in contrast to the more reddish-
yellow weathering biotite granites. The fayalite granites are
characterised by their typical granophyric texture and their
metaluminous nature. Quartz and alkali feldspar show radiate
intergrowths about oligoclase. In equigranular types orthocla-
se crystals are up to 1 cm long and commonly overgrown by
bluish-green, micro-perthitic alkali feldspar. The composition
of clino-pyroxene is variable from grey, augitic cores to sodic
or ferro-hedenbergitic rims of yellowish to green colour. Fay-
alite crystals are heavily fragmented and altered to yellowish-
red iddingsite (Fig. 11). In highly altered types the original

Fig. 11: Phoomicrograph of equigranular fayvalite-hedenbergite granite (magnification 141, PPL). Diopsitic
augite (cpx) nmmed by sodic hedenbergite (hd), fayvalite phenocryst (fay), alkali feldspar (kfsp) and
magnetie (m)
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Fig, 12:
wenthering material towards the left side of photograph),

Ring dyke of fuvalite-hedenbergite porphyry (dark

upper Tsisab Ravine/Basswaldrinpe,

fayalite is partly replaced by greenish-brown ferro-edenite/
ferro-actinolite aggregates occasionally with small flakes of
biotite. The conversion of the mafic mineral assemblages to
amphibole under subsolidus conditions is most intense in ar-
eas where the fayalite granites have been subjected to late-
stage metasomatic processes, indicated by the presence of
abundant fluorite (up to 0.2 wt per cent).

A yellowish-brown, fine to medium grained, highly altered
hornblende alkali granite occurs as a ring dyke in the upper
Tsisab Ravine (Figs 3 and 12) and has intruded between the
ferroedenite biotite granite and the central biotite granite. It
consists of euhedral quartz, turbid microcline, microcline-
perthite, perthite, orthoclase and plagioclase. Aggregates of
edenitic hornblende occasionally preserve a highly altered
core of fayalite which is decomposed to a yellowish red, iso-
tropic, earthy mass surrounded by fine grained aggregates of
aegirine-augite, clustered biotite and magnetite. Secondary,
green, ferroedenitic hornblende has replaced pyroxene which
often forms the turbid core of edenite crystals. Remnants of
iddingsite pseudomorph after fayalite, are partly replaced
by magnetite and rimmed by aegirine-augite, which itself
is occasionally replaced by ferro-actinolite, giving the rock
a slightly peralkaline character. Accessory minerals include
fluorite, apatite, zircon, monazite, chevkinite, calcite and
haematite. In general it can be stated that fayalite-hedenber-
gite granites have been intensely altered by post-magmatic
fluids, rich in alkalis, which have modified the original min-
eralogical composition. Similar fayalite bearing granites and
alterations are described from Nigeria (Bowden and Kin-
naird, 1984).

5.2.3 Hornblende bearing granites

5.2.3.1 Introduction

The group of alkaline granites containing hornblende is
the most abundant type of granite forming 60 per cent of the
Brandberg Complex. They occur as ring dykes and sheet-like
intrusions which form the outer rings of the massif (Fig. 13).
The hornblende bearing granites comprise a variety of mag-
matic and subsolidus mineralogical changes expressed in
compositional changes of the amphibole and biotite and can

I"lﬂ 1.3: View powards the westem side of the HFZITIL'JI'II.'T'T' show ng
Karoo sediments and volcanies (foreground ), the breccia zone
along the outer calders fault (br), fayalite granite of the firs
ring intrusion (fay gr)and homblende granite (hb] gr) m the
back ground

be subdivided into ferroedenite-pyroxene granites and fer-
roedenite-biotite granites. Post-magmatic alteration process-
es locally have transferred clinopyroxene into biotite bearing
types. Often it is difficult to distinguish transitional types in
the field.

5.2.3.2 Ferroedenite augite granite

The hornblende-clinopyroxene granites of the Brandberg
Complex comprise a series of subparallel sheets of metalu-
minous hornblende-pyroxene granite previously described as
“main granite” (Hodgson, 1973) or as “Kerngranit” = core
granite (Cloos and Chudoba, 1931).

In the northern part of the complex where fayalite-heden-
bergite granite is absent or only occurs as enclaves, ferroeden-
ite-augite granite forms the outermost ring-intrusion. The
individual sheets of ferroedenite-pyroxene granite are fine
to medium grained. When relatively unaltered, the granite is
greyish-green in color with reddish-brown weathering crusts
and is composed of greenish feldspar, green hornblende-
ferroaugite aggregates, quartz and biotite. Anhedral, green
hornblende of ferro-edenitic composition replaces pyroxene
of the diopsite-hedenbergite series, which forms the highly
altered core of the aggregates (Fig. 14). The hornblende it-
self is partly replaced by fine aggregates of ferro-actinolite
and occasionally by yellowish-green, pleochroic biotite of
annitic composition. Turbid feldspars are composed of or-
thoclase, microcline-perthite, perthite and zoned plagioclase.
Myrmekitic intergrowth of quartz and alkali feldspar is com-
mon and frequently grano-phyric patches have been recog-
nised. Interstitial quartz and small laths of euhedral albite
form the latest components accompanied by rare tourmaline
microlites between quartz crystals. Other accessory minerals
include locally abundant sphene, zircon, allanite, monazite,
fluorite and haematite.

5.2.3.3 Ferroedenite-biotite granite

The next concentric ring intrusion towards the centre of the
complex is composed of sheets of peraluminous hornblende-
biotite granite. Ferroedenite-biotite granites from Brandberg
show variable textures from equigranular to granophyric
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of augitic clinopyroxene (cpx) surroundesd by furbid

rcrdling mncroperthite (mic), (mogmfication x 240, XPI

and comprise some characteristic sub solidus mineralogical
changes. The rock is reddish-grey in colour and, depending
on the thickness of the individual sheets, is fine to medium
grained.

The spectrum of ferromagnesian minerals includes green-
ish-brown, poikilitic ferroedenite which is often replaced by
aggregates of greenish-brown, annitic biotite and magnetite.
Big flakes of dark-brown, strongly pleochroic biotite of an-
nitic composition are rimmed by light-green to colourless
siderophyllite. Equigranular types contain feldspars includ-
ing orthoclase, turbid microperthite, microcline-perthite and
plagioclase. Quartz crystals are unaltered, anhedral, intersti-
tial and contain needles of rutile in the neighbourhood of al-
tered biotite. Accessory minerals always present in the rock
include magnetite, apatite, zircon and monazite.

Deuterically altered types, lacking hornblende, occur to-
wards the contacts of the sheets additionally containing
fluorite, allanite, epidote, chlorite, rare tourmaline and oc-
casionally topaz. Individual sheets of hornblende biotite
granite often grade into micrographic and granophyric vari-
ants (Fig. 15). Intergrowth of quartz and alkali feldspar is
dominantly of the micrographic type but radial arrangements
around plagioclase are not uncommon. Granophyric patches
and micrographic, sheet-like types are highly altered and oc-
casionally mineralised containing chloride, epidote, fluorite,
tourmaline, topaz and locally small grains of light coloured,
non-pleochroic cassiterite. Metasomatised granites of this
type show a characteristic, pinkish-red colour caused by tiny
inclusions of haematite in alkali feldspar of the composition-
al range from microcline - perthite to maximum microcline.

Fig. 15: Photomicrograph of grasophyric homblende biotile
granite (magnificaton x 41, XPL), consisting of granophiyTic
intergrown quarz (g and turbid perthiite and microcline
micropenhite (kfsp) partly replaced by -albye (alb), plagio-

chase (plag b and a large Rake of anmitic biohie (h)

The facies occurs more or less irregularly along the contact
between the ferroedenite-biotite granite and the biotite gran-
ites. Fine grained, marginal zones of some of the sheets show
the greatest effect of subsolidus alteration and in places grade
into biotite granites with locally relict hornblende. The Nu-
mas Ravine ring-dyke is medium to coarse grained mainly
consisting of plagioclase, orthoclase and micro-perthite. The
dominant mafic mineral is a yellowish-red biotite randomly
replacing edenitic hornblende. Towards the finer grained
chilled margins the hornblende is replaced by deep-green ae-
girine-augite and the rock contains patches of granophyric
intergrown quartz and perthite. In addition to zircon, ilmenite
and rutile, fluorite is the most common accessory.

5.2.4 Biotite granite

5.2.4.1 General

Peraluminous biotite granites occur as cupola sheets and
circular plutons in the central part of the massif or as ring
dykes between the ferroedenite-pyroxene and ferroedenite-
biotite granites of the outer ring intrusions (Fig. 3). Similar to
the hornblende granites they comprise a variety of subsolidus
alterations and textures, ranging from fine grained, porphy-
ritic to coarse grained, equigranular, and are greyish, reddish
pink, flesh red or white in colour.
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Fig. 16: Photomocrogrph of imterstatiad chevkimite {ches
(o) and urbid afkali feldspar (kfsp) in transolvus biotine
granite (magnification x 43, XPL 4+ helplense)

. qu L

5.2.4.2 Transolvus biotite granite

Pinkish-red, fine grained transolvus biotite granite oc-
curs along the contact with the hornblende biotite granite in
a zone, up to 150 m wide. Transolvus types contain albite,
turbid orthoclase, mesoperthite, microcline-perthite and ir-
regular shaped quartz, often interstitial to feldspar. Ragged
crystals of biotite compositionally range from Ti/Mg-rich,
annitic biotite to yellowish-green siderophyllite. Remnants
of a former amphibole are replaced by haematite. Chlorite
locally forms aggregates together with irregular crystals of
sphene. Locally abundant zircon and chevkinite, gadolinite,
monazite and rare baddelyite are characteristic accessory
minerals in the transolvus biotite granites (Fig. 16).

5.2.4.3 Subsolvus biotite granites

5.2.4.3.1 Central biotite-hornblende granite

The central subsolidus biotite-hornblende granite is medi-
um grained, greyish-pink in colour and contains dark-brown
to red, clustered annitic biotite often rimmed by greenish-
brown annite. Depending on the intensity of metasomatic
processes in the cupola, hornblende may only be present as
relicts. Unaffected portions of the intrusion indicate that the
primary rock was originally composed of hornblende-biotite
granite which has been deuterically transformed into biotite
granite and albite granite by intense rock-fluid interaction
processes. The feldspars consist of greenish-grey perthite,
orthoclase and albite. Accessories include zircon, forming
radioactive halos in biotite, iron ore, fluorite, allanite and
monazite.

5.2.4.3.2 Bushman Valley biotite granite

The Bushman Valley subsolidus biotite granite (Fig. 2)
forms a stock-like plug with outward dipping contacts and
has intruded into the central cupola sheets of subsolidus horn-
blende-biotite granite. The medium to coarse grained granite
is greenish-red in colour and consists of quartz, greenish-grey
orthoclase to albite-orthoclase, flesh-red, turbid, intermedi-
ate to maximum microcline and biotite. The biotite is either
partly replaced by iron ore and has reddish brown, Ti-rich
cores rimmed by greenish-brown siderophyllite or is entirely
replaced by colourless mica (Fig. 17).

Fig. 17: Photomicrograph of the Buschmin Yalley biotite grani
(magnification s 4 1, XPL). Remnant, armitic biotite (b panly
replaced by siderophvilite (sid) and colorless rnnwalditic

mich (i}, alkah feldspor (kfsp) ond quanz (qz).

Argillic alteration often led to the breakdown of the feld-
spars and the formation of clay minerals and sericite accom-
panied by the breakdown of biotite to chlorite-haematite
aggregates. Enclaves of fine grained biotite granite (chilled
margin) and hornblende granite, up to 1 m in diameter, have
been observed along the contact.

5.2.4.4 Microclinised biotite granite

Potassic altered, peraluminous biotite granite is found in
the central cupola and along contacts between the central
biotite granite and hornblende bearing biotite granite. The
irregularly distributed zones of altered biotite granite are
characterised by a flesh-red colour and contain turbid micro-
cline-perthite, red microcline, albite and greenish-brown to
colourless, pleochroic mica. Fine disseminated cassiterite,
with associated topaz, chlorite and more rarely tourmaline
and turbid microperthite partly replaced by mica, may oc-
cur along fractures and in miarolitic, potassium-feldspar rich
zones (Fig. 18). Vugs are either filled by quartz or contain
euhedral crystals of microcline together with quartz, light
coloured mica and occasionally topaz. Accessory minerals
include zircon, monazite, haematite and locally abundant
fluorite.
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Fig. 18: Microclinised, vuggy hiotite graniie from the cental
cupota with fine disseminated cassiterite muneralisation
{cass), chlorite (chl). quarnz (gz) and reddened microcline
{rmiz).

E

-
ot -

Fig. 19: Photomicrograph of tlbite-rich biotite granite from the
central ring-dyke (magnification x 41, XPL) Quanz (gz),
alkali feldspar (kisp) partly reploced by albite (alb) amd co
lourless, sinmwaldine mici (2),

5.2.4.5 Albitised biotite granite

Fine grained, greyish-white albite-rich biotite granite oc-
curs as irregular bodies in the cupola, as ring dykes in the
central biotite granite and between the hornblende bearing
granites (Fig. 3). Textural variations ranging from sugary
and equigranular to granophyric may occur in a single intru-
sion. Albitised biotite granite is mainly composed of quartz,
turbid perthite to microcline-perthite and euhedral laths of
albite, often enclosing anhedral quartz and alkali feldspar, or

replacing perthite. Both, granophyric and radiate intergrowth
of quartz and alkali feldspar is a common feature.

Biotite is the dominant ferromagnesian mineral and has
dark brown cores rimmed by yellowish-green, secondary
mica. Micaceous aggregates occur together with abundant
fluorite (locally up to 1 wt per cent). Increasing rock-fluid
interaction locally has resulted in the complete replacement
of alkali feldspar and biotite to produce zinnwaldite- albite-
rich rocks (Fig. 19). Leucocratic, peraluminous aplogranites
in Brandberg do not contain any columbite mineralisation
which is reported from Nigerian counterparts (Bowden and
Kinnaird, 1984).

5.2.4.6 Tourmalinised biotite granite

Albitised biotite granite of the Hungurob ring-dyke locally
carry abundant tourmaline specks and nodules ranging from
0.5 to 12 cm in diameter (Fig. 20). They consist of bluish-
black, interstitial schorl with characteristic bluish-green ple-

Fig: 20: Tourmaline nodule in albitised granite from the Hungu
rob rimg-dyke with the characteristic white halo.

ochroism, quartz, alkali feldspar, plagioclase, fluorite minor
topaz, greenish-brown siderophyllite partly replaced by tour-
maline and accessory monazite and zircon. The feldspars are
composed of microcline-perthite, orthoclase and euhedral
albite. Development of white halos around the tourmaline
nodules is a common feature (Fig. 20). The light coloured
zones are lacking ferromagnesian minerals but otherwise
show the same mineralogy as the host. (Detailed descriptions
and genetic implications are given in chapter 8.5 on boron
metasomatism). It is interesting to note that similar tourma-
line nodules have been reported from the Erongo Complex
Haughton ef al. (1939).

A quartz-rich, tourmalinised zone in the Katarakt area
(Fig. 3) is well developed along a ring fracture in potassium
altered, red biotite granite. Feldspar and mafics are almost
completely replaced by radial arranged tourmaline suns, up
to 0.5 cm in diameter, similar to those known from luxul-
lianites (Lister, 1978). The tourmaline is strongly pleochroic
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Fig. 21: Phowmicrograph of tourmalinised gramite (luxulliznite)
from the Katarakt (magnification x 8, XPL). Rosemes of
tourmaling (tm) and quartz {gz)

from deep blue through yellowish-green to pale violet, show-
ing typical extinction crosses which are caused by strong col-
our absorption parallel to the c-axis. Tourmaline has also re-
placed graphic intergrown alkali feldspar of the matrix which
locally has produced a “graphic intergrown quartz-tourma-
line rock” (Fig. 21). Beside accessory zircon and intensely
reddened relicts of feldspar, quartz has recrystallised and
contains primary and secondary fluid inclusions.

Perfect, deep bluish to black tourmaline rosettes occur
along fractures in potassium altered biotite granite in the
Bushman Valley. The granite is composed of quartz, turbid
alkali feldspar, partly replaced by micaceous aggregates of
yellowish-green siderophyllite, topaz and fluorite. Radial
growing, deep blue tourmaline replaces alkali feldspar and
siderophyllite (Fig. 22).

2.5 Arfvedsonite-aegirine granite

Peralkaline granitic rocks dominantly occur as marginal
intrusions in the south-western and western parts of the mas-
sif intrusive into country rock, the marginal breccia zone and
hornblende granite.

The Amis Layered Complex (see chapter 9) forms the
volumetrically largest occurrence of peralkaline rocks in the
south-western periphery of the massif (Fig. 3). The gran-
ites are characterised by Na-Fe silicates like arfvedsonite,
aegirine and astrophyllite, accompanied by microcline, mi-
crocline-perthite, albite and quartz. The accessory mineral
assemblage includes pyrochlore, zircon, cryolite, colorless
mica and REE-minerals. The peralkaline rocks exhibit a wide
range in colour, texture and chemical composition caused by
intense rock-fluid interaction processes under hydrothermal
conditions. (Geological and petrological descriptions of the
Amis Layered Complex are given in chapter 9).

5.2.6 Dyke rocks

5.2.6.1 Fayalite hedenbergite porphyry
The occurrence of fayalite-hedenbergite porphyry seems
to be restricted to the upper Hungurob Ravine although boul-

Fig. 22: Photomicrograph of radial growing tourmaline (i),
quarnz (qz), alkali feldspar (kfsp) and siderophyilite (sid) in
altered biotite granite, Bushman Valley (magnification x 48,
FPL)

ders of this rock type have been found in the upper Tsisab
Ravine.

In outcrop the greenish-blue, fine grained rock forms 20-30
cm wide dykes in ferroedenite-augite granite. The primary
mineral assemblage includes phenocrysts of red fayalite,
hedenbergitic clinopyroxene, orthoclase, microperthite and
zoned oligoclase-andesine in a quartzo-feldspathic matrix.
Mineralogical changes under subsolidus conditions led to
development of annitic biotite and deep-green ferro-actino-
lite overgrowing hedenbergitic pyroxene. In places of intense
rock-fluid interaction fayalite is fragmented and altered to id-
dingsite whereas primary hedenbergite is entirely replaced
by actinolitic hornblende witch itself is overgrown by ferro-
richterite (Fig. 23). Accessory minerals include Fe- Ti ox-
ides, monazite, zircon and apatite.

5.2.6.2 Granite porphyry

In the Hungurob Ravine, dark-grey dykes of granite por-
phyry, up to 1 m wide and 200 m long, have intruded into fer-
roedenite-biotite granite. The porphyry contains phenocrysts
of corroded quartz and perthite, set in a quartzo-feldspathic
groundmass with late crystallising, annitic biotite. The matrix
shows patches of granophyric or myrmekitic quartz/feldspar
intergrowths. Zircon, fluorite and magnetite are accessories.
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5. Petrography and mineralogy of the principal rock types

Fig. 23: Photomicrograph of favalite-ledenbergite porphyvry,
upper Hungurob Ravine (magnification x 41, PPLYL.  Frog-
mented, vellowish-red wddingsie (id). hedenbergine pheno-
eryst (hd ) mmmed by green actinelite (acy and magretite (m),
set in & guartzo-feldspathic matnx

A negative weathering, pink granite porphyry has intruded
into ferroedenite-biotite granite in the Tsisab Ravine. The
north-northeast-striking dyke is 4-6 m wide, consisting of
flesh-red alkali feldspar, up to I cm in size, rounded, deeply
embayed, subhedral quartz and highly altered plagioclase in
a light pink coloured, granophyric intergrown quartz/alkali
feldspar matrix. Perthite and microcline-perthite are rounded
and enveloped by granophyric intergrown reaction rims (Fig.
24).

5.2.6.3 Granophyre

Late peraluminous dykes occur along the south-western
margin of the Brandberg Complex and have mainly intruded
into the marginal breccia zone and edenite-augite granite.
The steeply dipping dykes are 0.2-3 m wide, up to 30 m long
and strike parallel to the outline of the complex. Generally
they can be described as leucocratic, equigranular, grano-
phyric biotite granites showing different stages of post -mag-
matic alteration. Relatively unaltered, equigranular, grano-
phyric types are composed of alkali feldspar, plagioclase,
quartz and annitic biotite. The granophyres consist of graphic
intergrown quartz and alkali feldspar, plagioclase, yellow-
ish-brown, needle-shaped biotite and secondary, greenish-
brown siderophyllite. Quartz has preferentially grown along
cleavage fractures and lamellae in perthite and microcline-
perthite, strongly indicating a post-magmatic origin for the
granophyric texture. At a more advanced stage of alteration
the biotite breaks down to chloritic aggregates, locally ac-

b 4

.

Fig. 24: Photomicrograph of granophyric quartz porphyty, Tsisab
Raving (magnificaton x 20, PPL). Embiaved quarte (gz) and
highly altered, turbid feldspar phenocrysts (Kfsph m o granos-
phynic guartz-alkali feldspar matr,

Fig. 25: Photomicrograph of unzoned. pleochroie cassiterite
{cass), with graphic intérgrown quarz and terbid alkali feld-
spur (kfsp) in altered granophyre dyvke (magnification x 20,
PPL).
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5. Petrography and mineralogy of the principal rock types

companied by pleochroic, unzoned cassiterite (Fig. 25).
Other accessory minerals include zircon, apatite, monazite,
Ti-oxide and magnetite.

5.2.6.4 Ignimbritic quartz porphyry

Quartz porphyry intrusive into hornblende granite and fine
grained, pink biotite-bearing quartz porphyry occur in the
Weyersbrunn- and Tsisab Ravine and in the Bushman Valley.
The dykes are 20-30 cm wide, of light, bluish-grey colour
and consist of corroded and embayed quartz fragments, alka-
li feldspar phenocrysts, plagioclase and fragments of grano-
phyric granite set in a micro-crystalline, quartzo-feldspathic
groundmass with late biotite microcrysts and fluorite (Fig.
26). The crystal-rich porphyries have ignimbritic textures

Fig. 26: Photomicrograph of a crystal-rich, ignimbritic porphivry,
Buschman Yalley consisting of hughly fragmented crystals of
quartz (qz) and feldspar (plag) in a devitrified, glassy matrix
(magnification x 40, XPL).

and are believed to represent feeder channels for late intra
caldera ignimbrites. Highly altered relicts of such ignimbritic
flows have been found in the Bushman Valley (Fig. 27).

5.2.6.5 Microgranite

Fracture-filling, aplitic microgranite occurs dominantly as
fine grained, slightly phenocrystic, greyish or pinkish dykes.
They cross-cut hornblende and fayalite bearing alkali granite
and are regarded as fine grained equivalents of the central bi-
otite granite and associated ring dykes. The greyish type con-
sists of phenocrystic quartz and perthite, randomly myrme-
kitic intergrown with quartz or partly replaced by small albite
laths, set in a quartzo-feldspathic matrix. The groundmass
consists of quartz, orthoclase, perthite and albite with small
flakes of biotite and accessory fluorite. Frequently highly
granophyric micro granite-dykes have been found in which
perthite is partly replaced by granophyric quartz-feldspar
aggregates. Biotite is randomly replaced by green annite-si-
derophyllite. Potassium-rich microgranite dykes and veins

Fig. 27: Phowomicrogeaph of a erystal-rich ignimbrite flow con-
sisting of quartz (gz) and feldspar fragments (kfsp) set na
glassy matrix (magnification x 40, XPL).

have a distinct, pinkish-red colour and consists of quartz,
orthoclase and perthite, partly replaced by turbid microcline-
perthite, giving the rock a reddish colour. Accessory minerals
are magnetite, fluorite, zircon and rare biotite.

5.2.6.6 Arfvedsonite porphyry

Isolated exposures of steeply dipping, peralkaline dykes,
parallel to the outline of the massif, form part of a late ring-
dyke system in the south-western, marginal part of the massif.
Outcrops are limited to the Kleine- and Grosse Domschlucht
and the Amis Valley where the dykes have intruded into vol-
canics and peralkaline granites (Fig. 28). The rock consists
of vertically orientated zones of arfvedsonite granite, ranging
from fine grained through medium grained to coarse grained/
pegmatitic. Arfvedsonite occurs as ragged, often skeletal
crystals, 1 mm up to 5 cm across, set in a network of albitised
perthite, microcline and late, interstitial quartz. Accessory,
unzoned zircon in the pegmatitic zones is occasionally up to
0.5 cm in diameter.

5.2.6.7 Pegmatite

Apart from pegmatitic patches, located within their parent
granite, pegmatites are rare in alkaline rocks of the Brand-
berg Complex and limited to the peralkaline rock series of
the Amis Complex. The pegmatite bodies are 20-80 cm wide,
up to 4 m long and have intruded the arfvedsonite-aegirine
granite and volcanics and sediments in the periphery of the
layered series (Fig. 29). The internally zoned, mica free
pegmatites belong to the shallow depths pegmatite group
(Ginsburg et al. 1979; Cerny, 1982) and genetically belong
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5. Petrography and mineralogy of the principal rock types

Fig. 28: Ring dyke of wrivedsonite porphayry (arfy } cross comting
Karoo volcanics and perlkaling granite, Adamis West,

Fig. 2% Rarc metal pegmatite of agpaitic composition, Amis
Complex, showing a fine g!.lmnl marginal rone composed of
guartz, albite, zircon and arviedsonite (gz+alb+Zr+arfv), and
a coarse pmined core zone of arfvedsomite (arfv), parly
replaced by seginne, set in 6 mamx of gquarts and albie
igz+albj

to the rare-element association of agpaitic magma series. The
fine grained border zone consists of quartz, microcline and
arfvedsonite, partly replaced by aegirine, followed by an in-
termediate zone of microcline, quartz and arfvedsonite, up to
3 cm in length, partly replaced by aegirine. The core zone is
composed of quartz, microcline and up to 8 cm long, dark,
greyish-green, niobium-rich aegirine. Accessory minerals
include zircon, xenotime, pyrochlore, bastnaesite, monazite,
fergusonite and REE-fluorite.

A miarolic pegmatite type forms an irregular body, up to 1
m wide, emplaced into arfvedsonite granite. The pegmatite
is entirely composed of microcline and quartz with abundant
fluorite and zircon, up to 1 cm in diameter. Miarolic cavities
are filled with quartz or calcedony.

5.2.6.8 Dolerite

Dolerite dykes which have been postulated to be absent
in Mesozoic granites of the Brandberg massif (Hodgson,
1973) occur in the Tsisab Ravine and more frequently in
the biotite granite of the Bushman Valley (Fig. 3). Olivine
bearing, intersertal to subophitic dolerites have intruded
into hornblende bearing granites and consist of labradorite
and subhedral grains of diopsidic augite, partly altered to
ferro-actinolite. Olivine generally is decomposed to idding-
site-chlorite aggregates.

Late dolerites, intrusive into the Bushman Valley biotite
granite are mainly olivine free with a pronounced alkaline
character. Many of them are highly altered along fractures
and the contacts. They carry subophitic to intergranular ar-
ranged clinopyroxene and labradorite, accessory magnetite
and abundant needles of apatite. Along fractures the rock
is cataclastic and highly altered to a fine grained mass of
plagioclase, actinolitic hornblende and biotite.

6. Contact relationships, enclaves and xenoliths

Contact relationships between alkali granite of the com-
plex and country rock in the south and southeast differ from
those in the north and northeast and generally are controlled
by the presence or absence of brecciation along the early
major caldera-fault. The contact is relatively sharp in the
north and northeast where brecciation is absent, and it is
interesting to note that this zone is associated with the area
occupied by early quartz-monzonite subvolcanic centres
(Fig. 3).

Along the contact of the Mesozoic alkali hornblende gran-
ite with the Pan African granite, a distinct, 2-6 cm wide,
dark coloured reaction zone is developed. Petrographically
the fine grained rock consists of micro-fragments of alkali
hornblende granite and Pan African biotite granite set in fine
grained matrix of quartz, alkali feldspar and abundant in-
terstitial, brown, annitic biotite. Along schlieren-like zones
the brown biotite is overgrown or replaced by light-green to
colourless siderophyllite accompanied by scattered grains
of deep-green Fe-spinel (Fig. 30). XRD and microprobe
analysis revealed that the microscopic crystals, which has
been found in Pan African granite up to 8 m from the con-
tact, belong to the hercynite-gahnite series. Mineralogical
changes in the Pan African granite include overgrowths and
replacement of brown biotite by green annite-siderophyllite
and secondary growth of perthite. Generation of myrme-
kitic and granophyric textures has been observed up to 3 m
from the contact.

The contact relations in the south and southeast are con-
trolled by the presence of brecciation along the caldera
master-fault. The magma has passively penetrated the space
between the network of brecciated blocks of country rock
which mainly consists of Karoo volcanics and sediments
(Fig. 31). No signs of a late collapse of the entire complex
have been recognised, as postulated by Hodgson (1973).
Instead, it is obvious that brecciation along the major fault
occurred at the early caldera-stage of the complex, long
before the granitic magma passively entered the fault-zone.
Apophyses of fine grained alkali granite often interfinger
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Fig. M: Fhotomicrograph of green spinel (sp) and siderophvline
(i) from the contact zone between edenile-augite granite and
Pun African granite, Umoab Ravine (magnification x 240,
PPL}

Fiz. 31:
wenoliths of volcanic material in edenite-sugile  ETanie.
Numis Ravine:

Breceued rone along the major ¢alders faull with

with the volcanics and to a lesser extent have intruded along
bedding planes of the pelitic sediments which have been
converted into andalusite hornfelses. Low grade contact
metamorphic changes in the sediments and volcanics can
be recognised up to 1300 m from the contact.

Mineralogical changes associated with metasomatic proc-
esses in the sediments have been observed along the southern
contact and described as altered by a “pneumatolitic phase”
(Cloos and Chudoba, 1931). Metasomatic changes are most
intense in the south-eastern periphery of the complex (see
chapters 8.5 and 8.6).

Xenoliths (enallogenious [foreign] rock fragments) are
common only along the wall and roof zones of the complex.
Enclaves (rounded rock fragments genetically linked with
their host) are more limited and occur in the roof zone of the
biotite granites or locally along the outermost contact zone

Fig. 32: Enclaves of chilled margin in edenite-biotite granite,
south of the Katarkt

of individual sheets of alkali granite. Two types can be dis-
tinguished:

A synmorphic type occurs as rounded enclaves of chilled
margin, up to 50 cm in diameter, showing identical composi-
tion and texture as the host. Their distribution is limited to
roof facies of the biotite granites or to the intimate contact
zone between the individual intrusions (Fig. 32).

Allomorphic enclaves have a different texture and com-
position than the host and are distributed more regularly in
the marginal facies of the individual intrusions occasionally
together with synmorphic types. Enclaves of altered fayalite
granite have frequently been found in the marginal facies of
ferroedenite-augite granite along the northern contact zone
of country rock and the outer ring dyke. Fayalite commonly
has been destabilised to magnetite- iddingsite aggregates, and
pyroxene has broken down to clusters of Ca-Na amphibole
with flakes of deep-brown biotite. Porphyritic to glomerophy-
ric textures characterise this type of enclave resembling that
of marginal transolvus granites. Allomorphic fragments and
blocks range from 10 cm to 10m in size. The bigger blocks
generally are located only a short distance from their source.

Xenoliths of country rock are commonly found in the brec-
ciated contact zone of the complex in the southern periphery
which has been passively penetrated by the magma and in the
roof facies of the cupola. All types of country rock fragments

Fig. 33: Xenolith of volcanic matenal in edeniie-augile granite
showing assimilition and resorption features, Hungurob
Ravine
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are present but xenoliths of volcanic rock are by far the most
common (Fig. 31).

At greater distances from the contact, features of assimila-
tion, resorption and growth of new feldspar have been recog-
nised, indicating disequilibrium conditions with their envi-
ronment (Fig. 33).

Despite the occurrence of lindinosite nodules (arfved-
sonite- albite-quartz “enclaves”, Lacroix, 1923), which are
believed to be of metasomatic origin (see chapter 9.6), peral-
kaline granites generally lack enclaves.

7. Geochemistry

7.1 Whole rock chemistry

7.1.1 Major element chemistry

Alkaline rocks from the Brandberg Complex, like simi-
lar non-orogenic suites, have geochemical characteristics
of A-type granitoids. Compared with 1- and S-type granites
they are relatively depleted in MgO, CaO, TiO, and P,O..
A striking feature in all these rocks are the varying levels
of Na,0, K,O and ALQO,. Slight differences in the molecu-
lar ratio of Na+K to Al may result in significant changes of
the mineralogical composition (Bowden and Kinnaird, 1984;
Bowden 1985). Therefore, the agpaitic index (Na+K/Al)
successfully has been applied to classify A-type granitoids
into metaluminous (Na+K<Al<Na+K+2Ca), peraluminous
(AI>Na+K+2Ca) and peralkaline (Al>Na+K), (Bonin, 1982;
Bowden and Kinnaird, 1984). Each group is characterised by
the presence of distinctive mineral assemblages. Metalumi-
nous granites contain altered fayalite, pyroxene and/or eden-
ite; peraluminous granites are characterised by the presence
of trioctahedral micas, ranging in composition from annite
to zinnwaldite, and peralkaline granites contain arfvedsonite
and/or aegirine.

The distribution of the three groups is illustrated in the ter-
nary plot of CaO - (Na,0+K,0) - ALO, (in mol per cent),
(Fig. 34). Bonin’s classification (Bonin, 1982) of Corsican
anorogenic granites based on the classical nomenclature of
Tuttle and Bowen (1958) subdivides in:

hypersolvus granite (single feldspar)

subsolvus granite  (two feldspars)

transolvus granite  (mesoperthite plus two subsolvus

feldspars)

Hypersolvus granites are characterised by assemblages of
fayalite-pyroxene or hornblende-pyroxene; subsolvus gran-
ites contain biotite or arfvedsonite, whereas transolvus horn-
blende-biotite granite occupies an intermediate position. In
the molar diagram CaO - Na,O+K O - Al,O, Brandberg gran-
ites separate into three normative domains (Fig. 34). Peral-
kaline rocks with normative Di + Ac, metaluminous rock
types with normative Di + An and peraluminous granites
characterised by normative Cor + An. The diagram clearly
shows that slightest variations in the proportions of sodium,
potassium and aluminium can cause distinct chemical and
mineralogical changes in rocks ranging from peralkaline to
peraluminous in composition (Bonin, 1982).

Cal [mal %)
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Fig. 34: Molar plot of Ca0 - (Naz0 + K30) - AlzOq showing the
fields for peralkaline- (normative Ac + Di), metaluminous-
(normative Di + An) and peraluminous granites (normuative
Cor + An).
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Fig. 35: Temary plot of Al - Na- K separating Brandberg granites
into the fields of sodic feldspar rich and potassium feldspar
rich granites, subdivided by the line of aluminium saturation
{Alsp) into Cor- and Ac-normative granites. Two main evo-
lutionary lines indicate a trend from early metaluminous
hypersolvus granites (F, B) to late peraluminous (5) and
peralkaline arfvedsonite granites (A, AA).

The ternary plot of Na - K - Al (Fig. 35) allows separation
into Al-undersaturated peralkaline granites, characterised
by normative Ac + Ns, and Al-saturated granites (AI>50),
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which subdivide into Cor and Cor + An normative granites.
The peralkaline line leading to arlvedsonite granite illustrates
the significant role of sodium. With decreasing Al and K dur-
ing Na for K exchange processes, arlvedsonite granites grade
into albite-rich varieties. The peraluminous line, similar to
the trend for Corsican acid rocks (Bonin, 1982), is character-
ised by an increase in Al while the K/Na-ratio remains con-
stant. Highly differentiated biotite granites plot in the field
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Fig. 36: Harker diagrams of Brandberg granitoids.

of subsolvus granites with constant Al-content but growing
K/Na-ratio. For Al-saturated rocks there is a general progres-
sion from hypersolvus/transolvus granite towards subsolvus
types.

The variation of the major oxides as a function of silica
(Harker diagrams) confirms the strongly alkaline nature of
Brandberg granitoids (Figs 36 and 37). Negative correlation
of TiO,, Al,O,, Fe,O, (total iron), MnO, MgO, CaO and P,O;
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Fig. 37: Harker diagrams of Brandberg granitoids; (same legend as figure 36).

against SiO, but positive correlation in the plots of Na O and
K,O versus SiO, characterises rocks from alkaline, anoro-
genic environments described as “A-type” by Loiselle and
Wones (1979). With fractionation, expressed by increasing
SiO,, the Brandberg data show a progression from quartz
monzonites through mica-free granites to biotite and arlved-
sonite granites. The scattered nature of the latter is indicative
of hydrothermal alteration effects like desilication and loss
of CaO, MgO, MnO and Al O, during late-stage magmatic
and hydrothermal alteration. TiO,, Fe O, (total iron), MgO
and CaO contents decrease with increasing silica reflecting

the concentration of these oxides in the coloured minerals of
mesocratic rock types. The concentrations of total iron show
a more or less linear decline from metaluminous to peralu-
minous types, whereas the upward-shift in peralkaline gran-
ites reflects the high concentration of iron in sodic amphibole
and Na-Fe-pyroxene. Discrimination trends for the alkalis in
Harker diagrams are more problematic. The generally posi-
tive trend for Na,O and K,O is masked by both increasing
and decreasing tendencies in more differentiated granites. As
shown by Bowden and Kinnaird (1978) fractional crystal-
lisation alone cannot be responsible for the removal or con-
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centration of Na,0 and K,O. From their study of Nigerian
anorogenic granites they concluded that hydrothermal al-
teration processes and fluid-phase transfer have modified the
chemical composition of the original rock type. Al,O, stays
relatively constant in intermediate rock types ranging from
60 to 70 wt per cent SiO, and decreases rapidly in high-silica
granitic rocks.

The plot of Al,O, versus the Larsen Index (Fig. 38) illus-
trates the effect of aluminium loss and alkali fractionation.
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Fig. 38: Plot of Alz03 versus the Larsen Index (1/3 510z + K20
- (Fe + MgO + Can); Larsen, 1938) illustrating the role of
aluminium and alkali fractionation in early gquartz-mono-
zonitic, fayalite and homblende granites, in contrast to Al-
saturated and undersaturated granites affected by hydro-
thermal fluid systems; (same legend as figure 36).

Early metaluminous rocks like quartz monzonites and mica-
free granites follow a trend of aluminium loss with higher
Larsen indices caused by low MgO, MnO, CaO and total
Fe (Fe,0,). In contrast, the fractionation trend for late-stage
peraluminous biotite granite and peralkaline granites illus-
trates significant losses of Al, Mn, Mg, Ca, K and Si during
sodic metasomatism expressed in lower Larsen indices for
the post- solidification altered granites (Fig. 38).

Compared with granitic suites from other provinces in Af-
rica, Brandberg granites show distinct similarities with gran-
ites associated with dominantly oversaturated Mesozoic ring
complexes. The plot of log CaO/(Na,0+K,0) versus SiO,
(Fig. 39) illustrates similarities in the chemical composition
of the Brandberg suite with counterparts from Nigeria.

The multicationic diagram of De La Roche (1964) and De
La Roche et al. (1980) has been successfully applied to rocks
from the Nigerian anorogenic province by Bowden and Kin-
naird (1984) and Batchelor and Bowden (1985), not only to
define magmatic trends but also to display major element
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Fig. 39: Plot of log CaOf(Maz0 + K20) versus 5i0; illustrating
similarities in the chemical compoesition of alkaline granites
from the Nigerian Younger Granite Province and the Brand-

berg Alkaline Complex, Namibia.
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Mote that early quartz monzonitic rocks, fayalite-hedenber-
gite- and ferroedenite-augite granites plot towards the end of
the volcanic trend, whereas hydrothermally aliered granites
follow a horizontal trend with a small range for Rz; (same
legend as figure 36).

variations in post-magmatic altered granites. Volcanic rocks
from anorogenic complexes define an alkaline fractionation
trend ranging from basalt and hawaiite through mugearite and
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trachyte to alkali rhyolite. A second “andesitic trend” leading
from basalt to rhyolite has been interpreted as mixing of both
magma types (Bowden and Kinnaird, 1984)

When plotted in the De La Roche diagram (Fig. 40),
subvolcanic rocks of quartz monzonitic composition from
Brandberg follow the volcanic trend, and subsequently sub-
volcanic fayalite granite and mica-free, hornblende bearing
types plot towards the end of the volcanic line. In contrast,
most of the biotite and arfvedsonite granites plot in groups
along a horizontal trend with decreasing R1-values reflect-
ing apparent desilication of peralkaline and peraluminous
granites during albitisation and microclinisation processes.
Mineralogically these granites are characterised by mineral
assemblages which generated under sub solidus conditions,
reflecting intensive changes in major oxide ratios during
metasomatism.

The plot of KO versus Na,O (Fig. 41) illustrates the
chemical variation of sodium and potassium which is most
prominent in peraluminous and peralkaline granites. Highest
concentrations of sodium occur in desilicated, albitised arfv-
edsonite/aegirine granites, whereas K-rich/Na-poor granites
mainly belong to the group of microclinised peraluminous
biotite granite.

The overall presence of a hydrothermal overprint in rocks
of the Brandberg complex is masking the magmatic frac-
tionation trend. Most of the variation diagrams and chemi-
cal parameters existing in the literature often fail to display
magmatic fractionation trends when the rocks are affected
by hydrothermal fluids and ion-exchange processes during
metasomatism.
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Fig. 41; Plot of K20 versus Naz0 illustrating K-Na and Na-K
exchange processes in Brandberg granites; (same legend as
figure 36).

The multicationic classification diagrams of Debon and
Lefort (1988) for plutonic rocks and their associations (Figs
42 and 43) turned out to be most useful in displaying not
only the evolutionary trend for alkali-saturated granitic rocks
associated with Brandberg, but also clearly discriminate the

ALKS = Alkoll solurated
ALKOS = Alkall cvarsaiuraled
ofter Debon ond Lefert (1988}
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- 30 =200
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Fig. 42: Evolutionary trends of rocks from Brandberg, Paresis, Messum, Otjihorongo,
Cape Cross, Spitzkoppie and Erongo in the Q-F diagram (aficr Debon and Lefort,
1958) showing an evolutionary path from carly alkali saturated towards alkali over-
saturated rocks (magmatic trend) and prominent hydrothermal trends for granites
affected by sodic and potassic metasomatism.
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Fig. 43: Temary QBF-diagram (after Debon and Lefort, 1988)
illustrating the evolutionary trend for alkaline rocks of the
Damaraland Alkaline Province. Depending on the cormposi-
tion of the hydrothermal fluids associated with the granitic
centres, the data plot along a sodic and a potassic hydrother-
mal trend, tending away from the magmatic line; (zame
legend as figure 42).

different metasomatic overprints. In order to understand evo-
lutionary trends of granitic rocks from ring complexes of the
Damaraland Alkaline Province, the available data (Linning,
1968; Zuleger, 1987; Schlag and Willgallis, 1988; Von Knor-
ring (open file data, Geol. Survey of Namibia) and Bowden
and Kinnaird (unpublished data) was incorporated into the
diagram.

When plotted into the Q- P diagram of Debon and Lefort
(1988) (Fig. 42), granitic rocks associated with Mesozoic al-
kaline ring-complexes in Namibia plot along a trend of early
alkali-saturated composition (ALKS), which continuously
grades into an alkali-oversaturated trend for early granites.
Syenitic rocks from Paresis, Messum and the Naib quartz
monzonite from Brandberg are believed to represent the most
primitive rocks associated with the granitic centres. The Naib
quartz monzonite which forms a late, circular intrusion in
the western part of Brandberg is interpreted to represent the
beginning of a new volcanic centre. Hence, its relative primi-
tive syeno-monzonitic composition chemically plots togeth-
er with syenites from Paresis and Messum. Pre-caldera stage
quartz monzonitic rocks of the Gomatsarab-Umoab centres
(Fig. 3), which are affected by post-magmatic hydrothermal
processes, reveal higher Q-values caused by silicification and
loss of sodium/potassium. This trend is marked by a slight
shift towards the albite or microcline pole. In coincidence
with petrological results, fayalite- and pyroxene-bearing,
mica-free granites plot along the magmatic trend (ALKOS).
Rocks affected by hydrothermal fluid phases plot distinc-
tively away from the magmatic, alkali-oversaturated trend,
reflecting intense ion-exchange processes during chemically
variable rock - fluid interaction processes. Peralkaline gran-
ites of the Amis Layered Complex (chapter 9), which most
intensely are affected by sodic metasomatism (Na for K ex-
change), plot along a trend proposed for albitised granite of
the pyrochlore-REE type (Fig. 42). Potash metasomatised

granites (K for Na exchange) plot along a trend characterised
by increasing P-(low Na+Ca) and Q-values (high Si). The
proposed trend for boron metasomatised granites combined
with potash alteration and the development of microcline is
indicated by a dotted line (Fig. 42).

When plotted in the ternary QBF-diagram (Fig. 43) of
Debon and Lefort (1988) a similar pattern is demonstrated.
Distinct sodic and potassic-hydrothermal trends plot away
from the magmatic trend for alkali-saturated syenite and
alkali-oversaturated quartz monzonite, fayalite- pyroxene -
and mica-bearing granites.

7.1.2 Trace element chemistry

7.1.2.1 Introduction

According to their alkaline nature Brandberg granites
follow the overall trace element pattern of A-type granites.
Variations in trace and major element distribution are char-
acteristic for the metaluminous, peraluminous or peralkaline
compositional trends and therefore show continuous variation
from early to late-stage intrusives. The most characteristic
feature of all the analysed rocks is the marked increase in Rb,
Zr, Zn, Nb, Y, Li and Sn with increasing silica content. Late-
stage, peralkaline rocks of the Amis layered complex show
the most anomalous enrichment of Rb (600—1480 ppm), Zr
(600-11400 ppm), Zn (300-1860 ppm), Nb (150-2000 ppm),
Y (100-2000 ppm), Li (180-700 ppm) Sn (50-1300 ppm), Ta
(10-100 ppm), U (3-300 ppm), Th (20-400 ppm) and Ce (up
to 2000 ppm). Parallel with the increase of lithophile ele-
ments the concentration of Sr and Ba decreases together with
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Fig. 44: Plot of Zn and Y versus Zr. Note the contrasting
behaviour of the trace elements Zn and Y during metasomatic
exchange processes. Depending on the chemical composi-
tion of the granites and the hydrothermal fluids, Zr-rich rocks
(Zr > 600 ppm = peralkaline) show a positive correlation, in
contrast to peraluminous environments (Zr < 600 ppm).
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Fig. 45: Plot of Nbversus Zr. There is a good positive correlation
of Nb and Zr in Brandberg granites. Highest concentrations
of Zr and Nb are found in peralkaline environments {fenites),
reaching Zr-levels of 1 wt per cent and Nb concentrations up
to 0.2 wt per cent; {same legend as figure 36).
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Fig. 46: Plot of Sn versus Zr. Sn generally plays a dual role and
enrichment trends are found in both, peralkaline and peralu-
mincus granites. Highest concentrations of Sn, together with
other LIL-¢lements, are found in agpaitic environments, indi-
cating the important role of the peralkaline phase to leach and
to transport these trace elements; (same legend as figure 36).

the transition metals Co, Ni, V and Cr.

7.1.2.2 Zr, Nb, Sn, Y and Zn
The studies of Dietrich (1968), Bowden (1966), Bowden
and Turner (1974), Radain ef al. (1981) have shown that

Zr-levels are significantly higher in peralkaline environ-
ments than in associated peraluminous rock types. The dif-
ferent trends in peraluminous and peralkaline rocks are best
displayed when the lithophile elements are plotted as func-
tion of Zr (Figs 44, 45 and 46). The plot of Y and Zn versus
Zr (Fig. 44) clearly shows a positive correlation for peral-
kaline granites and a negative correlation trend for pera-
luminous granites. Metaluminous granitoids occupy an
intermediate position withrelatively constantlevels of Zr (300-
450 ppm), Y (60-100 ppm) and Zn (60-200 ppm), depend-
ing on the stage and intensity of post-magmatic alteration
processes which partly have affected metaluminous rocks as
well.

Rb, Nb, Sn and Li (Figs 45 and 46) playa dual role, and
enrichments of these elements are present in both peralka-
line and peraluminous granites but highest concentrations
have been found in agpaitic metasomatites of the Amis Com-
plex.

7.1.2.3 Rb/Sr, K/Rb

Enrichment of Rb combined with an impoverishment of Sr
and Ba is described from many oversaturated complexes and
alkaline provinces worldwide (Bowden and Whitley, 1974;
Bonin, 1982; Imeokparia, 1983; Bowden, 1985; Teale and
Lottermoser, 1987). The Rb/Sr-ratios in the different granitic
rocks from the Brandberg Complex range from:

0.6-1 in quartz-monzonites

1.5-7 in fayalite and hornblende granites

1.6-11 in unaltered biotite granites

16-214 in altered biotite granites

78-253 in arfvedsonite granites

Bonin (1982) interpreted the negative correlation trend and
the shifting tendency towards higher Rb-values as magmatic
fractionation between residual liquid and cumulates. The
concentration of Rb can be explained by early precipitation
of Ba and Sr with Ca in plagioclases without the influence
of a fluid phase (Bonin 1982). Authors like Bowden (1985),
Imeokparia (1986) and Teale and Lottermoser (1987) have
suggested that high Rb- and Rb/Sr-ratios together with low
K/Rb-ratios in anorogenic granites invoke alkali metasoma-
tism and recrystallisation processes under subsolidus condi-
tions.

The shift to higher Rb values in the plot of Sr versus Rb
(Fig. 47) may therefore be used as a parameter for the inten-
sity of alkali metasomatism. In the Sr-Rb diagram the data
from Brandberg show a linear progression from quartz mon-
zonite towards clinopyroxene-bearing fayalite- and horn-
blende-granites which is believed to display the magmatic
differentiation trend for more primitive quartz-monzonitic
rocks and mica-free granites. With increasing differentiation
and feldspar fractionation Rb is enriched in residual liquids,
resulting in the formation of true magmatic biotite granite.
Biotite and arfvedsonite granites, with typical sub solidus
textures and characteristic mineral assemblages, are shifted
towards higher Rb-values, away from the proposed magmat-
ic fractionation trend.

All these granites show alkali metasomatic changes such
as albitisation or microclinisation reflecting the presence of a
fluid phase which has reacted with the rock under subsolidus
conditions.
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Fig. 47: Rb/Sr diagram. The correlation indicates that enrich-
ment of Bb is coupled to an impoverishment in Sr during
magmatic fractionation. The shift towards higher Rb-values
may be used as a parameter for the intensity and duration of
alkali metasomatism; (same legend as figure 36).
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Fig. 48: Plot of K/Rb versus Rb/Sr reflecting the imensity of
alkali metasomatism and the increase of Rb duning cationic
exchange processes under hydrothermal conditions, com-
bined with an impoverishment of Sr; (same legend as figure
36

A similar distribution of the data is recognised when the
K,OIRb-ratio is plotted against the RbjSr-ratio (Fig. 48).

7.1.2.4 Ba/Rb
The overprint of a hydrothermal fluid-phase on the
magmatic fractionation trend is displayed in the plot of Ba

versus Rb (Fig. 49). Ba constantly decreases from metalumi-
nous- towards peraluminous granite while the Rb-Ievel stays
constant between 200 and 300 ppm. The sudden increase of
Rb combined with complete depletion of Ba in peraluminous
biotite and especially in agpaitic arfvedsonite-aegirine gran-
ites can only be attributed to the influence of hydrothermal
fluid-phases.
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Fig. 49: Ba/Rb diagram illustrating the constant decrease of Ba
during magmatic fractionation and the influence ol hydrother-
mal fluid phases in peraluminous and peralkaline environ-
ments; (same legend as figure 36},

7.1.2.5. Rb - Ba - Sr

El Bouseily and Sokkary (1975) used the ternary plot of
Rb-Ba-Sr to trace differentiation trends in granitic rocks and
to distinguish between granites of magmatic and metaso-
matic origin (Fig. 50). The field of “normal granite” is main-
ly occupied by quartz monzonites with high Ba/Rb-ratios,
metaluminous, mica-free and slightly peraluminous, mica-
bearing granites with increasing Ba/Rb-ratios. Some of the
transitional quartz monzonites plot in the field of “anomalous
granite” displaying low Rb-concentrations which are attrib-
uted to Rb-fractionation during metasomatism (EI Bouseily
and El Sokkary, 1975). The group of “strongly differentiated
granites” with highest enrichment in Rb and depletion in
Ba and Sr (due to feldspar fractionation and hydrothermal
processes) plot towards the Rb-corner. The group of highly
specialised granites includes subsolidus altered, mineralised
peraluminous and peralkaline granites with characteristic
low-temperature mineral assemblages.

7.1.2.6 U/Th

High heat productive elements like U and Th generally
show a positive correlation in anorogenic granites. Elevat-
ed levels have been recognised in albitised, peralkaline and
peraluminous granites but highest concentration are found in
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Fig. 50: Ternary plot of Rb - Ba - Sr illustrating the differentiation trend in Brandberg granites
and Rb-fractionation in specialised granites; (same legend as figure 34),

the agpaitic rocks (U up to 300 ppm, Th up to 700 ppm).
When uranium is plotted as function of zirconium (Fig. 51),
which allows discrimination between peralkaline (>550 ppm
Zr) and peraluminous granites «550 ppm Zr), the uranium
enrichment trend in Al-saturated and undersaturated granites
is displayed. In both types the concentration of Th is higher
than that of U indicating a substantial loss of uranium rela-
tive to thorium. High uranium mobility and remobilisation
processes in anorogenic granites during sodic, potassic and
H'-metasomatism have been documented (Kinnaird et al.
1985).

In his study of Th and U in the St Austell granite Allman
Ward (1985) could show that the “true” uranium content of a
granite is difficult to obtain, due to the fact that uranium forms
highly soluble and mobile uranyl complexes under oxidis-
ing conditions (surface weathering, alteration effects) whilst
thorium levels remained unchanged. Despite the problem of
uranium-loss in granites the enriched levels of radioactive
elements in metasomatised Brandberg granites indicate the
important role of the high heat producing capacity to pro-
vide the energy to drive hydrothermal convection cells when
meteoric water is added to the system. Highly saline fluid
systems could have leached significant amounts of uranium
during boiling. In the presence of boron (tin) new silicates
and oxides may form as proposed by Simpson et al. (1979)
and Stone and Exley (1985).

The plot of U versus Th/U (Fig. 52) illustrates the con-
trasting behaviour of the two radiogenic elements during the
different alteration processes. In peralkaline granites which
dominantly have been affected by sodic metasomatism, both
uranium and thorium levels increase dramatically, which
causes a significant decrease of the Th/U-ratio from 10 to-
wards 0.3 in pyrochlore-/REE-mineralised types. Peralu-
minous granites affected by microclinisation processes are
uranium depleted, while the thorium concentration stays un-
changed, reflecting increasing Th/U ratios. Early K for Na
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Fig. 51: Plot of U versus Zr. There is a good positive comelation
between U and Zr indicating a high mobility of U in peral-
kaline (Na for K exchanged) environments with Zr-concen-
trations =600 ppm; (same lepend as figure 36),

exchange processes in Brandberg granites are therefore re-
sponsible for the leaching of uranium which was possibly
introduced into the system during rock-fluid interaction proc-
esses in late-stage, peralkaline environments.

The immobile nature of thorium, which is located in resist-
ant minerals like monazite, is in contrast with extremely high
Th-values in arfvedsonite and aegirine-astrophyllite granites.
The intense enrichment of Th, U, Y, Nb, Rb, Zn and Sn in
these granites is believed to be the result of an infiltrated per-
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Fig. 52: Plot of U versus U/Th demonstrating the contrasting
behaviour of U and Th in peralkaline and peraluminous
granites, Inagpaitic rocks affected by sodium metasomatism,
there is significant increase in both radiogenic elements, in
contrast to microclinised biotite granites from which Th and
U have been leached during K for Na exchange processes;
(same legend as figure 36),

alkaline fluid-phase. The new mineral assemblages which
developed in adjacent granite and country rock are almost
identical to those of fenites, which are known to be associ-
ated with undersaturated syenite complexes and carbonatites,
but with the characteristic difference that the granitic Brand-
berg fenites are depleted in Sr, Ba and Ca. Fenitisation asso-
ciated with Si-oversaturated ring complexes has been report-
ed from only a few complexes in the world (Bowden 1985).
Therefore the Amis Valley granites in Brandberg represent
an unique example of fenitisation associated with peralkaline
infiltration metasomatism (see chapter 9).

7.2 Mineralogy and mineral chemistry

7.2.1 Introduction

To interpret the chemistry of granitic rocks affected by
post-magmatic alteration processes it essential to study the
chemistry of the various mineral components and their com-
positional changes. In order to understand mineral replace-
ment processes in rocks of the Brandberg Complex, infor-
mation on mineral compositions has been obtained using
electron microprobe and XRD techniques. Since whole rock
data from Brandberg rocks have been very limited, virtually
no data on mineral compositions have been published, and
this study is the first of its kind for anorogenic granites be-
longing to the Damaraland Alkaline Province. A selection of
microprobe analyses of the various minerals are given in the
appendix (table 2).

7.2.2 Mica

The various types of micas which were recognised in
Brandberg granites, using optical methods, belong to a se-
ries of annitic biotites which, depending on the intensity of
hydrothermal fluids, have been partly or entirely replaced
by micas of the siderophyllite-lithionite-zinnwaldite se-
ries. Microprobe data clearly indicate that trioctahedral
Brandberg micas generated under subsolidus conditions in
the presence of fluorine-rich fluid phases. Changes in col-
our, from reddish-brown through green to colourless com-
bined with changes in the optical properties are controlled
by chemical exchange processes under the influence of a
fluid-phase. Affected by metasomatising fluids, the original
granitic biotite becomes randomly or entirely replaced by
subsolidus mica-types. Microprobe analyses demonstrate
that early granitic biotites are generally Fe-rich with high
Ti-, Mg- and low Al-, Si- and F-concentrations (appendix,
table 2.1). Green-yellowish, pleochroic siderophyllite often
rimming and enclosing annite is chemically characterised
by increasing Si, Fe and Al while Ti and Mg are decreasing
(see appendix, table 2.1). This trend continues with increas-
ing ion-exchange processes to generate colourless mica with
chemical characteristics of zinnwaldite from greisen envi-
ronments. Micas of endmember composition in mineralised
granite are enriched Al, Si and F and strongly depleted in
Fe, Mg and Ti. Alkali saturation in peralkaline rocks is re-
flected in the pronounced Fe-rich and Al-poor composition
of annite and lepidomelane from brandbergites (chapter
9.5). Biotites from fenitised country rock and highly altered
contact metamorphosed alkali granite containing green spi-
nel (hercynite-hoegbomite) have Mg-contents up to 8.6 wt
per cent and intermediate FeO concentrations (20 wt per
cent). Their “phlogopitic” nature furthermore is reflected
in the substitution of Al'Y for Si and Mg:Fe-ratios 2:1. This
is in contrast with the fox-red colour and small axial angles
(2V=0-20°). As shown by Deer et al. (1962), the usage of
the term phlogopite is somewhat arbitrary for phlogopite
of end-member composition which forms a solid solution
series with annite.

When plotted in the Al'Y//Fe diagram (Fig. 53), micas
from Brandberg granites plot along three distinct trends
reflecting the primary composition (Al-saturation/-under-
saturation) of the host rock and the chemical composition
of the fluid phase. Peraluminous granites have developed
tri-octahedral mica in the compositional range annite-si-
derophyllite-zinnwaldite (Figs 54 and 55). Al-undersatu-
rated, peralkaline granites have developed a series ranging
from annite - lepidomelane to lithionite-zinnwaldite (Fig.
53). Metaluminous fayalite granites contain granitic biotite
with highest TiO, (up to 4.7 wt per cent) and MgO (up to
13.5 wt per cent). Partly chloritised biotites from hypersol-
vus and transolvus hornblende-biotite granites plot along
a compositional trend ranging from annite to siderophyl-
lite. They coexist with ferroedenite, magnetite and late al-
kali feldspar and show unusual high MgO concentrations
(up to 10 per cent) for biotites from alkaline environments.
According to the experimental work of Wones and Eugster
(1965) biotite which is coexistent with magnetite and al-
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Fig. 53: Compositional rend of micas from peraluminous granite
(1), peralkaline granite (II) and metaluminous granite (I1) in
the A1"!/Fe - diagram.

kali feldspar will decompose by the reaction: biotite = more
magnesian biotite + alkali feldspar + magnetite, under un-
stable oxygen fungacity with decreasing temperatures. This
would explain the observation that with increasing iron in
the host rock the biotites become more magnesian (Speer,
1984). Such conditions apply to chilled margins of plug-like
intrusions or rapidly cooling ring dykes which in Brandberg
have preferentially developed characteristic transolvus tex-
tures (chapter 5.2.4.2). Bowden and Jones (1978), Imeok-
paria (1982) and Bennet et al. (1984) have reported similar
compositional trends (annite-siderophyllite-zinnwaldite) for
micas from peraluminous granites of the Banke, Shira, Ti-
bchi and Afu complexes in Nigeria.

The plot of AI'' against the Mg/(Mg+Fe) ratio (Fig. 54)
illustrates that both annite and zinnwaldite may be present
in one and the same rock type or even in one single crystal.
The core of a crystal has often preserved the primary gra-
nitic or annitic composition whereas, under the influence of
fluid-phases, the outer zones of the crystal have been first
transformed into siderophyllite and subsequently into col-
ourless zinnwaldite along the outermost rim. Biotites from
albitised biotite granites show the most intense Fe-Mg and
Al-substitution expressed in low Mg/(Mg+Fe )-ratios (<0.1)
while phlogopite-biotites are characterised by ratios up to 0.6
(see appendix, table 2.1).

The Fe(Fe+Mg)-ratio of the analysed micas range from
0.4 (magmatic biotite) to 0.98 (zinnwaldite). In his work
on biotites from the Afu complex, Nigeria, Imeokparia
(1982) showed that biotites associated with rare metal-min-
eralisation have the highest Fe/(Fe+Mg)-ratios( 0.95-0.99).
Discrimination of the different groups of micas are best
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Fig. 54: Compositional differences of micas in the plot of Al"'
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Fig. 55: Subsolidus alteration trend of micas from Brandberg
granites in the plot of Al"' versus Fe/(Fe+Mg) showing
significant compositional changes of the original annitic bio-
tite under the influence of hydrothermal fluid-phases, which
led to the development of chlorite or trioctahedral micas of
the siderophyllite-zinnwaldite series.

displayed in the plot of tetrahedral aluminium versus Fe/
(FetMg) (Fig. 55).

7.2.3 Chlorite
Alteration of biotite to chlorite is a common feature in hy-
drothermally altered and mineralised granite. In Brandberg,
the chlorites differ from their parental biotites in being more
oxidised with higher Mg-values and are iron-rich (33-37wt
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per cent FeO,) combined with a depletion in Ti and K and F.
The loss of titanium is commonly recognised in thin section
by the development of secondary rutile needles whereas
leaching of potassium generally resulted in the growth of
alkali feldspar according the reaction: biotite + quartz +
water = chlorite + alkali feldspar (Chayes, 1955). Dissemi-
nated chloritisation in Brandberg granites and country rock
is commonly accompanied by albitisation and late epidoti-
sation processes, in contrast to vein controlled alterations
in potassium-rich environments, displaying characteristic
mineral assemblages of the paragenesis: quartz-microcline-
chlorite-epidote-siderite-sphalerite-casiterite. According to
the classification of Foster (1962) the analysed chlorites are
mainly ripiolites.

7.2.4 Pyrophyllite

Pyrophyllite is regarded as a hydrothermal mineral which
occurs through the alteration of feldspar (Deer ef al. 1962;
Frey, 1987). In Brandberg, occurrences of the mineral are
limited to low-grade metamorphosed and acid metasoma-
tised Karoo-pelites forming an alteration killas adjacent to
the peralkaline granites of the Amis Layered Complex. The
mineral was identified using XRD and is seemingly related
to metasomatic processes during low temperature rock-flu-
id interaction processes (see chapter 8.6 for more detailed
descriptions).

7.2.5 Pyroxene

In the Brandberg Complex, pyroxene occurs in subvol-
canic quartz monzonite, ferro-edenite granite, fayalite gran-
ite and -porphyries and in arfvedsonite granite. According
to their chemical composition the analysed pyroxenes fall
broadly in a calcic and a sodic group. Ca-pyroxene is the
characteristic mafic mineral of metaluminous rocks where
it dominantly occurs as phenocrysts. In quartz monzonites,
the crystals show distinct zoning with a greyish to yellow-
ish-grey core of ferro-augite grading continuously into
green to bluish-green rims of ferroaugite/hedenbergite and
sodic ferro-augite. Individual grains are occasionally ran-
domly replaced by deep-green aegirine-augite. Clinopy-
roxenes from ferro-edenite granites occur as highly altered
and fragmented crystals of ferro-augitic composition. Rel-
ict crystals often form the core of edenic hornblende and
ferro-actinolite aggregates or have been almost completely
replaced by the latter. In fayalite bearing granites and por-
phyries the composition of pyroxene varies from ferro-au-
gite to ferro-hedenbergite. Zoned phenocrysts from granite
ring-dykes consist of a yellowish-grey core of ferro-augite/
hedenbergite rimmed by sodic augite, whereas phenocrysts
from fayalite porphyries are composed of ferro-hedenber-
gite often rimmed by bluish-green aegirine-augite.

Sodic pyroxene is dominantly developed in late-stage ag-
paitic rocks containing arfvedsonite and forms interstitial,
poikilitic crystals. Deep-green aegirine trends chemically
towards endmember composition and is either coexistent
with sodic amphibole or successively replacing it. Some se-
lected microprobe analyses of aegirine from the Amis Com-
plex are given in the appendix. Characteristic high concen-
trations of Na O and total iron as FeO, accompanied by
complete depletion in CaO and MgO, indicate a main sub-

stitution of NaFe*"«—Ca(Mg,Fe*"). The most striking feature
in aegirine from metasomatites (fenite) are high TiO,-values
(up to 2 wt per cent) (chapter 9). In crystals with high TiO,
concentrations, surprisingly high Sn-accumulations (up to
0.5 wt per cent SnO,) have been recognised. The occurrence
of stanniferous aegirine together with zincian fluor-arfved-
sonite indicates that post-magmatic fluid-phases, similar to
fenitising fluids associated with carbonatites, had infiltrated
sufficient quantities of trace elements that Sn and Zn could
enter the lattice of subsolidus crystallising pyroxene and am-
phibole in a highly peralkaline environment. Crystallisation
of sodic pyroxene and hornblende at low pressure and shal-
low depths is reflected in total lack of Al in octahedral posi-
tions (Leake, 1965; Neumann, 1976).
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Fig. 56: Compositional range of pyroxens from early metalumi-
nous- o late peralkaline granite in the plot of Ca + Na versus
Al + Fe™* 2Ti*". The sharp wm in the evolutionary trend
marks the stage where the composition of the host rock
became agpaitic.

The different compositional trends towards clinopyroxene
in acid metaluminous rocks and sodic pyroxene in peralka-
line granites is illustrated in the plot of Ca+Na in the M2-site
versus Al + Fe3* + 2Ti*" in the M 1-site (after Robinson 1980)
(Fig. 56). The data plot along a trend which is controlled by
Mg-Fe and Ca-Na substitutions starting with ferro-augite
in early subvolcanic rocks. With increasing fractionation
hedenbergitic pyroxene is formed which dominates in fay-
alite porphyries. The sharp turn in the trend towards sodic
pyroxene marks a stage where the composition of the host-
rock becomes agpaitic. Bonin and Giret (1985) found that
in metaluminous series, sodic clinopyroxene follows calcic
clinopyroxene in rocks with an agpaitic index 0.85, which
correspond with the value of 0.9 for the occurrence of sodic
amphibole (Giret et al. 1980). At Brandberg sodic clinopy-
roxene may occur in metaluminous rocks with agpaitic coef-
ficients >0.83 which coincide with the value found by Bonin
and Giret (1985). Pyroxene analyses from peralkaline rocks
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(agpaitic index >1) plot in the field for Na- and Fe-rich aegir-
ine of endmember composition. The general trend towards
more sodic clinopyroxene with increasing fractionation has
been described by Neumann (1976) from alkaline rocks of
the Oslo region. She concluded that the trend is the result
of fractional crystallisation of plagioclase and augite, sug-
gesting that Bowen’s (1945) “plagioclase effect” is the most
likely mechanism leading from alkaline magmas to peralka-
line residual liquids.
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Fig. §7: Compositional trend for pyroxenes from gquartz monzo-
nite and alkali/peralkali-granites in the Na-Mg-Fe diagram (in
cations per & oxygens).

7.2.6 Astrophyllite

The titanium silicate astrophyllite (Fig. 73) is a rare con-
stituent of agpaitic, dominantly Si-undersaturated rocks of
the alkali series and commonly occurs in mineral paragen-
eses of alkali feldspar, aegirine, sodalite, cancrinite and apa-
tite (Troger, 1969). It was first described from Brandberg in
a short note by Von Knorring (1985) and generally occurs in
zirconium rich, albitised peralkaline granite and associated
dyke-rocks (brandbergite) of the Amis Complex together
with aegirine, arfvedsonite, zirconium-minerals, pyrochlore
and occasionally lepidomelane, as a typical mineral of the
pegmatitic-hydrothermal phase (Troger, 1969). The occur-
rence of astrophyllite in Brandberg is limited to metasoma-
tites (fenites). Coexisting aegirine occurs as distinct radial
arranged rosettes or ‘fiamme shaped’ aggregates (Figs 72 and
80) indicating a post-magmatic origin. Microprobe analyses
reveal that astrophyllite is a mineral with a high holding-ca-
pacity for lithophile trace elements like Sn (0.3 per cent), Nb
(1 per cent) and Zn (5 per cent) (see appendix, table 2.2).

7.2.7 Pyrochlore
Pyrochlore is the most characteristic Nb/Ta ore-mineral in
metasomatic, peralkaline granites and dyke-rocks associated
with the Amis Complex (chapter 9). It generally occurs in the
same mineral-paragenesis as astrophyllite but is limited to al-
bitised portions in arfvedsonite-aegirine granites. Pyrochlore

generally forms yellowish-brown octahedra from 0.1-1 mm
in diameter but is often metamict exhibiting a dirty-brown
colour (Fig. 58)

Fig. 58: Ocuthedra of yellowish pyrochlore {pyr) and arfvedso-
nite (arfv ) in alfered peralkaline-granite from the Amis Valley
(magnification x 120, PFL)

The mineral is known to be sporadically associated with
miaskitic syenites, carbonatites and associated fenites and
highly alkalic granites containing sodic amphibole and Na-
pyroxene (Parker and Fleischer, 1968; Bowden and Turner,
1974). Partial analysis of pyrochlore from Brandberg (see
appendix, table 2.6) shows an average (Nb,Ta),O, content of
51. 78 wt per cent with a relatively low Nb,O,/Ta,O, ratio of
13, characteristic for pyrochlore from syenitic fenites (Deans,
1966, Parker and Fleischer, 1968; Hogarth, 1977). The TiO,
content (7-10 wt per cent) is relatively high compared with
data from other localities but compares well with uranian-
pyrochlore from Ilomba Hill, Malawi (Deans, 1966) contain-
ing 10.10 wt per cent TiO,. Pyrochlore seems to be the latest
crystallisation product in these assemblages of metasomatic
origin (Parker and Fleischer, 1968). It is interesting to note
that Nb and Ta do not enter the lattice of arfvedsonite or ae-
girine, which was interpreted by Parker and Fleischer (1968)
as an example of the accumulation and late crystallisation
of Nb and Ta in pyrochlore. On the other hand, the highly
interstitial nature of coexistent astrophyllite with high con-
centration of Zn, Sn and Nb indicates that astrophyllite has
crystallised as one of the latest minerals in the paragenesis
when appreciable amounts of lithophile trace elements were
concentrated in the fluid-phase.

7.2.8 Amphibole
Amphibole is the dominant mafic constituent in metalumi-
nous and peralkaline granites. Based on petrographic obser-
vations, amphiboles from Brandberg granites fall into a cal-
cic and a sodic group. Euhedral hornblende occurs as early
phenocrysts in subvolcanic quartz-monzonitic rocks and has
often crystallised before feldspar and quartz. In metalumi-
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nous granites, the most common rock type in Brandberg,
the amphibole consists of euhedral to subhedral greenish-
brown hornblende of edenitic composition which has obvi-
ously grown at the expense of early clinopyroxene, which
occasionally is preserved in the core of edenite crystals.
Rims of dark-green to bluish-green, iron-rich amphib-
ole of richteritic composition have often been developed
at the expense of hedenbergite or edenitic hornblende in
fayalite and quartz porphyries. Interstitial and poikilitic,
dark-blue arfvedsonite is the characteristic sodic amphibole
of the peralkaline granites and slightly agpaitic (agpaitic
index >0.9) rocks and has crystallised later than feldspar
and quartz, indicating a non-magmatic origin. Chemical
analysis of Fe-rich amphibole is somewhat critical using
microprobe analytical methods because the main drawback
of this technique lies in the fact that the discrimination of
Fe?* and Fe** is impossible (which is important to calculate
the structural formula), especially for sodic-iron rich end
members. The different methods of estimating the Fe*/Fe’*
-ratio and calculating the structural formula of amphiboles
are discussed in Neumann (1976), Leake (1978) and Rob-
inson et al. (1982). The structural formula for arfvedsonite
of endmember composition was calculated on the basis of
15.20 cations to obtain a stoichiometric structural formula
with full charge balance. For Ca-amphiboles the formula
has been calculated on the basis of 22 oxygens to avoid an
overestimation of Fe**.

The chemical composition of amphiboles from Brand-
berg depends strongly on the chemistry of the host rock.
Two distinct compositional trends have been recognised
(Figs 59 and 60):

1. A Ca-Al"Y -rich (Si-Na-K)-poor trend in persolvus and
transolvus granites and quartz monzonites with agpaitic ra-
tios <0.9.

2. A Ca-Al"-poor and (Si+Na+K)-rich trend in high al-
kali-granites (A1=0.90-1.00) and peralkaline granites with
agpaitic ratios >1.

The existence of calcic- and sodic-calcic- to sodic trends
for amphiboles in Si-oversaturated rocks from alkaline ring
complexes have been recognised and investigated by Giret
et al. (1980), Bonin (1982), Ike ef al. (1985) and Hogarth et
al. (1987). In early subvolcanic quartz monzonites the com-
position of calcic amphiboles ranges from ferro-actinolite
to ferro-edenite. High Mg-Ca-ferro-actinolites have been
apparently developed at the expense of Ca-rich pyroxene
and successively became replaced by hornblende of ferro-
edenitic composition.

In places where late aegirine-augite is present, ferro-
edenite is rimmed by bluish sodic-calcic amphibole. Ferro-
edenite from persolvus granites tends to be slightly more
enriched in Si due to Na/Al" - Si substitutions and often
occurs together with secondary aggregates of annitic biotite
(Bonin, 1982). Hydrothermally altered rocks in the vicin-
ity of ring fractures contain ferro-edenite with character-
istic deep-green to bluish rims of richteritic/arfvedsonitic
composition with parallel, increasing agpaitic coefficients
towards 1.

Sodic amphiboles from peralkaline Brandberg granites
have previously been described as “pneumatolytic arfv-
edsonite” (Cloos and Chudoba, 1931) and as “riebeckite”
(Von Knorring, 1985). The optical and chemical results of
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Fig. 60: Compositional trend of amphibole from Brandberg
granites in the Ca/(Na+K) diagram.

this study clearly show that most of the blue amphiboles as-
sociated with the ‘peralkaline facies are in fact fluor-arfved-
sonites of endmember composition according to the nomen-
clature of Leake (1978). With increasing peralkalinity of their
host rock, arfvedsonites become more depleted in Ca and
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Al" and enriched in Si+Na+K and Fe,, reflecting Fe**/(Fe*" +
AlY) endmember-ratios towards 1 and Mg/(Mg+Fe?")-ratios
trending towards 0. Parallel with increasing agpaitic coef-
ficients of their host granite, F and Zn have increasingly en-
tered the amphibole lattice, reaching highest concentration in
metasomatites (F >3 wt per cent, ZnO >4 wt per cent).

The Cat+Al"v/Si+Na+K diagram (Fig. 59) has been widely
used to illustrate chemical variation trends for the amphibole
group (Giret ef al. 1980; Bonin, 1982).

The group of calcic amphiboles of the ferro-actinolite-
ferro-edenite series is characterised by Ca+Al"v -contents
>2.5 and Si+Na+K contents <8 whereas sodic-calcic- and
sodic amphiboles show values <2.5 and >8 respectively. The
gap existing between the two groups has been interpreted
to represent the critical stage when the agpaitic coefficient
of the host rock trends towards I, causing the breakdown of
calcic amphibole in high alkaline/peralkaline environments
(Giret et al. 1980). These authors therefore argue for the ex-
istence of two solid solution series where the first, Si-poor
group (Si=6.00-7 .01) is suggested to represent the magmatic
range of amphibole composition in non-agpaitic rocks. The
second, Si-rich group (Si=6.76-8.00) covering the series of
sodic amphiboles is believed to have crystallised during late-
magmatic or subsolidus-stages and therefore is not strictly
magmatic in origin (Giret et al. 1980). Arfvedsonites from
the Amis Complex are believed to have crystallised in the
subsolidus under the influence of a fluid-phase, rich in trace
elements and fluorine. According to the international nomen-
clature scheme (Rock and Leake, 1984), sodic amphibole
from Brandberg is zincian fluor-arfvedsonite paragenetically
related with stanniferous aegirine and astrophyllite, rich in
lithophile trace elements. Textural characteristics like the
highly interstitial to poikilitic nature of arfvedsonite strongly
point to a hydrothermal origin for these assemblages. Simi-
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Fig. 61: Compositional range of feldspars in Brandberg grani-
toids in the Or-Ab-An and An-Ab-Or - diagram.

lar post-magmatic occurrences are reported from Nigerian
arfvedsonite-aegirine granites (Bennett et al. 1984; Ike et
al. 1985).

7.2.9 Feldspar

The compositional trend of feldspar in Brandberg grani-
toids ranges from plagioclase and alkali feldspar in sub-
volcanic rocks, towards endmember albite or microcline
in subsolidus altered granitoids (Fig. 61). Resorbed, highly
embayed plagioclase phenocrysts from the Naib and Go-
matsarab quartz monzonites are commonly zoned. The
cores of the crystals consist of andesine (Ab,, ., An, ) or
oligoclase-andesine (Ab,, . An, . ) with rims of oligoclase
(Ab,, ., An, ). In quartz monzonites, K-exchanged oligo-
clase-andesines are not uncommon, with potassium con-
tents up to 4 per cent and increasing FeO concentrations.
In metaluminous hornblende-bearing granites and fayalite
granites, the plagioclases are characterised by an anorth-
ite-rich core enveloped by an irregular zone of antiperthite-
perthite which is occasionally overgrown by orthoclase to
orthoclase-microperthite. Subsolidus exsolution in tran-
solvus granites has produced perthites and microcline-mi-
croperthites in the compositional range Or,, - Or, . Turbid
microcline with tartan twinning (Or,, ), which occurs in
potash altered, metaluminous hornblende granites, succes-
sively grades into slightly reddish micro cline (Or,, ,,) when
the agpaitic coefficient of the host trends towards one.

Subsolidus granites typically contain two feldspars which
have crystallised under ordered conditions. Tartan twinned
microcline (Or,, ) and late albite (Ab,,,.) occurs together
with Li-mica, fluorspar and occasionally topaz, replacing
feldspar in peraluminous granites. In peralkaline types, mi-
crocline-perthite and microcline are partly replaced by Na-
albite (Na,0 >10 wt per cent, Ab,, ., in albitites ).

K-exchanged, flesh- to deep-red feldspars associated with
the deposition of sphalerite, cassiterite and fluorspar domi-
nantly occur along prominent alteration zones of “reddened
wallrock™.

Representative analysis of feldspar from a sphalerite min-
eralised vein in basement granite is given in table 2.5 (1-4)
of the appendix. Red, turbid and typically untwined maxi-
mum-microcline from the central portion of the vein shows
Or-contents >Or,,. Less K-exchanged, turbid microcline-
microperthite (Or,, ) envelopes the reddened zone.

The entire compositional range of feldspar from Brand-
berg granitoids (Fig. 61) indicates that early subvolcanic
rocks contain plagioclase and alkali feldspar which, in hy-
drothermally altered granite, are either Na- or K-exchanged.
Depending on the intensity, composition and duration of
subsolidus rock-fluid interaction processes the feldspars
trend towards endmember composition.

A selection of feldspar analyses from various rock types
is given in the appendix (table 2.5).
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8. Hydrothermal alteration and style of
mineralisation

8.1 Introduction

Tischendorf (1977) and Stemprok and Sulcek (1969) have
shown that post-magmatic alteration processes associated
with specialised granitic intrusions have only affected plu-
tons that have crystallised and fractured and that alteration
and deposition of ore minerals is caused by silicate melts
and aqueous fluids enriched in Na, K, Li, B, Fe, H, F, and
Cl. Terms like greisenisation, silification, chloritisation,
fluoritisation etc. have been used to describe these process-
es. Alteration processes associated with alkaline anorogenic
granites are known to occur in many alkaline provinces in
the world. Mineralising processes which led to the depo-
sition of economic important ore deposits of the Nigerian
type, have been poorly understood in the past (Taylor 1979).
More recently, Bowden and Kinnaird (1984) and Kinnaird
et al. (1985a) showed that alteration and ore deposition
in alkaline granites of the Nigerian Alkaline Province are
late- to post-magmatic in origin. Based on some character-
istic mineralogical and chemical changes which originated
during hydrothermal rock-fluid interaction processes, they
classified sodic metasomatism, potassic metasomatism,
acid metasomatism, silica metasomatism and argillic al-
teration. In the Russian literature terms like albitisation and
microclinisation have been used to describe Na for K and K
for Na exchange processes (Shcherba, 1970; Korzhinskii,
1970). The alteration sequence model proposed by Smirnov
(1976) illustrates that albitisation, microclinisation and gre-
isenisation occur together and are sequentially emplaced in
and around a rare-metal specialised intrusion.

Metasomatic processes associated with Brandberg gran-
ites, with a few exceptions, are similar to those reported
from Nigerian ring complexes by Bowden and Kinnaird
(1984a), Kinnaird (1984) and Kinnaird ef al. (1985a). A se-
quence of post-magmatic fluid-rock interaction processes
under subsolidus conditions is believed to be responsible
for the change of the primary chemical and mineralogical
composition of the granites.

8.2 Sodic metasomatism

Na for K exchange processes which led to the develop-
ment of albite and associated sub solidus mineral assem-
blages have predominantly affected arfvedsonite-aegirine
granite, biotite granite and to a lesser extent, subsolvus
hornblende-biotite granites. Sodic metasomatised, peralu-
minous rocks are cream or light coloured, rich in albite,
with dominantly porphyritic, saccharoidal textures and
occur as irregular bodies in the cupola zone of the biotite
granites or as lenticular, sheeted or layered bodies and ring-
shaped dykes. Irregular masses of albitised biotite granite
are found in the Hungurob Mulde, the Bushman Valley
area, north of the Wasserfallflache and south of Kdnigstein.
Lenticular and ring-shaped albite-rich zones and dykes oc-
cur in the lower Hungurob Ravine, southwest of the Horn
and along the contact between the first and second ring
of hornblende granite towards the northwest of the massif

(Fig. 3). Microscopic studies and microprobe analyses of
alkali feldspar, plagioclase, pyroxene, amphibole and mica
comprise distinctive mineralogical, optical and prominent
chemical changes during Na-metasomatism (chapter 7.2)
similar to those described by (Kinnaird, 1985; Kinnaird
et al., 1985, 1985a; Charoy, 1982; Rose and Burt, 1979;
Tischendorf 1977).

Depending on the alkalinity, different mineral assemblag-
es and chemical trends have developed during Na for K ex-
change processes. Feldspars show the most drastic changes.
With initial Na-metasomatism, the exchange of K-ions by
Na-ions in primary perthites and microcline-perthites from
biotite granites led to the development of patch perthite
which progressively became replaced by chessboard albite.
With increasing rock-fluid interaction most of the former
alkali feldspar is replaced by ordered albite (Ab, ). Dur-
ing feldspar alteration the original medium-grained, grey bi-
otite granite has been changed to a leucocratic, fine-grained
albite-rich granite. Apical parts and cupola zones of biotite
granite in the central part of the Brandberg Complex, and
ring dykes along the contact of the hornblende granites are
locally converted into albite-rich biotite granite or saccha-
roidal albitites.

The process of albitisation is less intense in hornblende
bearing granites of the outer zone of the Brandberg Com-
plex. These granites often comprise granophyric or myrme-
kitic textures. Perthite locally is replaced by chessboard
albite or occasionally by small grains of ordered albite.
Simultaneously with feldspar the composition of mica has
been changed during sodic metasomatism. Dark-brown to
red, strongly pleochroic biotite of annitic composition first-
ly interacts with the fluids by forming a pale-green reaction
rim. With increasing metasomatism the former Ti/Mg-rich
biotite is replaced by yellowish-green siderophyllite. In al-
bitised biotite granites of the cupola, siderophyllite occa-
sionally is rimmed by colourless zinnwaldite (Fig. 19). In
contrast to albitised biotite granites from Nigeria (Kinnaird
et al. 1985) no columbite is found in similar Brandberg
rocks and cassiterite is the only rare ore mineral which may
be present beside monazite, zircon and xenotime.

The process of albitisation of hornblende granites and bi-
otite granites seems to be limited to cupola zones, which
have obviously acted as trap for the fluids and along steeply
dipping contacts between the different granite intrusions or
along other pre-existing channel ways like ring dykes. Al-
bitisation never reaches an advanced stage in hornblende
bearing granites but slight Na-metasomatism may occur
disseminated or patchily.

The peralkaline arfvedsonite-aegirine granites of the
Amis Complex (chapter 9) comprise the most effective
subsolidus changes during Na-metasomatism. Textural
variations produced by the albitisation process range from
porphyritic to equigranular saccharoidal with the typical
“snowball” texture (Fig. 62).

In both provinces the process of sodic metasomatism pro-
duced light coloured, saccharoidal arfvedsonite albitites.
Originally perthitic feldspar and microcline have been con-
verted to albite, which forms small laths that surround or
enclose quartz and microcline, or microcline-perthite (Fig.
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Fig. 62: Photomicrograph of albitised peralkaline granite with
“snowhall texture”, Amis Complex (magnification x 41,
XPLY, descrption in text),

62). Arlvedsonite and aegirine are highly interstitial or poiki-
litic indicating late-stage crystallisation. At lower tempera-
tures and increasing alkalinity arlvedsonite is progressively
replaced by dark green aegirine. Depending on temporary
changes in the peralkalinity of the fluids the process has oc-
casionally been reversed. Microprobe analyses of sodic am-
phibole and aegirine (see appendix, table 2.3 and 2.4) reveal
that extremely peralkaline metasomatising fluids were infil-
trated at the bottom of the Amis Com-plex and penetrated
through the overlaying network of alkali feldspar, quartz
and late albite. During crystallisation of the sodic mineral
assemblages the elevated levels of rare metals in the fluids
led to some remarkable substitutions in arlvedsonite, astro-
phyllite and aegirine. Dark blue arfvedsonite has substituted
appreciable amounts of Zn in the lattice (2.5-4.4 wt per cent
Zn0), astrophyllite contains 0.21 wt per cent SnO,, 5.10 wt
per cent Zno and 0.89 wt per cent Nb,O_, and even late-stage
aegirine holds up to 0.50 wt per cent SnO, in the lattice. The
Na- silicate minerals are accompanied by dispersed, Nb-
rich pyrochlore, zircon, monazite, yttrio- fluorite and cryo-
lite, reflecting the high level of trace elements introduced by
sodic alteration processes. The development of secondary,
annitic biotite replacing arlvedsonite under subsolidus con-
ditions is limited to late peralkaline dykes (brandbergites).
Ernst (1962) has shown that at low temperatures arlvedsonite
coexists with annite which is more stable than ferrous am-
phibole end-members. During cooling to lower temperatures
arlvedsonite-riebeckite may react with perthite to form an-
nite/stil-pnomelane under subsolidus conditions as proposed
by Wones and Gilbert (1982).

Depending on the alkalinity and mineralogical composition
of the original granite the process of sodic metasomatism has
transformed peraluminous biotite granite into siderophyllite/
zinnwaldite - albite - quartz - microcline perthite rocks and

in peralkaline environments has produced arlvedsonite - ae-
girine - albite - quartz - microcline assemblages with pyro-
chlore. Based on their study of Nigerian A -type granites,
Bowden and Kinnaird (1984) classified the two contrasting
styles, according to the associated mineralisation, into a co-
lumbite and pyrochlore type. Smirnov (1976) subdivided
albite-rich mineral assemblages produced by sodic altera-
tion processes of alkaline granite into biotite -quartz - albite
- microcline types and aegirine - albite - quartz - microcline
assemblages with zircon, monazite and yttrium minerals.
Both types of Smirnov (1976) are present at Brandberg.
Geochemically, the process of sodic metasomatism is
characterised by an increase in the major oxides, Na and
Fe, combined with a decrease in K (chapter 7). Trace ele-
ments like Rb, Nb, Hf, Th, Zr, Zn and Sn display enrich-
ment trends, especially in peralkaline granite. Peralumi-
nous granites affected by sodic alteration generally show
the same trace element variation with the main difference
that Zn and Y follow a depletion trend in the subsolidus
biotite granites (Fig. 44) indicating the important role of the
peralkaline phase in leaching and concentrating Zn.

8.3 Potassic metasomatism

The process of potassic metasomatism or microclinisa-
tion is recorded from a number of important tin deposits
in Cornwall, Bohemia, China and Nigeria. In the Nigerian
type of tin deposit, potash alteration is characterised by
partial to complete replacement of sodium by potassium
in the feldspars of the biotite granites, the development of
intermediate to maximum microcline, growth of annitic
biotite and siderophyllite and chloritisation of the original
mica and occurs as wallrock alteration along fractures, as
pockets or below the volcanic cover (Bowden and Kinnaird
1984). In the Brandberg Complex, the K for Na exchange
processes play the most significant role and can be recog-
nised in the field by more or less intense reddening of the
feldspars depending on the duration and intensity of fluid-
rock interaction. The reddening of alkali feldspars during
microclinisation processes can be explained by the release
of iron during metasomatism to form haematite giving these
assemblages its colour (“reddened wall rock” ; Bowden and
Jones 1978). K for Na exchange processes have mainly af-
fected biotite granite and country rock and to a lesser ex-
tent hornblende bearing varieties and peralkaline granites.
The most characteristic feature of potassium metasomatised
granite is the generation of ordered, red microcline. In their
study of the Ririwai Complex in Nigeria, Kinnaird et al.
(1985) showed that the new generated feldspar is more fully
ordered, lacking the typical cross-hatch twinning and com-
positionally range from ordered to maximum microcline.
Potassium metasomatism in Brandberg is selectively perva-
sive in peraluminous biotite granites. Plagioclase phenoc-
rysts and groundmass plagioclases are replaced by turbid,
red microcline and annitic biotite which is destabilised to
green siderophyllite and magnetite. In some of the biotite
granites the process continued to a more advanced stage
where the rest-biotite is completely replaced by siderophyl-
lite or chlorite and the feldspars have broken down to topaz
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Fig. 6.3: Phowmicrograph of zoned alianite (al), cassiterie (cass),
quartz (qz) and alkali feldspar (kfsp) in potash alwered biotite
eranite. Wasserfallfliiche (magnification x 41, XPL)

Fig. 64: Reddened wallrock of maximum microcline (mic) bor-
denngan alteration viein (V) in basement granite, Gomatsarab.

- Li mica - sericite assemblages, occasionally with epidote.
In hornblende granites ferroedenite has broken down to
magnetite together with secondary zircon. In transolvus
granite containing biotite and edenite, Ti/Mg-rich biotite
is randomly replaced by annite-siderophyllite. Chevkinite,

monazite and fluorite are common accessories. Both sub-
facies show a characteristic pinkish-red colour and are me-
dium to fine grained. The wide variability of their texture
and mineralogical composition reflects the intensity of sub-
solidus alteration processes and the consequent destruction
of primary mineral assemblages.

Microclinisation processes have also affected granite por-
phyries which often are deep flesh red in colour. Phenocryst
and groundmass feldspars consist of intensely haematised
intermediate to ordered microcline.

Fine disseminated cassiterite and zoned allanite (Fig. 63)
have occasionally been found in flesh-red, miarolic por-
tions in the roof-zone of biotite granite but often the oxide
ore-minerals were generated during later H*-metasomatism
which affected already altered granite.

Red coloured microcline assemblages bordering veins are
widespread in potash altered environments and often playa
significant role in the deposition of economically impor-
tant oxide/sulphide ores in lodes (e.g. Ririwai lode, Nigeria;
Kinnaird et al., 1985). Vein and fissure controlled meta-
somatic processes have been recognised in biotite granite
and country rock composed of Pan African, post-tectonic
two-mica granite. Alteration zones are easily recognised
by conspicuous brick-red microcline-zones (Fig. 64) along
fractures or bordering a central quartz stringer.

Highly alkaline, potassium-rich aqueous solutions which
migrated along fissures led to drastic changes in the chemi-
cal composition of feldspar in the Pan African granite. Mi-
croprobe analyses of feldspars from red alteration halos
indicate apparent losses of sodium and significant increases
in potassium. Former albites and perthites are transferred
to microcline micro-perthite and microcline of endmember
composition (Or,,). The intense reddening and loss of the
typical twinning is due to micro-haematisation processes
during metasomatism. Oxide/sulphide ore assemblages
which occasionally occur together with microclinisation
processes are believed to be associated with later H"-meta-
somatism, silicification- and chloritisation processes which
are superimposed on already microclinised rock.

Geochemical changes during potassium metasomatism
are characterised by an increase in K combined with de-
creasing values for Na and most of the trace elements. Rb,
Sn and Zn follow an enrichment trend during potassic al-
teration processes.

8.4 H*-metasomatism (greisenisation)

Stemprok (1987) and Taylor (1979) have concluded that
greisenisation is the most common metasomatic process
accompanying tin and rare-metal specialised granitoids. In
the past the term greisen has been used in many different
senses to describe the decomposition of feldspar and mica
and the formation of new micaceous mineral assemblages.
Stemprok (1987) and Janecka and Stemprok (1967) defined
the term greisenisation as a granite related, post-magmat-
ic metasomatic process in the course of which biotite and
feldspars became unstable to form quartz, mica, topaz as-
semblages accompanied by the deposition of ore minerals.
Depending on the composition of the original rock type
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and the chemical composition of the greisenising fluids
the final mineral parageneses may differ. Greisenisation
is known to be genetically linked with other metasomatic
processes like silicification, tourmalinisation, fluoritisation,
sericitisation and chloritisation (Taylor 1979; Stemprok
1987). The most important greisen-type tin deposits associ-
ated with alkaline granites of the intra-plate type occur in
Nigeria (Taylor 1979). More recently Bowden and Jones
(1978), Kinnaird (1984, 1985) and Kinnaird ez al. (1985a)
concluded that complex metasomatic processes, similar to
those know from S- and I -type granite-related deposits,
are responsible for the deposition of oxides and sulphides.
Greisen-type alterations in Brandberg predominantly occur
pervasively as irregular zones in the cupola of potash/sodic
metasomatised granite and as fracture and fissure control-
led alterations. Mineral assemblages produced during gre-
isenisation processes are extremely complex depending on
the intensity and duration of auto-metasomatic rock-fluid
interaction and the mineralogical and chemical rock com-
position. Acid metasomatism is dominantly superimposed
on earlier potash/sodic metasomatised biotite granites. In
microclinised/albitised, porphyritic perthite granite the
mineral assemblages are comparable with those reported
from Nigerian equivalents (Kinnaird, 1984, 1985 and Kin-
naird et al. 1985). Perthitic feldspars and plagioclase are
partly replaced by micaceous aggregates of yellowish green
Li-siderophyllite/protolithionite or occasionally by colour-
less zinnwaldite together with rounded topaz and minor
fluorite. Deposition of fine grained disseminated cassiter-
ite occurs sporadically in irregular zones associated with
chloritised, micaceous aggregates which have been gener-
ated when the process continued to lower temperatures: If
the process of H'-metasomatism has affected granophy-
ric or graphic intergrown, microclinised alkali granite the
feldspar components have broken down to Li-siderophyl-
lite/chlorite aggregates accompanied by the deposition of
cassiterite which occasionally replaces the mica (Fig. 65).
Greisenisation superimposed on quartz-microcline assem-
blages, which originated during early potash metasomatism
in cupola zones of biotite granite, has produced quartz - Li-
siderophyllite - feldspar assemblages with minor fluorite,
topaz and cassiterite.

Vein controlled mineralisation produced by a combina-
tion of potash and H'-metasomatism is best developed in
altered country rock along the north-eastern contact of the
complex. The fracture systems trend north-northeast and
consist of a series of parallel quartz and greisen veins set
in up to 10m wide zones of altered, greenish-grey, late Pre-
cambrian two-mica granite, separated by zones of reddened
microcline wallrock.

The composite greisen-type quartz veins carry abundant
sphalerite with minor cassiterite accompanied by mica-
ceous zones of chlorite, siderite, quartz, epidote and oc-
casionally topaz (Fig. 66). The granitic country rock ad-
jacent to greisen veins shows a rapid transition from fresh
muscovite - biotite - perthite granite through pinkish grey
mica - sericite granite, continuously grading into a red mi-
crocline -chlorite rock with quartz-mica greisen (Fig. 67).
Greisenisation processes are generally superimposed on
early potash altered fracture zones along which the origi-

Fig. 65: Phowmicrograph of |ate cassiterite (cass) huving -
placed hiotite in gruphic granite (gz and kisp). Greisemised
leuco-granite, Kataraky/Hunguroh Ravine (magmfication x
41, XPL)

Fig, 6i6: Sphalerite vein (sp) in Pan Africin granite, produced by
a combination of microclmisation and greisemsagon pro-

vesses, north of the Schof Ravine,

nal feldspars has been broken down to red microcline (Fig.
67). Microprobe analyses of feldspar indicate that albite and
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Fig. 67: Microclinised and greisenised granite consisting of
quartz {gz ), microciine (mic), chiorte (chl), epidote (epd ) and
fine dissemninated cassiierite (Cass)

perthite from fresh Pan African granite were subsequently
transformed into microcline-microperthite and microcline.
Deep red, turbid microclines adjacent to greisen veins are of
endmember composition (Or,).

This early process was accompanied by the deposition of
zircon, allanite, monazite and cassiterite. With initial greisen-
isation, feldspars were decomposed to micaceous aggregates
of possibly Li-siderophyllite and minor topaz. The dominant
ore mineral which generated at this late stage consists of pale
brown sphalerite cemented in abundant siderite which is con-
centrated in the central part of the vein (Fig. 68).

When the process of chloritisation continued to lower tem-
peratures it is accompanied by the deposition of epidote.

Geochemically, the process of greisenisation is complex
and very variable depending on the composition of the pri-
mary rock type and earlier metasomatic processes. In Brand-
berg, greisen-type alteration is generally superimposed on
carlier potassium metasomatised granites and obviously the
potash trace element pattern is reflected. Greisenisation is ac-
companied by an increase in Fe and Si and the decrease of
Al caused by the breakdown of the feldspar minerals to mica.
The trace element variation displays a general increase in Rb,
Y, Zn, Sn, Th, W, Ta and Li, indicated by the development
of lithionite/zinnwaldite mica, and depletion in Ba and Sr
(chapter 7) which is indicated by the shift of altered samples,
away from the magmatic trend (Figs 42, 43, 47 and 48).

8.5 Boron metasomatism (tourmalinisation)

Individual tin provinces are known to be enriched in boron
or fluorine or both (Pollard et al. 1987) which may result in
the formation of tourmaline-rich, leucocratic rocks. In Na-
mibia, tourmaline-rich igneous rocks are predominantly as-
sociated with Pan African granites and pegmatites but occur-

Fig. 68: Photomicrograph showing the central area of a sphalerite
minerahised alteration vein in country rock. Sphalerite {(sp),
chlorite (chl) and epidote (epd) are cemented in siderite {sid),
(magnification x 120, PPL)

rences of tourmaline nests or spots are reported from Erongo
(Fig. 1), a Mesozoic ring complex 120 km SE of Brandberg
(Gevers and Frommurze, 1929). Boron metasomatic proc-
esses in the Brandberg occur as tourmaline-rich nodules and
spots in leucocratic biotite granite, as vein- and fracture con-
trolled alteration zones in potash altered granite and in the
kinas of the complex (killas=altered hornfelsic sediments in
the contact with a granite intrusion).

Tourmaline nodules are known from many boron-rich
granitic environments and essentially consist of quartz and
bluish-green schorl replacing potassium feldspar (Nemec
1975). Roundish quartz-tourmaline segregations which are
commonly rimmed by a light coloured halo, occur in the roof
zone of a ring shaped sheet of albitised biotite granite in the
Hungurob Ravine (Fig. 20). Essentially they consist of blu-
ish-green, pleochroic schorl having replaced all mafic min-
erals and partly replacing potassium feldspar together with
small laths of albite, quartz and accessory fluorite, monazite
and zircon. Tourmaline most commonly displays variable
pleochroic colour zonation. Yellowish-green cores usually
grade into bluish outer zones and rims. The light colored ha-
los around the tourmaline aggregates correspond to the min-
eralogical composition of the host granite but lack the mafic
components. Along the transitional zone between granite and
the halo, annitic biotite has broken down to colourless or
slightly yellowish siderophyllite/zinnwaldite.

Despite the uncertainties concerning the origin of tourma-
line segregations in aplogranites, tourmaline is thought to be
either an integral part of the magmatic rock or of metasomatic
origin (Taylor, 1979). In their study of tin liquidating glasses
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in the CaO-B,0,-28i0, system, Durasova and Barsukov
(1973) however proved the presence of an immiscible bo-
ron-rich phase. To some extent their results can explain the
possibility for tin and boron to be extracted from silicate
melts by liquidation processes. On the other hand, tourma-
line replacement units are believed to be a result of complex
metasomatic processes. In his study of tourmaline spots in
leucocratic granites, Nemec (1975) came to the conclusion
that boron-rich fluids were introduced into the host rock
and tourmaline grew at the expense of biotite and feldspar.
The necessary concentration of iron needed for the precipi-
tation of tourmaline was leached from the mafic minerals
causing the breakdown of biotite, which produced the dis-
tinctive light coloured halos around the tourmaline spots
(Nemec, 1975). The conversion of primary annitic biotite
to siderophyllite along the outer margin of the halos pos-
sibly originated by the release of potassium during growth
of schorl at the expense of alkali feldspar. Potash and sodic
metasomatic processes generally seem to be genetically re-
lated with tourmalinisation. Isolated quartz-tourmaline seg-
regations preferably occur in the roof facies of leucocratic,
sodium-rich granites whereas in potassium altered envi-
ronments, tourmalinisation is more of a pervasive nature
forming stock- or dyke-like replacement units. Tourma-
line typically forms radial arranged rosette-like aggregates
in quartz-alkali feldspar rocks (Figs 21 and 22) similar to
luxullianite. At the type locality, luxullianite is interpreted
as a combined product of potash and boron metasomatism
(Lister, 1978). Allman-Ward (1985) pointed out that at St.
Austell, SW England, boron-rich aqueous fluids were chan-
nelled upwards along fractures located to one side of the
granite cupola. He speculated that boron and silica-rich
aqueous fluids separated at depth from a residual magma.
Fluid over pressure fractured the already consolidated gran-
ite carapace to allow the distribution of the tourmalinising
fluids. The mechanical energy produced by boron meta-
somatism seems to be an important control factor for the
structural evolution (Pollard et al. 1987). Whether boron
is a primary constituent of the magma or has been leached
by aqueous fluids from boron-rich, exhalative Damaran
metasediments (tourmalinites) or tourmaline-rich, orogenic
granites is unclear. Leaching experiments of Hochstein and
McKee (1986) showed that some boron can be leached from
sediments at temperatures as low as 50°C and might have
been released before any hydrothermal alteration occurred.

The tourmalinised killas of Karoo sediments were first
recognised by Cloos and Chudoba (1931) and described
as “kontakt pneumatolytisch” locally tourmaline bearing
hornfelses and conglomerates. Rocks of the contact aureole
consist of pelitic and quartzo-feldspathic andalusite horn-
felses, quartz-pyrophyllite bearing pelites, epidotised and
granitised volcanics and tourmalinised quartz-conglomer-
ate. Metasomatic changes are most intense in the conglom-
erate horizon. Quartz has recrystallised as a granoblastic
mosaic whereas the former matrix and feldspar-components
are replaced by fine grained aggregates of colourless mica,
topaz and quartz (Fig. 69).

Primary biotite in more arkosic varieties has broken down
to yellowish protolithionite or chlorite. Bluish, strongly
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Fig. 6% Photomicrogriph of wuwrmalimised conglomerie, Amis
Comples showing zimnwalditic mica (2) ogether with grano-
blastic quanz (gz) and interstitially crystallised wourmaline
i}, (muoenification x 41, XPL)

pleochroic tourmaline replaces mica or relict feldspar giv-
ing the rock a blasto-porphyritic texture. Frequently the
conglomerate contains perfectly rounded, black pebbles of
a tourmaline-rich metasediment. Stratabound tourmalinites
are reported from the Damaran, which is known to be a bo-
ron-rich province (Badenhorst, 1989). The nearest outcrop
of tourmalinite occurs at Uis, 30 km E of Brandberg (Diehl,
1986). In contrast to the yellowish-brown, unzoned tourma-
line from the pebbles, tourmaline which originated from bo-
ron-rich fluids channelled out of the granite into conglomer-
ates and gritstones is blue in colour. Along the outer rim of
the tourmalinite pebbles the yellowish-brown tourmaline is
overgrown by a later, blue variety.

Boron metasomatism of Karoo sediments is most intense
in the vicinity of the Amis Complex forming a tourmaline-
rich aureole around peralkaline granite indicating a loss of
the boron-rich phase associated with the intrusion. Boron-
rich, aqueous fluids presumably have been released during
an early stage in the history of the Amis Complex. In the
complex itself tourmaline nodules only occur in a horizon
of peraluminous biotite granite below the roof zone where
boron has obviously been trapped in a more rapidly cooling
unit (chapter 9).

London ef al. (1988) showed that early vesiculation of
aqueous fluids in a peraluminous system would remove
boron. They concluded that the loss of boron would lead
to higher liquidus and solidus temperatures decreasing wa-
ter solubility and larger crystal-liquid partition coefficients
resulting in an early precipitation of trace element bearing
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phases (London et al. 1988) which should be interpreted as
late- or post-magmatic.

Tourmaline is not a mineral of the peralkaline granite se-
ries of the complex but the occurrence of arfvedsonite-albite-
fluorite nodules (lindinosite) indicates that genetically similar
metasomatic segregation processes took place in peralkaline
environments (chapter 9).

8.6 Pyrophyllite alteration

Pyrophyllite bearing, altered silt- and mudstones occur as
irregular zones which envelope the tourmalinised sediments
around the Amis Complex. The alteration often has produced
lense-like patches or a mosaic of light coloured, angular
zones in deep reddish-brown Karoo pelites which in places
easily could be mistaken for brecciation (Fig. 70). The attrac-
tive rock has found use as an ornamental stone (“Brandberg
pyrophyllite”’) and locally is mined on a small scale. Micro-
scopically, the altered sediments consist of quartz and fine
grained, granular, occasionally radiating, fibrous crystals of
pyrophyllite (determined by XRD), haematite and accessory
tourmaline and zircon. The light and dark areas only differ in
the proportion of haematite and pyrophyllite indicating that
iron has been remobilised and removed from the light col-
oured alteration zones.

Zaykoy et al. (1988) have pointed out that the formation
of pyrophyllite during metasomatism is a regular process in
an acid media at 300-450°C with a SiO,:Al O,-ratio >2.36.
Since pyrophyllite alteration of Karoo pelites is limited to an
area around the Amis Complex, a metasomatic origin of the
quartz-pyrophyllite rocks can be assumed.

i T P Fiane Baie I el nes | oloured )k
Fig. T: Pyrophytine bearing alterstion zones (light coloured) i

s1lt- and mudstones, south of the Amis Valley

8.7 Silification

Late-stage release of silica which led to the deposition of
quartz in veins and veinlets or as fillings in vuggy micro-
clinised cupola granite (Fig. 18) occurs dominantly in deu-
terically altered granites of the complex and in adjacent Pan
African granite. The generation of quartz-veinlets and string-
ers often accompanies or follows hydrothermal alteration
processes occasionally producing vein-controlled oxide/sul-
phide ore assemblages dominated by pale brown sphalerite.

Pervasive silification in microclinised granite is sporadically
accompanied by the deposition of fine disseminated cassi-
terite.

Low temperature deposition of silica in the form of chal-
cedony is dominantly associated with fossil hot spring sys-
tems which occur along ring fractures and contacts of the
individual ring-intrusions. Beside the known occurrence in
the Numas Ravine (Pirajno, 1987), deposition of chalce-
donic-jasperoidal material and argillic altered, hydrothermal
breccia zones and dykes associated with fossil hot springs
occurs in the Katarakt/upper Hungurob Ravine area and in
the Basswaldrinne. All occurrences can be related to a late
ring fracture along the contact between ferroedenite-augite
and ferroedenite-biotite granite in the southern part of the
complex.

9. The Amis Layered Complex

9.1 Geology

In the south-western periphery of the Brandberg Complex
a predominantly agpaitic satellite intrusion has concordantly
intruded into sediments, volcanics and breccia and post-dates
the metaluminous and peraluminous intrusions of the main
massif (Fig. 3).

The intrusion covers an area of 5 km? with a maximum
thickness of ~350 m and dips 8-10° northeast, plunging 10-
22° towards northwest, more or less corresponding to bed-
ding and stratification of the sediments and volcanics. The
occurrence of layered granite and “pneumatolytic” changes
in arfvedsonite granite and country rock from the Amis Val-
ley previously has been recognised by Cloos and Chudoba
(1931). Silica oversaturated, agpaitic granites with well de-
veloped mineral layering occur as cyclic units of aegirine
granite, aegirine-arfvedsonite granite and arfvedsonite gran-
ite, repeated rythmically in this order (Fig. 71). The top of
each unit is composed of hornblende and/or biotite bearing
granite. Certain types of mineral layers recur in specific cy-
cles. Therefore, the Amis layered series can be subdivided
into three cyclic units of mineral stratified, peralkaline gran-
ites overlain by alkaline horn-blende/biotite granites (Fig.
71). The base of a unit consists of aegirine-albite granite fol-
lowed by a thin, zircon-rich layer overlain by aegirine-arfv-
edsonite granite.

The deuterically altered aegirine granite is characterised by
the presence of perfect radial spherulites of aegirine (Fig. 72)
set in a subsolidus originated matrix of ordered albite, chess-
board albite and microcline. Alkali feldspar is partly replaced
by euhedral albite, surrounding and partly enclosing anhedral
quartz or untwined microcline. With increasing replacement
of alkali feldspar by albite the rock grades into an aegirine-
albitite with similar textural characteristics, described as
“snowball texture” by Bowden and Kinnaird (1984) from Ni-
gerian equivalents. Honey yellow, disseminated pyrochlore,
up to 1 mm in size, is the characteristic Nb’- Ta ore-mineral
in the albitites and albite-rich agpaites. Towards the top, the
rock grades into a layer rich in quartz, albite and interstitial
zircon, aegirine and arfvedsonite.
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Fig. 71: Schematic profile of the Amis Layered Complex.

Fig. 72:
{ae) i femitised peralkaline grunite of lavered umit 1. Amis
Complex (magnification x 15, XPL).

Photommcrogroph of mdiate growing aegirine necdles

The following stratified horizon of arfvedsonite-astro-
phyllite granite is composed of interstitial aegirine replac-
ing arfvedsonite, poikilitic, golden yellow astrophyllite
(Ti-silicate), and interstitial, unzoned zircon set in an al-
bite-microcline-quartz matrix (Fig. 73). The thickness of
the basal layers decreases from unit 1 (60 cm) to unit 2 (20
cm) and unit 3 (4 cm).

The basal layers progressively grade into massive aegir-
ine-granite, up to 20 m in thickness, containing lenticular,
interstitial aegirine laths, zoned zircon and anhedral, inter-
stitial quartz, set in a network of microcline-perthite and
microcline partly replaced by albite. This layer gradually
passes upwards into a stratified body of aegirine-arfved-
sonite granite, up to 30 m thick. Aegirine progressively

[x x| arfvedsonite granite
Arfvedsonite/oegirine gronite

E Arfwedsonite/cegirine/astraphylite granite [4554% Transolvus biotite granite

Brondbergite
E Lindinosite

Fenite chonnel-dykes

Fig. 73: Photomicrograph of poikilitie sstrophy e (astr), quars
{ge), albite (alb) and (kfsp) in fenitised peralkaline granite,
Amis Complex (magnification x 41 XPL).

replaces arfvedsonite from the bottom towards the top of
the layer which can result in a complete replacement of
arfvedsonite. Frequently the layer of aegirine-arfvedsonite
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9. The Amis Layered Complex

granite therefore is suppressed. The aegirine granite of unit
1 additionally contains large (1 cm), perfectly zoned crystals
of zircon and specks of zinc-rich pyrophanite. Accessory
pyrochlore occurs in aegirine- albite granite of unit 1 and 2
showing patches of granophyric intergrown alkali feldspar
and quartz.

The aegirine-arfvedsonite granites are overlain by arfved-
sonite-microcline granite and arfvedsonite-albitite with per-
fectly developed inch-scale layering (Fig. 74).

Fig. T4: Mineral layvering in arfvedsonite granite of umt 1. Amis
Complex

The transitional zone between the two horizons is marked
by a 10 cm thick, pegmatitic zone of quartz-microcline-
perthite-arfvedsonite granite, overlain by medium grained,
aegirine-arfvedsonite granite which successively becomes
finer grained after 5 - 8 cm. This horizon is up to 40 m thick
and characterised by well developed, dark-blue mineral lay-
ers of arfvedsonite in a network of microcline and quartz
with intercalated, rhythmically repeated, light coloured ar-
fvedsonite albitites (Fig. 75). The thickness of the individual
layers varies from a few millimeters to several meters. The
dark zones consist of an interlocking network of microcline,
in which quartz and arfvedsonite have crystallised intersti-
tially. Albite laths, partly replacing microcline are surround-
ing anhedral quartz which give the rock the characteristic
“snowball-texture”. Interstitial zircon and fluorite are the
dominant accessories. The leucocratic albitite layers consist
of euhedral albite with interstitial quartz and minor arfved-
sonite.

The top layer of a cyclic unit consists of altered amphib-
ole/biotite granite which is more resistant to weathering and
therefore forms a prominent cliff (Fig. 76). The equigranu-
lar, haematised alkali granite of unit 1 consists of microcline,
microcline-perthite, perthite, orthoclase, quartz and deep
red haematite. Alkali feldspar is partly replaced by albite or
chessboard albite and is full of tiny haematite inclusions. All
ferromagnesian minerals are replaced by deep-red haematite
which has occasionally preserved the cleavage pattern of

Fig. 75: Mineml layering in arfvedsonitie/aeginne granite of
layered unit [, Amis Complex, central par.

Fig. 76: Central part of the Amis Loyensd Complex (looking
north ) with o prominent cliff of haematsed amphibole granite

amphibole. Accessory minerals include zircon, fluorite and
pyrochlore.

The top layer of unit 2 is less alkaline and consists of gran-
ophyric edenite/biotite granite. The feldspars are composed
of orthoclase, perthite, microcline-perthite and plagioclase.
Quartz, for the most part is micrographically intergrown with
alkali feldspar. Ferroedenite occurs as ragged crystals partly
replaced by clustered, yellowish-green biotite. Biotite of the
first generation is of annitic composition forming euhedral,
reddish-brown crystals whereas secondary biotite consists
of green siderophyllite. Accessory minerals include apatite,
fluorite, zircon and locally abundant, zoned allanite. Blocks
of the hornblende-biotite granite, up to several meters in size,
occur as enclaves in the underlaying peralkaline granites.
The enclaves are enveloped by a characteristic, deep reddish-
brown, fine grained reaction halo consisting of quartz and
untwined, turbid microcline. Magnetite has replaced the ma-
fic components and is often surrounded by secondary biotite.
The reaction rim is rich in metamict zircon, allanite, fluorite,
monazite and pyrochlore.

In contrast to unit 1, the hornblende granite of unit 2 is
underlain by leucocratic, fine grained, tourmaline bearing
biotite granite. In the eastern part of the Amis Complex the
lenticular body is up to 12 m thick and consists of quartz,
orthoclase, perthite, microcline-perthite which partly is re-
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9. The Amis Layered Complex

Fig. 77: Ceniral par of the Amis Lavered Complex (looking east)
showing lavered units 1, 2 and 3.

placed by albite and plagioclase and greenish-brown, ragged
siderophyllite. Characteristic tourmaline nodules, resem-
bling those of the Hungurob ring dyke (Fig. 20) are up to 10
cm in diameter and contain interstitial, bluish-green schorl,
often replacing biotite, perthite, quartz, albite and accessory
zircon and apatite. The tourmalinised biotite granite horizon
thins out towards the northwest with decreasing tourmaline
content.

In the extreme western part, tourmaline-free, albitised
biotite granite is composed of turbid alkali feldspar, albite,
euhedral quartz and highly altered, clustered granules of bi-
otite and green Fe-spinel. Brown, skeletal biotite is partly
replaced by colorless mica which occurs together with deep
green, xenomorphic crystals of hercynite, partly altered to
possibly hoegbomite. A similar assemblage was described
from the northern contact zone of the complex (Fig. 30).

9.2 Fenites and fenitisation

Fenites are known to be mainly associated with carbonatite
complexes and the term has been applied to describe metaso-
matic rocks of varied chemical compositions associated with
alkaline intrusions (McKie, 1966). The process of fenitisa-
tion, characterised by sodium-ferric, metasomatic changes
does not necessarily imply the presence of a carbonatite mag-
ma since occurrences of fenites have been reported to occur
in association with silica-oversaturated alkaline intrusions
(Bowden, 1985). The separation of a residual fluid phase
from granites rich in alkalies and incompatible elements is
the most likely process to produce fluids which are responsi-
ble for the development of sodium-metasomatites similar to
the fenite aureole about carbonatite centres.

In the vicinity of the Amis Complex highly peralkaline,
channel-like dykes cross-cut Mesozoic granite and country
rock. The dykes consist of characteristic schlieren and bands
of massive aegirine - and arlvedsonite-albite rock, separated
by massive bands of unzoned, interstitial zircon and pyro-
chlore set in a matrix of albite and quartz. Albite laths have
almost completely replaced the former perthite and micro-
cline-perthite surrounding or overgrowing euhedral quartz.
Aegirine and arlvedsonite needles are mostly orientated par-
allel to the channelling direction, giving the rock a texture
resembling flow-banding (Figs 78 and 79).

Fig. 78: Massive fenite consisting of schlieren of aeginne (ac),

arfvedsonite (wrfv), sircon (Zry, albite (alb) and quartz (gz),
Amis. East

L

by W
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Fig. 79: Photomicrograph of a fenite channel (magnification x
13, XPL)showing neadles of aegirine (ae), laths of atbite (alb)
and guarts (g

Penetrating the lower part of the peralkaline granite series
the massive fenite-schlieren dissolve and successively grade
into dispersed, flamme-shaped clusters of aegirine and arlv-
edsonite (Fig. 80). The ring fracture associated with the Amis
Complex obviously acted as a channel way for metasoma-
tising fluids and hence, irregular zones of fenitised country
rock sporadically occur along the ring fracture (Fig. 81). The
process of fenitisation has affected all rock types present
along the ring-fault including sedimentary , volcanic and
plutonic rocks.

A zoned fenite dyke cross-cutting volcanics has been
found in the eastern part of the Amis Valley. The dyke is up
to 20 cm wide consisting of a central zone of albitised alkali
feldspar and quartz with abundant interstitial zircon and two,
mineralogically different border zones. One wall zone con-
tains distinctive clusters of radial arranged aegirine needles,
in contrast to the opposite wall which contains haematised
arlvedsonite aggregates, both set a in quartz-albite ground-
mass (Fig. 82).

9.3 Origin of layering and genesis of the
different rock types

The Amis Layered Complex offers an unique example to
study metasomatic processes in oversaturated, agpaitic en-
vironments and the role of alkali-oversaturated, rare-metal
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9. The Amis Layered Complex

Fig. 80¢ Lowszr purt of lovered unit | showing fiamime shaped
clusters of aeginine (ae), penetrating ard fenitising the layerad
suite, Amis West

enriched hydrothermal fluids in the formation of a mineral
stratified peralkaline complex. Bennett et al. (1984) report-
ed the occurrence of layered arfvedsonite granite from the
Birji complex, Nigeria. They concluded that the layering
was not produced by gravitational accumulation but by se-
lective crystallisation controlled by diffusion.

Before discussing the origin of the layering, the genetic
and geological implication of the term has to be defined. In
his paper on the terminology of layered intrusions Irvine
(1981) redefined the name “cumulus” as an “igneous rock
characterised by a framework of touching crystals and min-
eral grains that were concentrated through fractional crys-
tallisation” which implies that “crystal settling is a possible
but not essential process in the origin of layered rocks” (Ir-
vine, 1980). Physio-dynamical experiments and chemo-pet-
rological studies of Chen and Turner (1980), McBirney and
Noyes (1979), Irvine (1980) and Wilson and Larson (1985)
explore the idea that mineral layering is produced by the
phenomena of “double diffusive fractional crystallisation”.
This process involves heat and mass transfer by diffusion
and convection (Turner and Chen, 1974). Growth of the
crystals is controlled by the formation of horizontal lay-
ers which have generated by the action of numerous small
convection cells (Irvine, 1980). In the past the terminology
for layered intrusion has been mainly applied to cumulates
which originated by crystal settling (basic to ultrabasic in-
trusions in a strict sense) but also has been successfully used
to describe mineral stratified, Si-undersaturated agpaitic

Fig. 81: Fenitised Karoo volcanics along the Amis nng fracture.
consisting of schlieren of aegirine (s2), arfvedsontie (arfv),
albite (ulb) and zircon (&) with disseminated pyrochlore mi-
neralisaton

Fig. 82: Zoned fonite dyke cutting volcanics, Amis Complex.
enstem part (explanation in ext).

rocks of the Ilimaussaq intrusion (Larsen and Sorensen,
1987). The use of the cumulate terminology gets confus-
ing when processes like “post-cumulus metasomatism” or
“post-magmatic infiltration metasomatism’ become evident
(Irvine, 1980, 1981), features which obviously characterise
Si-oversaturated, agpaitic rocks of the Amis Complex. The
mineral-stratification in the peralkaline granites is believed
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9. The Amis Layered Complex

not to be magmatic in a strict sense but, due to die limited
availability of suitable expressions to describe stratification
of such sequences, the terminology which has been applied
to layered intrusions is used in a more loose sense.

In the Amis Complex mineral layering occurs in rocks
which are characterised by a network of touching alkali
feldspars. During post-magmatic, sodic metasomatism the
original K-feldspar has been partly or completely replaced
by albite. Early crystallised rocks from the top cooling unit
have preserved the original, interlocking network of perthite
and microcline which in some way resembles that of cu-
mulates of layered intrusions but with the important dif-
ference that the interlocking framework of feldspar has not
originated by a process of crystal settling. Quartz occupies
the interstitial space between the feldspars together with
highly interstitial or poikilitic arfvedsonite and/or aegirine.
To some extent, the interstitial assemblage exhibits distinc-
tive characteristics of a post-cumulate. The percentage of
the ferromagnesian constituents changes from 25- 30 per
cent in the melanocratic to 5-12 per cent in the leucocrat-
ic layers, whereas the proportions are reversed for quartz
but constant for feldspar. Both arfvedsonite and aegirine
show endmember-composition (chapter 7.2) and aegirine
commonly replaces arfvedsonite, preferentially in albite-
rich zones. The crystallisation of the sodic minerals is ac-
companied by changes in the feldspar composition, which
resulted in the replacement of the feldspar-network by al-
bite depending on the duration and intensity of the proc-
ess. Such reactions of a “cumulate” with upward migrating
“intercumulus liquid” have been described as infiltration
metasomatism (Irvine, 1980). In the case of the Amis Com-
plex it is obvious that highly peralkaline fluids - possibly
in multiple pulses - have been channeled into a laccolithic
intrusion with three early cooling units separated by a crys-
tallising network of alkali feldspar. The infiltrated fluids,
similar to fenitising fluids, rapidly increased the alkalinity
of the system and could therefore explain the intense meta-
somatic changes but not the process of layering. Bennett et
al. (1984) have reported very similar, layered arfvedsonite
granite from the Shira Complex in Nigeria and concluded
that “oscillating crystallisation of interstitial quartz and ar-
fvedsonite, controlled by diffusion processes in a rapidly
cooling body” is the most likely process which produced
mineral layers in the Birji-granite. Such an oscillation has
not been recognised in layered rocks of the Amis Complex.
Arfvedsonite poikilitically encloses quartz and albite and
therefore has crystal-lised later than quartz and even post-
dates the albitisation event. Other speculations on the origin
of layering in agpaitic rocks of the Ilimaussaq intrusion are
given in Sorensen (1969) and Larsen and Sorensen (1987).
They concluded that the layered agpaitic rocks at Ilimaus-
saq form the top zone of a stratified basalt-syenite magma
chamber at depth. The earliest agpaitic rocks crystallised
downwards from the roof with an upward accumulation of
residuals (Larsen and Sorensen, 1987). Similarly for the
Amis Complex it is difficult to state if any chemical or ther-
modynamical diffusion was involved. The most likely proc-
ess to produce layering in Amis could be the development
of an early double-diffusive convection system which was

controlled by sheet-like intrusions of alkaline, but not neces-
sarily peralkaline, magma. The assumption that the earliest
pulses of magma could originally have been peraluminous
in composition is based on the fact that the top of each cy-
clic unit consists of non-agpaitic rock types. The occurrence
of peraluminous biotite granite carrying tourmaline nodules
confirms the presence of boron in the original magma, and
obviously boron has been trapped in the rapidly cooling roof
of the intrusion. An early loss of boron from such a peralu-
minous magma would furthermore explain the tourmalinised
killas around the entire intrusion. If such a double diffusive
system, which already had developed a “cumulate” (network
of feldspar) with convection cells and interstitially crystal-
lising quartz abruptly is infiltrated by a highly peralkaline,
possibly residual fluid system, laminae of interstitial “postcu-
mulus” could have developed (Fig. 83). The crystallisation of
arfvedsonite (aegirine) in layers could therefore be explained
by a metasomatic front of an agpaitic fluid progressively en-
tering such a convective system and changing the chemical
conditions. With increasing alkalinity at low temperatures
the crystallising amphibole becomes progressively more
sodic, trending towards arfvedsonite of endmember com-
position which at even lower temperatures was replaced by
“hydrothermal aegirine”. Although the model of infiltration
metasomatism (Irvine, 1980) involves infiltration of a melt
into a cumulate, it has been shown by Boudreau (1988) that
an infiltration of fluids can produce analogous features in lay-
ered intrusions.
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Fig. 83: Lammnase of sieve-like crvstalhsed arvedsonte (arfv) i
albitised peralkaline gromite of layered unot |, Amis Complex

Ceniral par

Such residual, alkali-oversaturated fluids, rich in lithophile
elements are therefore believed to be responsible for the late
crystallisation of the ferric-sodic, interstitial minerals and
albitisation processes. At the bottom of each unit the rare
metal-rich fluids are over-saturated in alkalis and produced
arfvedsonite-aegirine-astrophyllite metasomatites with char-
acteristic minerals such as zincian fluor-arfvedsonite, stan-
niferous aegirine, astrophyllite rich in Zn, Nb and Sn, py-
rochlore and REE-and zirconium minerals. In such mineral
assemblages quartz to some extent has recrystallised and is
characterised by the presence of abundant fluid inclusions,
whereas the entire framework of alkali feldspar has col-
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9. The Amis Layered Complex

lapsed and been replaced by albite. The late crystallising
arfvedsonite accommodated zinc and aegirine incorporated
tin available from the liquid. It is obvious that aegirine has
crystallised down to lowest temperatures (rosette like or
fiamme-shaped aggregates, Fig. 80) which in the vicinity
of the feeder channel resulted in the entire replacement of
arfvedsonite. Nb, Zn and Sn-rich astrophyllite is the charac-
teristic mineral of such alkali-saturated fenite-fronts which
first is coexistent with arfvedsonite and later was replaced
by aegirine which contains similar concentration of “inher-
ited” tin in the lattice (see appendix, table 2.4).

Advanced stages with complete replacement of arfved-
sonite by aegirine occur only in the lower most part of a
cyclic unit. Such destabilisation of sodic amphibole is con-
trolled by severe post-magmatic oxidation (Bonin, 1982).
The equilibrium between a residual fluid-phase and the
rock may therefore have been disturbed during the infiltra-
tion of extremely fluorine and rare-metal enriched fluids
via ring fractures, which causes disequilibrium conditions
and metasomatic replacement processes. Thus, the develop-
ment of late aegirine-astrophyllite-pyrochlore assemblages
is very similar to replacement processes associated with
carbonatite-centres, known as fenitisation. Late replace-
ment of aegirine by zincian fluor-arfvedsonite only occurs
at lower temperatures when equilibrium conditions were re-
established. Under the described conditions, crystallisation
of arfvedsonite is obviously extended into the hydrothermal
field and has produced mesocratic, nodular replacement ag-
gregates of arfvedsonite, albite and fluorite (lindinosites)
which occur in the central portion of the complex above the
feeder channels of the fenitising fluids. If the fluid-phase
could escape via fractures, fenite-rocks previously described
as brandbergites (Chudoba, 1930) could develop. The ex-
perimental work of Ernst (1962, 1968) on amphiboles and
their stability has shown that riebeckite-arfvedsonite solid
solutions are stable at temperatures below 595°C at 1 kb
pH,O and fO, defined by bunsenite-nickel buffer.

Any tectonic movement at this evolutionary stage would
allow such critical “fenitising” fluids to escape along frac-
tures and the subsequent generation of fenite dykes. Such
metasomatic replacement dykes associated with the Amis
Complex previously have been described as brandbergite
(Chudoba, 1930) and hence are interpreted as fenite dykes
which generated when highly peralkaline (fenitising) fluids
could escape from the system.

9.4 Lindinosite

Lindinosite is a melanocratic, sodic amphibole bearing
rock (Lacroix, 1923) and occurs as “enclaves” in alkaline
granites (Quin, 1962). Lindinosite nodules, up to 5 cm in
diameter, occur in medium grained arfvedsonite granite in
the central part of the Amis Complex.

The nodules can be described as an albite-quartz-fluor-
ite rock with deep blue, arfvedsonitic amphibole as the
prominent, highly interstitial mafic mineral. Micro-perthite
and microcline are replaced by fine laths of albite which
together with quartz host sieve-like, poikilitic arfvedsonite
(Fig. 84).

Fig. 84: Phowomicrogesph of hindinosite showing sieve-like crys-
tallised arfvedsonite (arfv), and abundant Auorie (71 n a
guartz-albite matris (magnificaton x 43, FPL),

Fig. 85: Brandbergite dyke cross cuthing homblende-tiotite gra
Amis Complex

fite |

Fluorite (up to 3 vol per cent) is the dominant accessory
which beside greyish, unzoned zircon occupies the intersti-
tial space between the albite laths. Petrographically lindi-
nosite resembles albite-rich brandbergite but carries abun-
dant fluorite. The nodular mode of occurrence genetically
links lindinosite with the tourmaline segregation in albite-
biotite granites.
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Bonin (1982) has pointed out that lindinosites should be
interpreted as rocks of metasomatic origin rather than en-
claves of chilled margins or as precursors of a peralkaline
phase (Quin, 1962). The occurrence of brandbergite dykes
and lindinosite nodules, far away from any contact seems
to be linked with post-magmatic, metasomatic replacement
processes. In the central area of the complex brandbergite
dykes are absent, indicating that it was impossible for the
peralkaline fluid-system to escape, which resulted in auto-
metasomatic replacement processes and possibly the for-
mation of nodular aggregates of a arfvedsonite - albite - flu-
orspar rock (lindinosite).

Rocks originally described as “branctbergite” (Chudoba,
1930) from Brandberg, Namibia, “lindinosite” (Lacroix,
1923) from Lindosa, Corsica, “rockallite” (Judd, 1897;
Lacroix, 1923) from islet of Rockall, North Atlanic Ocean,
and the peralkaline segregations ‘“dahamite”, “paisanite”
and “lestiwarite” (Rosenbusch, 1910), are all very similar,
mesocratic, porphyritic, peralkaline rocks which should be
interpreted as late-stage or post-magmatic products of feni-
tisation associated with alkaline complexes.

9.5 Brandbergite

A number of highly peralkaline, aplitic dykes cross cut
the layered rock series, country rock and hornblende granite
(Fig. 85). The fine grained, dense rock is steel-blue or grey-
ish-blue in colour and occurs as steeply dipping, 30-80 cm
wide dykes without any preferential orientation.

A porphyritic type from the Amis Valley, containing feld-
spar, quartz, biotite and arfvedsonite was first discovered
by Cloos in 1929. A mineralogical description and a wet
chemical analysis has been published by Chudoba (1930)
and he introduced the name “brandbergite”, for the previ-
ously unknown rock type.

Brandbergites comprise a variety of textures ranging from
anhedral, granular through porphyritic to granophyric. The
dominant mafic mineral present in all types is deep-blue,
ragged arfvedsonite which crystallised as the latest mineral
component. Arfvedsonite forms sieve-like clusters giving
the rock a porphyritic appearance or in other types is finely
disseminated. In coarser grained brandbergite, arfvedsonite
is coexistent with reddish-brown annite-lepidomelane. The
feldspars show subsolidus growth and are composed of pla-
gioclase, orthoclase, perthite, and microcline-perthite partly
replaced by laths of albite.

Quartz has crystallised interstitially between the feld-
spar network or is granophyrically intergrown with alkali
feldspar of the matrix. Extremely fine grained brandbergite
lacking biotite, contains disseminated needles of arfved-
sonite in a dominantly granophyric groundmass. In biotite
bearing brandbergite replacement of arfvedsonite by late
biotite is accompanied by intense albitisation. Quartz and
alkali feldspar are surrounded by small albite laths resem-
bling the subsolidus “snowball” texture of albitised pera-
luminous granites. Brandbergites carry abundant, euhedral
and interstitial zircon, frequently abundant pyrochlore and
fluorite, xenotime and magnetite.

A very distinctive type of brandbergite occurs in the Nu-
mas Ravine as small dykes or veins (2-6 cm wide) in the

Fig. 86: Small dyke of brandhergite with radial amanged needles
of negiring (se) aml associated albie-rich (alb), “bleached
halos™, Numas Ravine,

biotite-hornblende granite ring-dyke (Fig. 86). Radiate tex-
tured needles of aegirine surrounded by white halos of albite
are set in a bluish-grey, fine grained matrix consisting of al-
bite, quartz and arfvedsonite (Fig. 87).

The light colour of the halos is characterised by the absence
of arfvedsonite whereas the proportions of quartz and albite
stay unchanged. In the central portion of the vein albite is re-
placed by colourless to slightly greyish zinnwaldite, enclos-
ing quartz (Fig. 88). Towards the margins of the vein the rock
grades into a massive albitite up to 0.5 cm in width. Stepwise
replacement of the host granite is marked by distinct meta-
somatic fronts of sodium-rich, agpaitic fluids. K-feldspar is
replaced by albite along fissures and grain boundaries fol-
lowed by the breakdown of edenitic hornblende to golden or
yellowish-brown aggregates of biotite. Deep reddish-brown
granitic biotite simultaneously is replaced by colourless to
light green Li-siderophyllite. The next metasomatic front or
pulse of fenitising fluids led to the destruction of the mafic
assemblages by the generation of arfvedsonite and the com-
plete replacement of alkali feldspar by albite. Increasing con-
centrations of zircon, lithium, rubidium and tin are indicated
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Fig. 87: FPhotomicrograph of brandbergite from the Mumas
Ravine showing radiate growth of seginne (pe) with a well
developed halo in guartz-albite-arfvedsonite matrix (magm-
fication x 41, PPL)

Fig. 88: Photomicrograph of brandbergite consisting of annwal-

dite crystals () set in an albite-guartz matrnx (magnification

w41, XPL)

by the generation of zircon and big flakes of zinnwaldite
enclosing quartz (Fig. 88).

The latest metasomatic front is characterised by the de-
struction and overgrowth of arfvedsonite by Fe-rich, stan-
nian aegirine. The necessary leaching of iron to form iron-
rich sodic pyroxene is believed to be responsible for the
generation of the previously described “bleached halos”
around the radiate growing needles of aegirine (Figs 86 and
87). All these metasomatic features and replacement proc-
esses classify brandbergites as metasomatic replacement
rocks with distinctive features of fenite-dykes.

10. Conclusions

The Brandberg Alkaline Complex demonstrates an excel-
lent example of granitic, anorogenic magmatism associated
with Mesozoic, intra-plate volcanic activity. Geological,
mineralogical and geochemical studies reveal that Brand-
berg granites carry characteristic features of the HHP-al-
kali granite series with a compositional range from meta-
luminous through peraluminous, to peralkaline subsolidus
types.

Post-magmatic deuteric alteration in the sub solidus in-
dicates the significant role of residual fluid phases and hy-
drothermal replacement processes associated with multiple
boiling in high uranium/thorium-granites. Auto-metasomat-
ic re-equilibration of these fluids and infiltration metaso-
matic processes (fenitisation) are responsible for the devel-
opment of potash and sodium feldspar, trioctahedral mica
of the siderophyllite - zinnwaldite series in peraluminous
granite and sodic pyroxene and amphibole in peralkaline
types.

The Brandberg Complex has mineralogical and geochem-
ical similarities with Mesozoic alkali-complexes elsewhere
in Africa, and the pattern of mineralisation has some simi-
larities with the Nigerian Sn-Zn type of deposit.

In both provinces the deposition of ore minerals can be
related to late/post-magmatic alteration processes like al-
bitisation, microclinisation and greisenisation which are
described by Bowden and Kinnaird (1984, 1984a, 1988)
and Kinnaird (1985) to be responsible for the deposition
of economic and subeconomic quantities of cassiterite, co-
lumbite, sphalerite and other rare metals in the Nigerian
Younger Granite Province.

Geochemically, the various metasomatic processes are
characterised by distinct changes in the pattern of both, ma-
jor oxides and trace element. Variations in the major oxide
chemistry are best displayed using multi-cationic param-
eters (Debon and Lefort, 1988) which clearly discriminate
between a magmatic alkali-oversaturated trend and hydro-
thermal trends depending on the chemical com-position of
the metasomatising fluids. The trace element pattern clearly
indicates that during hydrothermal re-equilibration proc-
esses there is a general enrichment trend in HFS- and LIL-
elements which in peralkaline environments has produced
pyrochlore-REE type mineralisation and in peraluminous
conditions led to disseminated and vein-controlled cassiter-
ite - sphalerite mineralisation.
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In the Brandberg Complex deuteric alteration processes
and associated deposition of- subeconomic quantities of ox-
ide/sulphide minerals started with K for Na exchange proc-
esses followed by albitisation, fenitisation combined with
Na for K exchange processes and vein controlled greisen-
type alteration. The sequence of alteration types in Nigeria
where the process of potash metasomatism generally is su-
perimposed on sodic types (Kinnaird 1985; Kinnaird et al.
1986) is somewhat unique. The economic importance of the
Mesozoic Sn-Zn deposits in Nigeria is possibly based on
the relatively early occurrence of peralkaline magmatism.
Such carly agpaitic fluid-phases may be regarded as the
most likely process for the leaching of lithophile elements
and subsequent mineralisation. The absence of tourmaline
in the Younger Granites of Nigeria (Kinnaird et al. 1985)
could therefore be explained by an early loss of the boron-
phase in a peralkaline environment whereas in Brandberg
the occurrence of peralkaline rocks postdates the intrusion
of peraluminous types. A similar, early loss of the boron-
rich phase has been recognised around the peralkaline Amis
Complex in the south western periphery of the Brandberg
massif which in this case led to the tourmalinisation of the
country rock (killas).

The occurrence of tourmaline in Brandberg and other gra-
nitic complexes of the province (Erongo, Spitzkoppe and
Otjihorongo) is generally not a widespread process but re-
flects significant differences in the sequential order of the
metasomatic events in both provinces.

Factors which may control the presence or absence of
mineralisation in a province are discussed in Taylor (1976)
and theories on the origin of tin range from crustal- to man-
tle-derived. Mineralisation in anorogenic granites have
mainly been reported from alkaline complexes intrusive
into Pan African orogenic belts like in Nigeria, Brazil and
Namibia which are known as tin-rich provinces and where
tin-mineralisation has occurred at different geological
times. Anorogenic magmatism is therefore regarded as an
important process in leaching tin and lithophile elements
from crustal rocks and/or metasediments. The presence of
HHP-elements, which are responsible for multiple boiling
and the generation of hydrothermal convection, is the most
important factor for the leaching, concentration and deposi-
tion of ore minerals. Therefore, it can be concluded that hy-
drothermal processes associated with Mesozoic intraplate
magmatism in Sn-Zn-rich provinces like the Damaran ,
can remobilise economic important trace elements and ac-
cumulate sufficient quantities of ore to produce a mineral
deposit.
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