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Abstract: In light of the growing human population, the pressure on herbivores (livestock and wild herbivores) will be 
accelerated, resulting in a need for eff ective land management. To achieve this, information and knowledge about the 
availability and quality of food resources of large herbivores and possible changes in those resources are a prerequisite. 
In this chapter, we wil l summarize diff erent projects conducted regarding food availability and quality within SASSCAL. 
We will give an example of the use of remote sensing as an eff ective tool for measuring food availability and quality on 
a large scale. Here, we visualize changes in leaf nitrogen concentration and annual grass biomass. In two other projects, 
we studied diff erent aspects of plant response. In a fence-line study, we investigated the infl uence of overgrazing on the 
plant quality of grasses. Though we detected positive impacts on plant quality, but due to high grazing pressure, the re-
duction in biomass resulted in an overall decline in the quality of the overgrazed site. In the other project, we tested the 
plant response of bush encroacher species to damage by herbivores. In contrast to the grasses of the fence-line study, in 
the shrub species we observed a tendency for reduced protein concentration. The reduction varied among the diff erent 
plant species, but it did not have consequences on subsequent consumers (Boer goats). In our last project we focused on 
the impact of increased temperature and reduced humidity on the plant quality of fi ve grass species. Here, we found a 
species-specifi c response. We conclude the article with a synthesis and an outline of possible management implications 
derived from the diff erent studies. 

Resumo: Devido ao crescimento da população humana, a pressão nos herbívoros (gado e herbívoros selvagens) irá ace-
lerar, resultando na necessidade da gestão efectiva da paisagem. Para atingir este objectivo, é necessário informação e 
conhecimento sobre a disponibilidade e qualidade dos recursos alimentares de grandes herbívoros, e possíveis alterações. 
Neste capítulo, resumimos diferentes projectos realizados dentro do tópico da disponibilidade e qualidade de alimento no 
contexto do SASSCAL. Daremos um exemplo de detecção remota como uma ferramenta útil para a medição da dispo-
nibilidade e qualidade do alimento em grande escala. Aqui, visualizamos alterações das concentrações de azoto foliar e 
da biomassa anual das gramíneas. Em dois outros projectos, estudámos diferentes aspectos da resposta de plantas. Num 
estudo de cercas, investigámos a infl uência do pastoreio excessivo na qualidade das ervas. Por um lado, detectámos 
impactos positivos na qualidade das plantas. Porém, por outro lado, a reducção da biomassa resultou num declínio geral 
da qualidade do local sobrepastoreado. No outro projecto, testámos a resposta de espécies invasoras lenhosas aos danos 
provocados por herbívoros. Ao contrário das gramíneas do estudo de cercas, observámos uma tendência para a redução 
da concentração de proteína nas espécies arbustivas. A redução variou entre as diferentes espécies de plantas, mas não 
teve consequências nos consumidores subsequentes (cabras boer). No nosso último projecto, focámo-nos no impacto do 
aumento da temperatura e redução da humidade na qualidade de cinco espécies de gramíneas. Aqui, descobrimos uma 
resposta específi ca da espécie. Concluimos o artigo com uma síntese e descrevemos possíveis implicações de gestão 
derivadas dos diferentes estudos.
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General introduction

The extraordinary impact of large herbi-
vores on terrestrial ecosystems has already 
been pointed out in the overview chapter 
on rangelands (Ramoelo et al., 2018). A 
growing human population will lead to 
more intense use of landscapes, including 
increased demands for meat satisfi ed by 
either a growing number of livestock or 
higher hunting rates for wild herbivores 
(so-called bush meat). As a result of dif-
ferent factors, however, land degradation 
has become a severe threat, especially in 
areas that depend on livestock and game 
farming (Lehmann et al., 2009). An ac-
celerated habitat loss for wild animals and 
pasture loss for livestock is projected for 
vast areas of southern Africa (Harris et al., 
2014). All forms of land degradation lead 
to a reduction in or loss of urgently need-
ed food for herbivores and additionally to 
a decline in the biodiversity of food plants 
(Harris et al., 2014; Murphy et al., 2016). 
Especially in areas with high seasonality, 
food availability changes rapidly and is 
highly related to annual rainfall, especial-
ly for grasses. To help monitor changes in 
food availability, remote sensing measur-
ing techniques are a useful tool to provide 
us with data about food availability and 
quality on a large scale to manage the dis-
tribution of large herbivores, especially 
for wild-ranging herbivores and cattle. 
Nevertheless, herbivores’ food selection 
is diffi  cult and driven by various factors. 
For instance, our understanding of qual-
ity might not match the understanding 
of quality by a specifi c herbivore. For fi -
nancial, technical, and logistical reasons, 
we tend to simplify feeding decisions in 
our eff orts to manage the complex inter-
actions and feeding systems of diff erent 
herbivores and the plant response driven 
by feeding. 

In the following we will give a short 
introduction of general nutritional con-
cepts, feeding strategies, and the term 
quality as it relates to feeds, with a spe-
cifi c emphasis on ruminants, and then 
proceed to present diff erent examples of 
our work. 

Surrounded by a multidimensional 
feeding environment (as described in the 
overview chapter, Ramoelo et al., 2018), 
every animal has to search for the  optimal 

food to obtain appropriate quantities of 
required nutrients, which usually vary by 
species. These nutrients are proteins, fat, 
carbohydrates, and to some extent miner-
als and vitamins. Moreover, an individu-
al’s underlying nutritional need varies not 
only with internal factors (e.g., age, body 
size, physiological aspects, life stage) but 
also with external factors such as weather 
conditions and season (see, e.g., Barbo-
za et al., 2008; Robbins et al., 1987; Van 
Soest, 1994). Therefore, diff erent individ-
uals even within one species may select 
diff erent types and amounts of food. 

One of the biggest obstacles in our 
understanding of the food selection of 
herbivores, however, is that nutrients are 
available not as single item in one feeding 
bout but in a mixture of diff erent items in 
one bite. For example, a high protein con-
centration in a food plant might be linked 
with high concentrations of toxic alka-
loids (a group of plant secondary metabo-
lites [PSMs]) or anything else. Therefore, 
animals most likely do not maximize 
one nutrient currency (e.g., select only 
one plant species as food because of its 
high nitrogen concentration) but instead 
balance their diet among diff erent plant 
compounds not only to satisfy their nu-
tritional needs (nutrient balancing; see 
Felton et al., 2016; Simpson & Rauben-
heimer, 2012; Westoby, 1974) but also to 
avoid negative eff ects such as toxifi ca-
tion by PSMs (Freeland & Janzen, 1974) 
or over-ingestion of nutrients, which can 
also lead to detrimental health issues for 
the animal (Deutz et al., 2009; see also 
the info-box ‘What Is Quality for a Rumi-
nant?’, Stolter et al., 2018). This balanc-
ing act is often refl ected by the ingestion 
of a high variety of food plants (so-called 
diet-mixing [Villalba et al., 2002]), which 
can be fulfi lled only in a heterogeneous, 
diverse environment. 

Diff erent feeding strategies to exploit 
diff erent food plants have resulted in 
morphological and physiological adap-
tations in herbivores. As ruminants are 
the most important group of herbivores 
to humans and also the largest group of 
wild large herbivores, we will focus on 
their food adaptations. Note that other 
animals (e.g., hindgut fermenters such 
as elephants and zebras) diff er in their 
adaptations and will therefore diff er in 

their food selection and their ability to 
digest specifi c food items. Because of 
diff erences in feeding strategies and con-
sequently diff erences of the gastrointes-
tinal tract, ruminants are subdivided into 
feeding guilds (nutritional phenotypes) 
defi ned by their favoured food: grazers 
(grass and roughage feeders), mixed-
feeders (intermediate type) and browsers 
(concentrate selectors; e.g., Clauss et al., 
2008; Hofmann, 1989). The classifi ca-
tion of these guilds is not family-specifi c 
(e.g., bovids occur in all feeding guilds, 
and ‘grazer’ does not mean that the ani-
mal feeds exclusively on grass). Interest-
ingly, as a consequence of diff erences 
in the chemistry of food plants ingested 
(grasses or herbs and trees), these feeding 
guilds can also be arranged in an order 
refl ecting their ability to cope with PSMs, 
the so called avoidance–tolerance contin-
uum, from grazers (lowest in tolerance) 
to browsers (higher in tolerance; Iason & 
Villalba, 2006).

In contrast to other animals, ruminants 
have developed a unique complex diges-
tive system that enables them to live ex-
clusively on plants. This ability makes ru-
minants favourable for domestication as 
they can convert indigestible plants into 
valuable products (e.g., meat, milk) for 
humans. A community of diff erent sym-
bionts (microbiome) located in the ru-
men foregut is responsible for the diges-
tion of plant material that is indigestible 
to non-fermenting animals, as ruminants 
themselves do not produce enzymes to 
degrade typical plant compounds like 
cellulose (Stevens & Hume, 1998). By 
fermenting plant material, the microbi-
ome provides its host with essential en-
ergy in the form of short-chain fatty ac-
ids (Van Soest, 1994) and, as soon as the 
symbionts fl ow out of the rumen, with an 
additional source of protein (Hofmann, 
2010). Hence, in contrast to other ani-
mals, a ruminant lives only indirectly on 
the food ingested, depending to a great 
extent on what is provided from the sym-
biotic community. Therefore, feedback 
loops from its microbiome might be nec-
essary for a ruminant to learn which food 
to ingest and which to avoid (Provenza, 
1995). This diet-related microbial com-
munity is complex and has coevolved 
with food plants over millions of years. 
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We found diff erent microbial communi-
ties and diff erences in their function in 
diff erent herbivores adapted to the food 
they usually ingest (e.g., grasses, forbs, 
browse; Mao et al., 2013; Petri et al., 
2013). Therefore, it is a challenge to 
determine the quality of food for large 
herbivores, as these animals are highly 
adapted to their natural food. Hence, our 
point of view on quality is driven mainly 
by overall general patterns but might not 
necessarily fi t to the preferred food of a 
given herbivore (see also ‘What Is Qual-
ity for a Ruminant?’, Stolter, 2018). 

In the following sections we will pro-
vide extended summaries of diff erent 
projects conducted within diff erent tasks 
of SASSCAL. We will focus not only on 
remote sensing as a useful tool for meas-
uring food availability and quality on a 
large scale but also on the impact of hu-
man land management as well as the in-
fl uence of climate change on these topics. 
The projects are not directly related and 
rather show diff erent aspects of the main 
topic of food availability and quality.

A. Remote sensing to es-
timate forage availability 
and quality projects 

Introduction 
Why is it important? Forage availability 
assessment is important to understand 
the state, extent, and quality of rangeland 
ecosystems. There are several indica-
tors used to measure forage quantity and 
quality, of which biomass (mass per unit 
area) and grass or forage nitrogen (forage 
N) concentrations (indicator of protein 
content — that is, percentage of dry mat-
ter) are commonly used indicators. For-
age quality and availability infl uence the 
movement and feeding patterns of herbi-
vores including livestock (Ben-Shahar & 
Coe, 1992; Kaszta et al., 2016). A rapid 
increase in human population could re-
sult in land cover and land use changes 
that could continue to distress rangelands 
and food security through land degrada-
tion (FAO, 2010; Thornton, 2010). Land 
degradation is regarded as a threat to the 
productivity of rangelands (FAO, 2010). 
Degradation or loss of rangeland potential 
to provide grazing resources is also ex-

Figure 1: Spatial distribution of leaf nitrogen concentrations (%) as an indicator of grass 
quality in the Kruger National Park (KNP) and Sabie Sands Game Reserve (SGB) area 
(Ramoelo & Cho, 2018).

acerbated by the ongoing global climate 
change phenomenon (Palmer & Bennett, 
2013). Climate change induces erratic 
rainfalls and increases temperatures. As a 
result, disasters such as drought become 
prominent in Africa, aff ecting a high pro-
portion of livestock production by reduc-
ing the availability and quality of grazing 
resources. Assessment of the quality of 
rangelands could provide information to 
inform decision-makers on planning and 
management. As an example, we visu-
alized changes in leaf nitrogen concen-
tration and annual grass biomass in the 
Kruger National Park between diff erent 
seasons and years.

Methods
Assessment of forage availability and 
quality can be assessed using in situ or 
fi eld-measured data. Remote sensing 
provides an alternative approach for 
mapping forage N and biomass for wider 
geographic areas and over time. The es-
timation of leaf N in grass has been suc-
cessful using hyperspectral data derived 

from fi eld spectrometers, airborne data 
(Knox et al., 2012; Mutanga & Skid-
more, 2004; Ramoelo et al., 2013; Skid-
more et al., 2010), and satellite remote 
sensing (Ramoelo et al., 2012; Ramoelo 
et al., 2015a). The mapping of forage N 
is possible because of the development of 
the second generation of vegetation indi-
ces based on the red edge wavelength, 
known to be positively related to chlo-
rophyll and N (Cho & Skidmore, 2006; 
Curran et al., 1991) and narrow band 
indices (Mutanga & Skidmore, 2004; 
Mutanga & Skidmore, 2007; Ramoe-
lo et al., 2012; Ramoelo et al., 2015a; 
Ramoelo et al., 2015b). Satellite sen-
sors such as WorldView-2, RapidEye, 
and Sentinel-2 (freely available) have 
been successfully used to map grass N, 
and grass biomass has been successfully 
mapped since the 1970s using Landsat 
and, recently, MODIS sensors. Empirical 
regression analysis is often used to relate 
in situ measured grass N and biomass 
with vegetation indices derived from re-
mote sensing images to create prediction 
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models. Red edge–based indices were 
used to estimate leaf N, while leaf area 
index (LAI) was used to estimate grass 
biomass. We used empirical regression 
analysis and both Sentinel-2 and MODIS 
data to visualize changes in leaf nitrogen 
between diff erent months (end of the 
wet season until end of the dry season) 
and changes in plant biomass among the 
years 2001, 2006, 2012, and 2015 for the 
Kruger National Park (South Africa) and 
surroundings. 

Results
Figure 1 and 2 display forage N and bio-
mass maps for the north-eastern part of 
South Africa, the Kruger National Park 
and surrounding areas. Red edge–based 
indices were used to estimate forage N 

and explained over 75% of leaf N vari-
ation. Grass biomass, on the other hand, 
was estimated using leaf area index 
(LAI), with the accuracy ranging be-
tween 50% and 80% for various dates. 
The results show clear patterns of grass or 
forage quality and availability, which are 
infl uenced by the underlying geological 
substrate. Forage quality and availability 
are also infl uenced by the frequency of 
fi re (see also Joubert et al., 2018). The 
maps can be further analysed using any 
metric required.

Synthesis and outlook
Forage quality and biomass maps could 
be used as an input for the carrying ca-
pacity and stocking rates models for 
improved rangeland use planning and 

management. This could ideally reduce 
land degradation and loss of forage qual-
ity. Well-managed grazing areas improve 
livestock production and food security 
as well as game habitat utilization and 
movements, which are important for na-
tional parks and game farms. These prod-
ucts could further help in the analysis of 
how changes in climate infl uence current 
and future forage quality and availability 
(biomass).

B. Impacts on nutritional 
quality and plant availability 

Impact of human land manage-
ment on plant quality — general 
introduction
Large herbivores have an enormous im-
pact on terrestrial ecosystems. Under dif-
ferent grazing pressures, vegetation com-
position and plant biomass might change 
(e.g., Olff  & Ritchie, 1998; Parsons et al., 
1994; Peco et al., 2006). Similarly, there 
could be changes in the chemical com-
position of plants as a result of feeding 
damage (e.g., Karban & Myers, 1989; 
Rooke & Bergström, 2007; Stolter, 2008; 
Stolter et al., 2005). In anthropogenic 
grazing systems, where cattle almost en-
tirely substitute wild-ranging herbivores, 
natural long-distance movements are 
no longer possible because of the frag-
mented, often fenced-in landscape. In 
these areas, overgrazing is a challenge 
that has detrimental eff ects on the over-
all quality of a given habitat, such as by 
desertifi cation or bush encroachment. 
Another land management activity that 
tends to infl uence the forage quality for 
both grazers (such as cattle, but also wild 
herbivores such as common warthog and 
gemsbok) and browsers (such as greater 
kudu, giraff e) is the long-held practice 
of bush burning. This leads to changes 
in the distribution of animals and conse-
quently to changes in the utilization of an 
area. Therefore, we investigated the im-
pacts and consequences of overgrazing, 
browsing, and fi re in diff erent projects. 
The following paragraphs will give ex-
tended summaries of these projects (for 
the infl uence of fi re on plant quality and 
animal utilization, however, see Joubert 
et al. [2018] in this book).

Figure 2: Spatial distribution of mean annual grass biomass (g/m2) in the KNP and sur-
rounding areas (white spots are the masked areas of high tree densities based on the 
existing land cover).
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Fence line and overgrazing

Introduction
Why is it important? Some large herbi-
vores are known for their distinct migra-
tory behaviour infl uenced by climatic 
conditions. These migrations often occur 
along the ‘greening line’ related to rain-
fall gradients in Africa or following the 
snowmelt gradients by large caribou and 
reindeer herds in Arctic regions. Migra-
tion allows herbivores in a seasonally 
changing environment to fulfi l their nu-
tritional needs by feeding on plants of 
higher quality (Fynn, 2012; Mårell et al., 
2006). In addition, it gives already grazed 
areas time to recover from feeding dam-
age. The naturally occurring migration 
pattern of some herbivores was adopted 
by humans during transhumance. With 
the development of settlements,  however, 
the subdivision of land by fencing result-
ed in fragmented landscapes, especially 
when high fences supress every sort of 
migration and even small-scale move-
ments. Inside the fence, herbivores might 
overutilize the available plant biomass, 
leading to changes in plant biodiversity 
as herbivores select the most palatable 
plants fi rst (Skarpe, 1990) and changes 
in soil properties (Gröngröft et al., 2010), 
with consequences for the associated fau-
na (e.g., small herbivores, insects, rep-
tiles). In our study (Kesch et al., in print), 
we determined the diff erences between 
areas with high and low grazing pressure 
using a fence-line contrast.

We determined how standing biomass 
of grass vegetation and its chemical char-
acteristics diff er between sites with low 
and high grazing pressure (for more de-
tails about the methods, see Kesch et al., 
in print). Furthermore, we determined 
how much time pasture in heavily grazed 
areas needs to recover from overgrazing 
eff ects.

Methods
Changes in vegetation composition 
and biomass can be easily seen along 
fence lines (e.g., along the Khutse 
Game Reserve in Botswana, where cat-
tle replaced migratory wildlife). Three 
sampling sites were installed in three 
diff erent areas, with one intensively 
grazed by livestock, one that had pre-
viously been intensively grazed but that 
at time of sampling was no longer used 
by livestock, and one site with low graz-
ing pressure by wildlife. At each site, 
21 sampling plots (100 cm²) were in-
stalled. Plots were sampled at diff erent 
times of the year and each plot was cut 
5 cm above the ground; samples were 
pooled for each plot and used for chemi-
cal analyses (ADF, NDF, and nitrogen). 
For a detailed description of the meth-
ods, see Kesch et al. (in print). 

Results
Interestingly, we found that as a result 
of the feeding activity of the cattle, the 
remaining regrowing grass contains 
higher percentages of protein (high graz-

ing  intensity: dry season 6.0 % and wet 
season 9.9% vs. low grazing intensity: 
dry season 3.5% and wet season 4.6%) 
and lower concentrations of ADF and 
NDF, especially in the wet season (e.g., 
35.1% ADF at high grazing intensity 
vs. 46.1% at the low-grazing-intensity 
site). Hence, we fi nd a higher general 
quality of grasses in the heavily grazed 
region. However, heavy grazing leads 
to a reduced plant biomass (3 g/100 cm² 
at high grazing intensity compared to 
31 g/100 cm² at low grazing intensity 
sites measured in the wet season). Fur-
thermore, a shift in vegetation composi-
tion was mirrored in a higher abundance 
of unpalatable plant species (e.g., ele-
phants root, Elephantorrhiza spec.). The 
exclusion of livestock resulted in a rapid 
increase of grass biomass after one wet 
season (2 g/100 cm² vs. 15 g/100 cm²), 
but this was not related to remarkable 
changes in plant chemical composition 
(see also Kesch et al., in print).

Synthesis and outlook
The enhanced plant quality (in terms of 
higher protein concentration) after feed-
ing damage is a phenomenon of plant 
response reported worldwide in diff er-
ent plant types (grasses: Fanselow et al., 
2011; bushes: Stolter et al., 2005; trees: 
Fornara & Du Toit, 2007). Some grass 
species in particular are known to be able 
to compensate for tissue loss (Beaulieu et 
al., 1996; Hik & Jeff eries, 1990), and this 
compensatory growth is related to higher 
protein content, as plants need enzymes 
for regrowth and photosynthesis shortly 
after damage (but see below for an exam-
ple of diff erent plant response). Here, we 
have to point out that plant response is a 
species-specifi c reaction to damage and 
the resulting changes might be very dif-
ferent. But, heavy grazing led to reduced 
grass biomass in our experiment and in 
consequence, the absolute amount of 
protein available per unit area was low-
er in areas with high than in areas with 
low grazing pressure. In areas without 
livestock, the relatively lower quality (in 
terms of protein content) was compensat-
ed by a high availability of biomass. This 
lower quality range might be suitable for 
herbivores adapted to lower plant qual-
ity (e.g., adapted sheep or herded goats 

Figure 3: Low and wide fences allow wild animals to move between sites.
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in relatively low numbers). Their feeding 
damage might lead to a positive feedback 
loop, depending on the grass species and 
soil conditions, for subsequent grazers, 
as described for other herbivores (Hemp-
son et al., 2015).

To prevent overgrazing and subse-
quent negative impacts such as bush 
encroachment and desertifi cation in ar-
eas where cattle substitutes wild-ranging 
herbivores, it is nece ssary to implement 
rotating grazing systems and adapt stock-
ing rates as well as using a combination 
of diff erent wild and domestic herbivores 
for sustainable development (e.g., Dick-
hoefer et al., 2010; Zimmermann & Smit, 
2010). Fences should be adapted to the 
animals’ needs; for example, low and 
wide fences with an adequate distance to 
the soil are benefi cial for the movement 
of wild herbivores (Fig. 3) but restrict the 
movement of cattle.

Bush encroachment: species-spe-
cifi c plant response to damage on 
seedlings 

Introduction 
Why is it important? Plants can react to 
damage in many diff erent ways. These 
responses can change both plant mor-
phology and plant nutritional quality. In 
the case of food plants, they might lead 
to either reutilization (if plant response 
leads to higher quality; e.g., Stolter, 2008) 
or avoidance (e.g., if plant response leads 
to higher concentrations of deterrent 
substances [PSM] such as phenolics, or 
mechanical defence such as thorns and 
spines; e.g., Milewski et al., 1991). In 
the case of a defensive plant response, 
damage to bush encroacher species can 
lead to a higher number of thorns, larger 
thorns, and higher concentrations of de-
terrent substances to deter animals from 
feeding, but also to a lower concentra-
tion in nutrients. Therefore, knowledge 
about plant response is important for 
developing management strategies for 
diff erent stakeholders. Especially for 
bush encroacher species (e.g., diff erent 
Acacia species), this knowledge will aid 
in understanding and managing the trans-
formation of grassland into thickets of 
bushes. Furthermore, as some herbivores 
utilize these plants as a food resource, the 

animals’ feeding choice might off er an 
opportunity to reduce bush encroacher 
species, especially if the plants are in the 
seedling stage. Therefore, we examined 
how bush encroacher species react to 
the damage of their top shoot (whether 
through mechanical cutting by mowing 
or feeding damage by herbivores) in the 
seedling stage. We investigated whether 
damage to top shoots will result in chang-
es in plant chemistry (e.g., lower or high-
er nitrogen, tannin, or phenolic concen-
trations) and whether changes in a plant’s 
chemical composition will infl uence the 
food choice of sheep or goats. Further-
more, we studied whether sheep or goats 
prefer to feed on plants with high protein 
content and avoid plants with high PSM 
(condensed tannins and total phenolics) 
concentrations.

Methods
To understand the plant response of im-
portant encroacher species, we inves-
tigated the plant response of seedlings 
of Acacia mellifera (Senegalia mellif-
era, blackthorn, swarthaak), A. tortilis 
(Vachellia tortilis, umbrella thorn aca-
cia), A. refi ciencs (Vachellia refi ciens, red 
bark acacia, rooihak), and Dichrostachy 
cinerea (sicklebush) to top-shoot damage 
(simulated browsing) in a greenhouse ex-
periment (n = 40 of each species, except 
A. tortilis [n = 20]). Six months after 
damage, we tested their palatability to 
sheep and goats (more details about the 
methods are found in the bush encroach-
ment chapter by Stolter et al. [2018]). 
For chemical response, we analysed the 
leaves after simulation of feeding dam-
age for nitrogen, diff erent fi bre fractions, 
condensed tannins, and total phenolics 
(see Stolter [2018] for more details about 
the chemistry of feeds). In this chapter 
we will focus on the chemical response 
of the plants; results concerning the 
morphological response and more infor-
mation about the consequences for sub-
sequent herbivores are also given in the 
chapter on bush encroachment (Stolter et 
al., 2018).

Results
Swarthaak (umbrella thorn acacia) had 
slightly lower concentrations of nitrogen 
in the leaves of damaged plants compared 

to control plants; this result was more 
pronounced for sicklebush (1.77% N in 
damaged plants vs. 2.23% N in control 
plants). In this sense, we can see a loss 
in general quality after damage. Nev-
ertheless, none of the investigated spe-
cies showed a defensive reaction (which 
would be refl ected in a higher condensed 
tannins or total phenolic concentration). 
We detected no remarkable changes in 
plant chemistry in rooihak. 

In a subsequent feeding trial, we test-
ed the infl uence of the plant response 
on sheep and goats. Neither sheep nor 
goats showed diff erences in selection 
between previously damaged or undam-
aged plants (for more detailed informa-
tion, see the bush encroachment chapter, 
Stolter et al., 2018). Unlike goats, the 
chosen sheep breed (Cameroon black-
belly) totally avoided all four plant spe-
cies, whether the plants were damaged 
or not. To test whether sheep avoided the 
plants because of the plants’ tannin con-
tent, we additionally sprayed the plants 
with a polyethylene glycol solution (a 
common method for blocking tannin 
bioactivity; e.g., Makkar et al., 1995; Si-
lanikove et al., 1994) and off ered these 
plants for another week. However, the 
sheep still refused to feed on any of the 
plants off ered. Goats, on the other hand, 
did not discriminate between damaged 
and control plants and preferred neither 
the plant species with the highest nitro-
gen concentration (swarthaak, 3.69% 
N in leaves of control plants) nor that 
with the lowest concentration of PSMs 
(swarthaak has virtually no condensed 
tannins; 0.63% total phenolics in leaves 
of control plants). Instead, goats fa-
voured sicklebush, which is lower in 
nitrogen (2.23% N in leaves of control 
plants) and higher in PSM concentration 
(condensed tannins: 1.06%, total pheno-
lics: 1.95% in leaves of control plants) 
than the other tested bush encroachers 
(more detailed results will be published 
by Stolter & Joubert elsewhere).

Synthesis and outlook
In contrast to our expectations, our re-
sults show only a slight change in nitro-
gen, leading to a slightly lower overall 
plant quality, but no real defensive strat-
egy (e.g., we did not fi nd higher tannins 
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content after damage). More interesting 
was our fi nding of a severe response in 
the morphological characteristics of the 
plants (see bush encroachment chapter, 
Stolter et al., 2018). Our feeding trial 
clearly demonstrated that neither do the 
measured PSMs lead to a total avoidance 
nor does the high nitrogen content lead 
to a feeding preference in goats. This 
result clearly underscores that food se-
lection cannot be simplifi ed to one food 
component but is rather a product of dif-
ferent trade-off s, as described by the nu-
trient-balance hypothesis (Felton et al., 
2016; Simpson & Raubenheimer, 2012). 
In our case, food selection seemed to be 
driven not by plants’ chemical content 
but by their morphological defences. 
This was related not to the size of the 
thorns but rather to their shape (Stolter 
et al., 2018). For management implica-
tions, however, the overall high quality 
of the plants might be interesting, as it 
is benefi cial for herbivores that can cope 
with the mechanical barrier (e.g., kudu, 
goats) and the plants can also be used in 
a ground and pelleted form (to destroy 
the mechanical defence) as supplemen-
tary feeds for cattle. This utilization of 
these plant species as supplementary 
food can therefore contribute to the car-
rying capacity of the savanna ecosys-
tem, especially in times of scarce food 
availability.

Impact of temperature and rain-
fall on plant chemical composi-
tion — general introduction
As a consequence of climatic changes, 
we can expect changes in the chemical 
compositions of plants that might lead to 
changes in food selection by herbivores. 
Studies on simulated climate change 
(e.g., increased temperature, reduced 
water availability, increased CO2) lead 
to ambiguous results concerning changes 
in plant quality. For example, studies 
have shown that elevated CO2 increases 
the assimilation of carbon. As a result, 
plant protein concentrations decrease, 
especially in dicotyledons used as food 
by browsers (Cotrufo et al., 1998), while 
concentrations of fi bre and C-based PSMs 
(e.g., phenolics) might increase (Stiling 
& Cornelissen, 2007, but see Veteli et al., 
2002). Furthermore, PSMs are known 

Figure 4: Open top chambers (OTC) on a bush-cleared site in the thornbush savanna in 
Namibia (Erichsfelde Farm).

Figure 5: Differences in temperature in °C (y-axis) between inside the OTC and out-
side (mean of seven chambers per data point, 1,171 data points, measuring interval of 
4 hours); time span (x-axis) from October (start of wet season) till May (end of wet sea-
son). Note: Differences were less at the end of the rainy season.

Figure 6: Reduction in relative humidity [%] inside the OTC chamber compared to the 
outside (y-axis, mean of seven chambers per data point, 1,171 data points, measuring in-
terval of 4 hours); time span (x-axis) from October (start of wet season) till May (end of wet 
season). Note: There was no seasonally pronounced effect at the end of the rainy season 
compared to temperature. 
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to be more toxic to mammals at higher 
ambient temperatures and detoxifi cation 
costs can be enormous (Dearing, 2013; 
Forbey et al., 2013; Kurnath & Dearing, 
2013).

As plant chemical composition is 
likely to change in response to climate 
change, the nutritional quality of feed 
will become a focal point of interest for 
diff erent stakeholders (researchers, farm-
ers, wildlife managers, nature conserva-
tionists, hunters) dealing with the man-
agement of large herbivores. To improve 
our understanding of climate change 
impacts, we investigated the infl uence 
of increased temperature and reduced 
humidity on the general plant quality of 
diff erent grass species.

Methods
We installed 32 open-top chambers (OTC) 
in the thornbush savanna of Namibia 
(Fig. 4) for a period of seven months.

We used the i-botton data logger to 
measure diff erences in temperature and 
humidity between inside and outside 
every four hours (Fig. 5 and 6) to ensure 
that our OTC increased temperature and 
reduced humidity. For chemical analyses 
(nitrogen, diff erent fi bre fractions, ash), 
we used fi ve grasses growing naturally 
in the area: Pogonarthria fl eckii (annual 
hairy fi shbone grass), Urochloa brach-
yura, Melis repens (red top), Panicum 
sp., and Aristida stipitata (bristlegrass) 
from inside and outside (control) the 
chambers.

Results
The mean diff erence in temperature be-
tween inside and outside the chambers 
was approximately 2.5°C; additionally, 
the humidity was reduced (Fig. 5 and 6). 
We found pronounced diff erences during 
the wet season for temperature but not for 
humidity. We found no signifi cant diff er-
ences in plant quality for four of our fi ve 
species. Only bristlegrass showed higher 
concentrations of diff erent fi bre fractions 
as a result of a higher ADL content in 
the OTC chamber compared to control 
(NDF: 76.14% [OTC] vs. 74.68% [con-
trol]; ADF: 41.23% [OTC] vs. 39.73% 
[control]; ADL: 4.29% [OTC] vs. 3.89% 
[control]). More detailed results will be 
published by Stolter & Joubert elsewhere.
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