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Abstract—A male common swift Apus apus was equipped with
a light logger on August 5, 2010, and again captured in his nest
298 days later. The data stored in the light logger enables analysis
of the fascinating travel it made in this time period.

The state of the art algorithm for geolocation based on light
loggers consists in computing first sunrise and sunset from the
logged data, which are then converted to midday (gives longitude)
and day length (gives latitude). This approach has singularities
at the spring and fall equinoxes, and gives a bias for fast day
transitions in the east-west direction.

We derive a flexible particle filter solution, where sunset and
sunrise are processed in separatele measurement updates, and
where the motion model has two modes, one for migration and
one for stationary long time visits, which are designed to fit
the flying pattern of the swift. This approach circumvents the
aforementioned problems with singularity and bias, and provides
realistic confidence bounds on the geolocation as well as an
estimate of the migration mode.

Index Terms—nonlinear filtering, particle filter, geolocation,
light levels

I. INTRODUCTION

Geolocation for learning migration behavior of animals is an
important area for ecologists and epidemiologists. With an ever
lasting improvement in sensor technology and miniturization
of electronics, more and smaller species can be studied.
More specifically, researchers are no longer limited to satellite
based geolocation, which requires substantial battery capacity
and in practice also radio transmitters to communicate the
geolocation data, which in turn requires even more battery with
the consequence that only larger birds can be studied. One such
enabling technology is light loggers permitting documentation
of migration by individual small songbirds, waders and swifts,
which so far is not extensively studied. Commercial versions
include a light sensor, a battery, a memory and a clock
enclosed in a small housing that can be fit to the tarsus or
mounted with a harness to the back of the bird. As a rule of
thumb, the sensor can weigh at most 5% of a bird’s weight.
State of the art sensors weigh 2 grams, and thus as small
birds as a swift (40g) can be marked. The sensor unit cannot
communicate, so this approach hinges on that the birds are
caught or found when they die, so the memory can be read
off.

The swift is an interesting bird, since it is believed to spend
all of its life on the wings, except for the nesting period. This
makes the light data particular good, since there is barely
any surrounding vegetation that disturb the measurements.
Also the migration pattern of the swift is fascinating, since it

Fig. 1: A male common swift after his voyage to Africa and
back. During the journey a light logger mounted to his back
recording the light intensity.

travels long distances over the seasons, but always returns to
basically the same place for mating in the summer. This unique
navigation ability is believed to be genetically inherited, and
it might have persisted since the last ice age. The swift in
Figure 1 is a young male and one of the first marked swift
that has been found. The researchers know very little about the
migration pattern for swifts during the winter time in Africa,
since there are almost no reports from Africa on found species
with the classical ring.

The light logger samples light intensity every 5-10 minutes.
It is quite a course information suffering from saturation
at both ends. Thus, it is only the transitions between night
and day and vice versa that contain information with the
current sensor. The theory of geolocation by light levels is
described in [1] for elephant seals, where sensitivity and
geometrical relations are discussed in detail. The accuracy of
the geolocation is evaluated on different sharks by comparing
to a satellite navigation system, and the result is shown to be
in the order of 1 degree in longitude and latitude.

If the animal is known to be at rest during the night, the
two positions corresponding to sunset and sunrise can be
assumed the same, and the unknown longitude and latitude
can be solved from the two measurements uniquely. This is
the basis for the geolocation software that comes with the
sensor. There is an obvious singularity for the two days of



equinox when the sun is in the same plane as the equator, and
thus the two manifolds in Figure 2 are vertical lines. In praxis
15 days on each side of spring and autumn equinoxes are
omitted from analyses [2]. Another problem occurs if the bird
is moving between sunrise and sunset, in which case midday
and daylength is shifted slightly causing a bias in the position.
This is especially a problem during fast migration flights, when
a swift may cover up to 650 km/day [3].

Fig. 2: Binary day-light model for a particular time t. The
shape of the dark area depends on the time of the year, and
the horizontal position of the dark area depends on the time
of the day.

We propose a nonlinear filtering framework, where the
sunset and sunrise are treated as separate measurement up-
dates, and an irregularly sampled motion model is used for
the time update. This removes the bias problem and also a
noise correlation artifact. It also mitigates the singularity at
the equinox, where still useful positions can be computed. The
motion model has two modes, corresponding to stationary and
migrating flight. The filter thus has adaptive sensitivity, giving
higher position accuracy at the stationary mode.

Animal geolocation based on light levels can be traced back
to at least l986 [4]. Other publications such as [5], [1], [6] and
[2] have also studied this problem. However, to the best of the
authors knowledge, this is the first time that this applications
has been put into a statistical filtering framework.

The paper outline is as follows: In Section II an appropriate
sensor and motion model for this application will be presented
and the state estimation algorithm is given in Section III.
The paper is concluded with the results on real world data
in Section IV followed by the conclusions in Section V.

II. MODELS

The mathematical framework can be summarized in a state
space model with state xk, position dependent measurement
yk, process noise wk, and measurement noise ek:

xk+1 = f(xk, wk), (1a)
yk = h(xk) + ek. (1b)

The state includes position (Xk, Yk) encoded as longitude
Xk and latitude Yk, a velocity (Ẋk, Ẏk) as well as a mode
parameter δk with two modes, one for migration and one for
stationary long time visits.

A. Sunrise and Sunset Models

Figure 2 shows how the sunset and sunrise, respectively, at
each time defines a manifold on earth [7]. A sensor consisting
of a light-logger and clock can detect these two events. The
bright part of the earth is limited by a great circle orthogonal
to the sun at each time.

The time of the sunrise and sunset can easily be derived
when knowing the daylength and the time of the midday. The
midday will only depend on the longitude of the observer. At
longitude Xk = 0◦ the midday occurs at 12.00 noon. When
going X = 360◦/24 = 15◦ east, the midday occurs one hour
earlier at 11.00 a.m (earlier, since the sun rises in the east).
This gives the relation

hmidday(Xk) = 12− 1

15
Xk. (2)

Further, the daylength will depend on the latitude of the
observer as well as on the time of the year. The relation can be
derived by making use of the coordinate transformation from
the equatorial coordinate system to the horizontal coordinate
system. These coordinate systems are used for mapping posi-
tions on the celestial sphere and can thus be used for describing
the position of the sun.

The horizontal coordinate system uses the observer’s local
horizon as the fundamental plane and the position of the sun is
described with its altitude h above the horizon and its azimuth
A measured from the south increasing towards the east, see
Figure 3.

South

Altitude h

Azimuth A
Sun

Horizon

Fig. 3: The horizontal coordinate system.

In the equatorial coordinate system the fundamental plane
is defined by the Earth’s equator. Here the position of the sun
is described with the solar hour angle H expressed in angular
measurement from the solar noon, and the declination of the
sun δ.

All of these four angles are defined on the celestial sphere
[7], [8]. However, in this work we are interested in describing
the position of the observer on the earth rather than the position
of the sun on the celestial sphere. Therefore, in Figure 4,
the corresponding angles on the earth are depicted. Here,
the altitude h has the interpretation of being the orthogonal
distance (measured in degrees) to the great circle separating
the bright and dark part of the earth, the hour angle H will
be the longitude relative to the solar noon meridian and the
declination δ is the tilt of the earth’s axis towards the sun as
well as the latitude where the sun reaches its zenith.

These two coordinate systems are related as [7]



Fig. 4: The hour angle H , declination δ and altitude h
projected on to the earth, together with the observer’s latitude
Y . The position ”zenith” is the location where the sun is at its
zenith. The geometry of these angles gives the relation (3a).

sinh = sinY sin δ + cosY cos δ cosH (3a)

tanA =
sinH

cosH sinY − tan δ cosY
(3b)

where Y is the latitude of the observer. The declination of the
sun can also be seen as the angle between the Earth’s axis and
a line perpendicular to the Earth’s orbit. Thus, the declination
will change over the year and is given by

δ(tk) = −23.439◦ cos

(
360◦

365.25
tk

)
, (4)

where tk is the number of days after the winter solstice. Since
a day of 24 hours corresponds to an hour angle of H = 360◦,
(3a) gives us the relation

hdaylength(tk, Yk) =
24

360◦
arccos

(
sinh0 − sinYk sin δ(tk)

cosYk cos δ(tk)

)
(5)

The altitude h0 is here considered as a constant. It represents
the geometrical altitude of the sun at the time apparent rising
and setting. Due to atmospheric refraction, these events occur
already when the sun geometrically is below the horizon
at an altitude of h0 = −0◦.83 [7]. Furthermore, the light
intensity starts increasing already before the sunrise and is still
increasing after the event. Noticeable is that the most distinct
transition between day and night occurs when the sun is about
6◦ below the horizon [1]. Thus, the altitude h0 will in practice
depend on how the light intensity data is thresholded.

Note that if the argument of arccosine in (5) is larger than
1 in absolute value, the sun will remain either above or below
the horizon the whole day.

With this information we can define a measurement model
for sunrise and sunset respectively

yrise(tk) = hrise(tk, Xk, Yk) + erisek , (6a)
yset(tl) = hset(tl, Xl, Yl) + esetl . (6b)

where

hrise(tk, Xk, Yk) = hmidday(Xk)− hdaylength(tk, Yk)

2
(6c)

hset(tl, Xl, Yl) = hmidday(Xl) +
hdaylength(tl, Yl)

2
(6d)

B. Sensor Error Model

The errors erise(tk) and eset(tl) for sunrise and sunset,
respectively, consist of different kinds of errors:

1) Detection errors from the light logger data. The data
in Figure 7 indicates that this error is Gaussian with a
standard deviation of slightly more than four minutes.
Note that four minutes corresponds to 1 degree, which
is 120 km in north-south direction and 120 times cosinus
of latitude in east-west direction.

2) Position dependent variations. For instance, the days are
longer over sea than land [1]. We will neglect this error,
since the bird appears to be over land most of the time.
It would be no problem to cover this in our framework,
though.

3) Also the latitude and time of year may affect the error.
This is a subject for future studies.

4) Weather dependent variations, where sunny days are
longer than cloudy ones. This can be incorporated by
using data from historic weather data bases in our
framework, but this is also a subject for future studies.

Note that the errors in sunset and sunrise can be seen as
independent, and thus the error in day length and midday are
actually correlated.

C. Kinematic Model

The kinematic model of migrating birds is charac-
terized by two modes consisting of a stationary mode
on their breeding, wintering or moulting sites, as well
as a migration mode [9]. The mode parameter δk ∈
{”stationary mode”, ”migration mode”} is here modeled as a
hidden Markov state with a specified transition probability Πk

resulting in

p(δk+1|δk) = Π
(δk+1,δk)
k (7)

In the stationary mode it is sufficient to model the bird with
a constant position model. The states related to this model is
only two dimensional position and is the simplest possible
motion model

x(t) =

(
X(t)
Y (t)

)
, ẋ(t) =

(
wX(t)
wY (t)

)
(8a)

The corresponding discrete time model is given by

xk+1 =

(
1 0
0 1

)
xk +

(
T 0
0 T

)(
wXk
wYk

)
. (8b)



In the migration mode the velocity of the bird will be of
great importance when predicting the next position. This can
be captured by using a constant velocity model. This is still a
fairly simple motion model, yet one of the most common ones
in target tracking applications where no inertial measurements
are available. It is given by a two-dimensional version of
Newton’s force law:

x(t) =


X(t)
Y (t)

Ẋ(t)

Ẏ (t)

 , ẋ(t) =


Ẋ(t)

Ẏ (t)
wX(t)
wY (t)

 (9a)

The corresponding discrete time model is given by

xk+1 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

xk +


T 2/2 0
T 0
0 T 2/2
0 T

(wXkwYk
)
.

(9b)

The process noise wk ∼ N (0, Qδk) for the two modes
is assumed to be white Gaussian. In order to capture the
described kinematic of the bird we later choose process noise
such that TQmigration mode � Qstationary mode.

The presented motion model can also be described with a
conditional density for the state transition

p̄(xk+1|xk) (10)

where the state is encoded as xk = [Xk, Yk, Ẋk, Ẏk, δk]T

Another prior information of the kinematics of a bird is its
maximum speed. However, the presented motion model does
not put any restrictions on the maximum speed of the bird. On
the contrary, for the constant velocity model the speed would
diverge in a long time simulation. In order to include this
prior information, the conditional density for state transition
(10) can be slightly modified by giving it a limited support
for the speed

p(xk+1|xk) ∝ 1‖vk+1‖<vmax(xk+1) · p̄(xk+1|xk) (11)

where 1A(x) is the indicator function defined as

1A(x) =

{
1 if x ∈ A
0 if x /∈ A

(12)

and vk = (Ẋk, Ẏk)T . With this modification the probability
will be zero for any transition that corresponds to a speed
higher than vmax. This is in particular useful at the spring and
fall equinoxes since at these occasions the sensor model (6)
will be singular in latitude direction.

III. STATE ESTIMATION

The nonlinear filtering problem (1) will here be solved using
a marginalized particle filter. For this application this is a
sound approach due to many reasons:
• Like any filter, it can handle partial information of the

position, so it can process sunrises and sunsets separately.

• Also like any filter, it can handle multiple modes by
running two or more filters in parallel, and fusing their
states according to their performance.

• The particle filter can handle multi-modal position dis-
tributions better than any other filter, which is useful for
robust filtering where a lot of outliers in data occur (false
and missed detections from the logged light data).

• It can handle position dependent noise, like ground veg-
etation type and local weather dependent noise distribu-
tions.

• It can easily include state constraints, such as maximum
speed.

The time update of the position in the particle filter consists
here of the following steps:

1) Simulate N noise vectors w(i)
k ∼ N (0, Qδk).

2) Propagate the set of particles according to (8b) or (9b)
depending on δk

If δk =”stationary mode”, the velocity is not needed in the
time update. Consequently, we do not need to update the
velocity. For δk =”migration mode” we do need the velocity.
However, we will see that the computation load will increase
marginally.

We will here make use of the fact that the sensor model (6)
depends on the position and the time only,

yk = h(tk, Xk, Yk) + ek. (13)

Since the motion model is linear in the state and noise, the
marginalized PF applies, so the velocity component can be
handled in a numerically very efficient way.

Let pk = (Xk, Yk)T and vk = (Ẋk, Ẏk)T . Then, (9b) and
(13) can be rewritten as

pk+1 = pk + Tvk +
T 2

2
wk, (14a)

yk = h(tk, pk) + ek, (14b)
vk+1 = vk + Twk, (14c)

pk+1 − pk = Tvk +
T 2

2
wk. (14d)

We here use the particle filter for (14ab) and the Kalman
filter for (14cd). Note that (14ad) are the same two equations,
interpreted in two different ways. The time update in the
particle filter becomes

v
(i)
k = N

(
v̂
(i)
k|k−1, Pk|k−1

)
, (15a)

w
(i)
k = N

(
0, Qk

)
, (15b)

p
(i)
k+1 = p

(i)
k + Tv

(i)
k +

T 2

2
w

(i)
k , (15c)

where we treat the velocity as a noise term. Conversely, we
use the position as a measurement in the Kalman filter. For
this particular structure, the general result given in Theorem



2.1 in [10] simplifies a lot, and we get a combined update

v̂
(i)
k+1|k =

p
(i)
k+1 − p

(i)
k

T
, (15d)

Pk+1|k = Pk|k−1 − Pk|k−1
(
Pk|k−1 +

T 2

4
Qk
)−1

Pk|k−1.

(15e)

Note that each particle has an individual velocity estimate
v̂
(i)
k|k−1 but a common covariance Pk|k−1. Further, for a time-

invariant Qk = Q, the covariance matrix converges quite
quickly to Pk|k−1 = 0, and the Kalman filter is in fact not
needed and can be replaced with a deterministic update of the
velocity.

In Algorithm 1, the update of the velocity is made in
step 4c). Note that we update the velocity if the particle
is in δk =”stationary mode” as well even though it is not
needed for the position update. However, that will give us
an estimate of the velocity at each time instant. Furthermore,
if δk =”stationary mode” and δk+1 =migration mode” the
velocity will be distributed with the proposal density pv0(v)
in order to give the particles a higher velocity more suited for
the migration mode.

Finally, the particle filter gives us a straight forward way
how to handle the limited support of the state transition density
(11) by simply setting all weights corresponding to a speed
higher than vmax to zero. This can be seen as using the non-
saturated transition density (10) as the proposal distribution
q(xk+1|xik) = p̄(xk+1|xik). With this interpretation, step 4a-
c) in Algorithm 1 would correspond to the generation of
predictions

xik+1 = q(xk+1|xik) (16)

and the last step 4d) will compensate for the importance
weights according to

wik+1|k = ωik|k
p(xk+1|xik)

q(xk+1|xik)
. (17)

IV. RESULTS FROM REAL WORLD DATA

The proposed tracking framework has been validated on
real world data. This section presents this data as well as the
tracking results.

A. The data

A light logger was mounted on a swift which was released
from the very south of Sweden. Ten months later it was
captured again at its own nest when the light logger were
removed from the bird. The recorded data consists of light
intensity measurements during a period of 298 days from 5th
of August 2010 to 29th of May 2011. From this data the
universal time of sunrise and sunset has been extracted by
thresholding the data. See [11] for further details on how this
has been done. The preprocessed data thus consists of the
universal time of 298 sunrises and 298 sunsets as depicted in
Figure 5.

Algorithm 1 Migrating bird tracking using particle filter
Choose number of particles N .
Initialization: Generate pi1 ∼ pp0 , vi1 ∼ pv0 and δi1 ∼ pδ0 ,
i = 1, · · · , N , encode the state as xi1 = [pi1, v

i
1, δ

i
1] and let

ω1|0 = 1/N
Iteration over the days:
For n = 1, 2 · · ·

Iteration over sunrise and sunset:
For m = {”sunrise”, ”sunset”}

1) Measurement update:
For i = 1 : N

ωik|k =
ωik|k−1p

m(ym(tk)|xik)∑N
j=1 ω

j
k|k−1p

m(ym(tk)|xik)
(18)

2) Estimation: The state and covariance is estimated
by

x̂k =

N∑
i=1

ωik|kx
i
k (19)

P̂k =

N∑
i=1

ωik|k(xik − x̂k)(xik − x̂k)T (20)

3) Resample: Take N samples with replacement from
the set {xik}Ni=1 where the probability to take sample
i is ωik|k and let ωik|k = 1/N

4) Time update:
For i = 1 : N

For each part of the state vector xik = [pik, v
i
k, δ

i
k]

do the following:
a) Generate predictions of the position depend-

ing on the mode
wik ∼ N (0, Qδ

i
k)

If δik =”stationary mode”
pik+1 = pik + Twik

elseif δik =”migration mode”
pik+1 = pik + Tvik + T 2

2 w
i
k

b) Generate predictions of the mode
δik+1 ∼ p(δk+1|δik)

c) Generate predictions of the velocity
If δik+1 =”mig. mode” and δik =”stat. mode”
vik+1 ∼ pv0(v0)

else
vik+1 =

pik+1−p
i
k

T

d) Exclude particles with higher speed than vmax

wik+1|k =
ωik|k1‖vk+1‖<vmax(xk+1)∑N
j=1 ω

j
k|k1‖vk+1‖<vmax(xk+1)

5) Set k := k + 1

From this information the daylength and midday can easily
be extracted as presented in Figure 6. The state of the art
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Fig. 5: Universal time of the sunrise and the sunset during the
10 moths journey of the Swift

algorithm is to use this information to convert to longitude
and latitude using (2) and (5). However, with Algorithm 1 we
propose to use time of sunrise and sunset to prevent the bias
that would occur in fast day transitions.

Furthermore, the daylength at the equinoxes give us impor-
tant information about the data. An equinox occurs when the
declination of the sun (4) is equal to zero. Using (5), this gives
the simplified relation

hdaylength(Yk) =
24

360◦
arccos

(
sinh0
cosYk

)
(21)

Thus, by assuming an altitude of h0 = 0 for sunrise and
sunset, the daylength would be 12 hours all over the world.
Further, since cosYk > 0, the sign of h0 will decide whether
the daylength is longer or shorter than 12 hours. However,
by consulting the data in Figure 6 it can be noticed that the
daylength is slightly longer than 12 hours at the September
equinox and slightly shorter than 12 hours at the March
equinox, which would require a positive h0 and a negative h0
respectively. As a compromise, we have here chosen h0 = 0.

From the data in Figure 5 the variance of the measurement
noise can be estimated. During the period from the 10th of
December to the 25th of April the data is fairly constant. (As
we later will see in Figure 8 this corresponds to when the Swift
is at its wintering site in Africa.) This data has been detrended
and is visualized as a histograms in Figure 7 for sunrise and
sunset, respectively. From this data the standard deviation of
the measurement noise can be estimated to approximately 5
minutes for both sunrise and sunset.

B. Results

Algorithm 1 using N = 500 particles has been implemented
and evaluated on the presented data using the following tuning
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Fig. 6: The daylength and the time of the midday during the
10 months journey of the Swift.
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Fig. 7: Histograms for the detrended sunrise and sunset
measurements from the 10th of December to the 25th of April
together with a Gaussian approximation.

for the dynamics of the Swift

p(δk+1 = ”stat. mode”|δk = ”mig. mode”) = 0.1 (22a)
p(δk+1 = ”mig. mode”|δk = ”stat. mode”) = 0.03 (22b)

and

Qδk=”stat. mode” = 12 · I2 (23a)

Qδk=”mig. mode” = 102 · I2 (23b)

Furthermore, for the maximum speed the value vmax =
12 [◦/Day] = 60 [km/h] has been used.

The tracking performance is presented in Figure 8. The
tracking result will also be compared with a non-filtering
solution where we assume that the bird has not moved during
the period from sunset to sunrise. Then, by using (6) and
assuming (Xk, Yk) = (Xl, Yl) the longitude and latitude can
be solved uniquely each day separately. By using inverse
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Fig. 8: The trajectory of the Swift during a period of 298 days.
The positions are estimated at each sunrise and sunset.

mapping we also get a corresponding covariance

xk = h−1(yk)

Cov(xk) =
(
∇hT (xk)R−1∇h(xk)

)−1
where

h =

(
hsunrise

hsunset

)
, yk =

(
ysunrise(tk)
ysunset(tk)

)
, and xk =

(
Xk

Yk

)
.

In Figure 9 the estimated position for the two methods is
presented together with the estimated migration mode from the
particle filter implementation. Further, the estimated position
is presented with a 90% confidence interval.

In Figure 10 two periods are zoomed in order to point out
the differences between the two methods. According to Fig-
ure 10a, the particle filter implementation manages to mitigate
the singularity due to the September equinox. The variance is
still increasing for the particle filter implementation, however
not as much as for the inverse mapping method. This is mainly
due to the fact that we use a motion model.

As explained earlier, fast transitions in east-west direction
will give rise to shorter/longer measured daylength. This will
lead to a bias in the latitude estimation using the inverse
mapping method since it wrongly assumes that the light logger
measures the sunrise and sunset at the same position. In Fig-
ure 10b such a bias for the latitude can be seen during a period
around May where the swift is making a fast transition from
Africa back to Europe. The movement in west direction will
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Fig. 9: The estimated position and mode of the Swift during
a period of 298 days. The presented particle filter imple-
mentation is here compared with using inverse mapping. The
estimates are presented with a 90% confidence interval.

make the measured daylength longer than the actual daylength
at the corresponding latitude. For the inverse mapping method
this will give a bias towards north since the daylength is longer
on the northern hemisphere during the summer.

Finally in Figure 11 the trajectories for the particle filter
implementation is presented together with covariance ellipses
representing the estimation uncertainty. Here also the position
of the start and end point of the journey is depicted.

V. CONCLUSION

In this paper, a particle filter solution has been presented
estimating the trajectory of a migrating bird using light logger
data. A sensor model has been presented based on astronom-
ical formulas consisting of a measurement update at sunrise
and sunset respectively, as well as a suitable motion describing
the flying pattern of migrating birds. The implementation has
been validated on real data and compared with the state of
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Fig. 10: The estimated position of the swift during a month
around the fall equinox when the swift is migrating from
Europe to the east of Africa as well as two weeks in the
middle of May. The presented particle filter implementation
(blue) is here compared with using inverse mapping (green).
The estimates are presented with a 90% confidence interval.

the art algorithm based on inverse mapping. The proposed
solution outperforms the existing method in reliability during
the equinoxes and removes problem with bias due to fast
day transitions. In addition, the proposed method provides an
estimate of the migration mode suitable for further analysis of
the flying pattern of the bird.
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Fig. 11: The trajectory of the swift during a period of 298
days. The positions are estimated at each sunrise and sunset. At
every 5th day, the accuracy of position estimate is visualized
together with a 90% confidence interval.


