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Abstract

A new method for flood detection change detection and thresholding (CDAT) was used with

synthetic aperture radar (SAR) imagery to delineate the extent of flooding for the Chobe

floodplain in the Caprivi region of Namibia. This region experiences annual seasonal flooding

and has seen a recent renewal of severe flooding after a long dry period in the 1990s. Flooding

in this area has caused loss of life and livelihoods for the surrounding communities and has

caught the attention of disaster relief agencies. There is a need for flood extent mapping

techniques that can be used to process images quickly, providing near real­time flooding

information to relief agencies. ENVISAT/ASAR and Radarsat­2 images were acquired for

several flooding seasons from February 2008 to March 2013. The CDAT method was used to

determine flooding from these images and includes the use of image subtraction,

decision­based classification with threshold values, and segmentation of SAR images. The

total extent of flooding determined for 2009, 2011 and 2012 was about 542 km2, 720 km2, and

673 km2 respectively. Pixels determined to be flooded in vegetation were typically <0.5% of

the entire scene, with the exception of 2009 where the detection of flooding in vegetation was

much greater (almost one third of the total flooded area). The time to maximum flooding for

the 2013 flood season was determined to be about 27 days. Landsat water classification was

used to compare the results from the new CDAT with SAR method; the results show good

spatial agreement with Landsat scenes.

Keywords: flooding, SAR, remote sensing

1. Introduction

It is estimated that one billion people live in extreme flood

areas, a number which may double by 2050 in the face

of climate change and population increase (Bogardi 2004).

Knowledge of the spatial extent of extreme flooding is an

asset to decision makers and disaster relief agencies aiming

Content from this work may be used under the terms of

the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

to efficiently provide immediate and lasting support to those

populations affected by flood events.

The Chobe floodplain, a seasonal marshland in the upper

Zambezi River basin in Southern Africa was selected for this

study in response to the recent advent of extreme flood seasons

beginning in March of 2009. Zambia, Namibia, Botswana, and

Zimbabwe share wetlands and tributaries in the upper Zambezi

river basin (Beilfuss 2012) and have been affected by the flood

events through the displacement of people, loss of crops and

property, and even deaths (Inambao 2009, IRIN 2009, IFRC

2011). Disaster relief agencies have need for quick response

or near real­time flood extent maps of this region to provide
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service to inundated areas. Additionally, any regional planning

may benefit from accurate and current flood extent maps.

Pricope (2013) has evaluated flood dynamics of the Chobe

floodplain for the period of 2000–2010, using AVHRR NDVI,

MODIS NDVI and EVI, and Landsat NDWI for analysis of

flood extent. However, the use of optical sensors is often

unreliable due to the spectral similarities between burned

areas and flooded areas (Pricope 2013), the lack of available

cloud­free images (Biggin and Blyth 1996), and the inability

to detect standing water in vegetation (Townsend and Walsh

1998). Synthetic aperture radar (SAR) provides an all­weather,

all­day tool for imaging flood events at near real­time. SAR

sensors are able to detect flooding because flat surfaces reflect

the signal away from the sensor, decreasing the amount of

returned radiation (Gan et al 2012). SAR may also be used

to detect flooding in vegetated or urban areas due to the

brightening effects caused by the signal’s double­bounce off

of objects in standing water (Hess et al 1990, Schumann et al

2010, Mason et al 2011).

SAR­based techniques for flood detection include his­

togram thresholding or clustering (Inglada and Mercier 2007,

Martinis et al 2009), radiometric thresholding (Matgen et al

2011), the application of neural networks in a grid system

(Kussul et al 2008), fractal dimensioning of multi­temporal

images (Huang et al. 2011), pixel­based segmentation (Marti­

nis et al 2009), and statistical active contouring (Horritt et al

2001). While most methods use a single image to process the

flood event, change detection can be used to provide reference

brightness information (Inglada and Mercier 2007, Huang

et al 2011, Gan et al 2012) and works well in coordination

with other techniques such as histogram thresholding and

segmentation. Some methods rely on high­resolution topogra­

phy for analysis (Townsend and Walsh 1998, Schumann et al

2007, Mason et al 2011, Gala and Melesse 2012); however,

accessibility to this information for remote areas of the world

may be impossible. Moreover, elevation based methods for

delineating floodplains or drainage areas are not effective in

semi­arid regions with porous sandy soils and low topographic

gradients (Pricope 2013).

Most SAR­based techniques for flood detection have been

developed for monitoring large river flooding in the temperate

northern latitudes; including the UK (Martinis et al 2009,

Horritt et al 2001), Germany (Henry et al 2006) and eastern

Europe (Gan et al 2012). However, few studies have focused on

flooding in areas such as sub­Saharan Africa and the Zambezi

River basin where seasonal flooding is common, yet intense

periods of drought can change the landscape.

The development of a flood detection method for the

Chobe floodplain must be able to operate independently of

inaccessible ground­truth data such as river water levels, high­

resolution topography, river delineations, and vegetation cov­

erage. Additionally, flooding in vegetation must be identifiable

as the floodplain can be highly vegetated in the permanent

marshland areas. Finally, an operational flood detection net­

work may rely on a range of sensors onboard various available

satellites to capture floods in near real­time resulting in dif­

ferent viewing geometries, incidence angles and resolution on

the ground; therefore, the procedure for flood detection must

be standardized for a variety of SAR sensors Based on these

requirements and the available techniques, a method of change

detection and thresholding in coordination with adaptive fil­

tering and segmentation (change detection and thresholding,

CDAT) was developed for this region. The CDAT method was

applied to determine the extent of inundation during seasonal

flood events in Caprivi, Namibia in 2009, 2011, 2012, and 2013

using available images from ENVISAT/ASAR and Radarsat­2

SAR sensors.

2. Site description

The upper Zambezi basin receives over 37 000 million cubic

meters of runoff from the surrounding 515 000 km2 of Nambia

and Zambia (Beilfuss 2012). The Chobe floodplain is located

at the outfall of this basin, providing a large wetlands area

and increasing the evapotranspiration of the river. Seasonal

flooding is critical to the health and productivity of this area,

and in recent years has increased causing the re­emergence of

perennial lakes and wetlands which had dried up considerably

since the 1980–1990 dry period.

At almost 2600 km in length, the Zambezi is the largest

river in southern Africa, with a catchment area that covers

eight countries (Moore et al 2007). The river and its tributaries

feature waterfalls, floodplains, lakes, gorges, and now hydro­

electric dams. Today the river is important as a fishery, for use

in irrigation, for hydropower, and as a sanctuary for a diverse

array of wildlife, which also attracts eco­tourism (Shela 2000).

Despite the large amount of rainfall that the area receives,

averaging about 990 mm yr−1 for the entire catchment, the

majority of the rainfall arrives in less than 6 months with the

remainder of the year in drought. In addition to the temporal

polarity of precipitation, some areas of the Zambezi experience

far less than the total basin average; the Kwando/Chobe

sub­catchment area which feeds the Chobe floodplain and

the upper Zambezi only receives about 800 mm/year of

rainfall whereas the headwaters of the Zambezi receives about

1330 mm/year on average (Beilfuss 2012). The Zambezi basin

has experienced severe or persistent droughts as recent as the

1980s and 1990s, which represented some of the most severe

droughts since the 1915–1935 drought period (Shela 2000).

When the rain does arrive, the extended periods of drought

combined with the large flux of rainfall can lead to large

amounts of runoff and flooding. In March 2009, the upper

Zambezi swelled over its banks and flooded portions of Zambia

and Namibia, claiming lives and destroying property. The

Caprivi and Kavango regions were among the hardest hit;

the Zambezi water level had reached its highest level recorded

since 1969 (IRIN 2009, Bosch 2011). In the Caprivi region,

lake Liambezi received floodwaters from the Zambezi via

the Bukalo channel, replenishing the area and threatening

unprepared communities after being largely dried up since

the 1990s (Inambao 2009).

Again in 2010, the Zambezi flooded into the Caprivi

region affecting over 100 000 people and damaging infras­

tructure, field crops and livestock (IFRC 2011). In January of

2013, the Zambezi water levels began to rise again, reaching
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Table 1. List of evaluated SAR images, reference images are highlighted.

Satellite/sensor Image date Beam mode Resolution (m)

ENVISAT/ASAR 26 February 2008 WSM 6 × 77

ENVISAT/ASAR 20 March 2009 WSM 60 × 77

Radarsat­2/SAR 16 March 2011 S5 12.5

Radarsat­2/SAR 17 February 2012 F0W3 6.25

Radarsat­2/SAR 29 April 2012 F0W3 6.25

Radarsat­2/SAR 30 January 2013 F6 6.25

Radarsat­2/SAR 8 February 2013 S1 12.5

Radarsat­2/SAR 11 February 2013 F4N 6.25

Radarsat­2/SAR 5 March 2013 F1N 6.25

Radarsat­2/SAR 7 March 2013 F3F 6.25

Radarsat­2/SAR 12 March 2013 F3F 6.25

6.31 m in the Caprivi region, the highest levels ever on record

for January (IFRC 2013).

The mechanism for flooding into the Caprivi region is

due to the Chobe River and its floodplain. During normal flow

regimes, the Chobe River acts as a tributary for the Zam­

bezi. However, during flood events the Chobe river reverses

direction and flows back into the floodplain, inundating up to

1700 km2 (Beilfuss 2012).

The intensity of the annual flood is cyclic, showing periods

of above average high water levels and periods below average

(Moore et al 2007, Beilfuss 2012, Mazvimavi and Wolski

2006). Mazvimavi and Wolski (2006) have concluded that

there is an underlying multi­decadal cycle (of unknown origin)

which drives these changes in seasonal flows in the Zambezi

River. Their cycle study also showed that the Zambezi should

be moving towards a period of high­flow; a notion that is

supported by the resurgence of large flood events in the Upper

Zambezi over the last 5–10 years However, Pricope (2013)

has documented a general decrease in the overall flooding of

the region since 2000 based on evaluation of optical flood

detection methods.

3. Data and methods

SAR images include two ENVISAT/ASAR images taken 26

February 2008 and 20 March 2009. Additionally, Radarsat­2

images taken from 27 February 2011 to 12 March 2013 were

acquired. Table 1 lists the images that were processed for this

study; the images used as a reference are shaded (note that

the 17 February 2012 image was used as a reference for both

the 2011 and 2012 flood events). All SAR images were of

HH polarization; this is the preferred polarization for flood

extent mapping because it is less sensitive to minor vertical

differences on the water surface caused by waves (Henry et al

2006, Martinis et al 2009, Gan et al 2012).

3.1. Image preprocessing

All SAR images were georeferenced and stacked using ENVI

software in order to perform a change detection process. The

adaptive Gamma (maximum a posteriori—MAP) filter pro­

duces speckle­removed images with relatively low processing

time (Lopes et al 1990, Martinis et al 2009). This method was

ultimately selected for speckle removal, as it was effective for

all of the available SAR resolutions, angles, and sensor modes.

The images were processed with a Gamma filter over a 5 × 5

window with 2 looks.

The CDAT method was used to process recent seasonal

flood events in the Chobe flooplain from 2009 to 2013. The

images were georeferenced, filtered with the adaptive Gamma

filter and masked. Figure 2 shows the pre­processed imaged

from 2012 and 2011, the Gamma filter removed speckle and

smoothed the image. The dark portions of the image represent

flat surfaces such as water.

3.2. Change detection and thresholding (CDAT)

Two images were selected to evaluate the flood extent, one

reference image and one ‘flooded’ image from after the storm

event. The following method was then applied to extract the

flood extent from the two images:

(1) Band math—difference of the absolute values of the

images.

(2) Thresholding—classify pixels of the difference image,

which are dark as flooded or very bright as flooded in

vegetation, based on threshold criteria.

(3) Segmentation—group larger areas of flooding.

A difference expression was applied on the stacked images

to get the absolute difference (D) between the reference image

(R) and the flooded image (F)

D = |float(F)| − |float(R)|. (1)

The result of the band math is the differenced image.

Areas that were darker in the flooded image appear dark in the

difference image, while areas that were dark in both images

appear gray indicating no change. The differenced image is

then masked to set any edges or overlay errors to zero before

classification.
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Figure 1. Location map with SAR image outlines for 2009 (red), 2011 (green), 2012 (light blue), and 2013 (magenta).

3.2.1. Thresholding. Histogram thresholding involves sepa­

rating the image into several gray scale ranges based on peaks

in the histogram (Deshmukh and Shinde 2005). A threshold

value was determined from the valleys in between two peaks.

The thresholding process was applied using a decision

tree classification. The decision tree starts with a masking

decision, which asks if the pixel of the differenced image

(PD) has a slope less than 3◦ by analyzing the slope of the

input digital elevation model (DEM). This step masks these

steeper slopes and therefore removes any pixels in the SAR

image that may show a change in brightness due to the angle

of signal return from hills and slopes (Hess et al 1990). The

removal of these bright pixels is important for calculation of the

local statistics during thresholding; however, this step may be

unnecessary and therefore omitted for regions with relatively

flat topography. A slope of 3◦ was chosen as a conservative

standard slope, and includes areas such as steep river banks,

hydraulic structures, and hill slopes. The SRTM global digital

elevation model for Africa was acquired from the USGS online

resource and was used for all SAR imagery. Since this is a

global DEM it can be used for other regions around the world.

Another step masks any background pixels which were

set to zero in the differenced image using the masks for each

year as shown in figure 1. The sloped pixels and the zero­value

background pixels are classified as Class 0.

Surviving pixels were evaluated for flooding using the

brightness variance to set the threshold criteria. In the case of

flooded pixels, the threshold criterion is simply that the pixel is

less than the mean pixel value minus the standard deviation of

the entire image times a coefficient kf . The following criterion

determines if the pixel (PD) is inundated:

PD < ({lmean[D]} − kf ∗ {lstdev[D]}) (2)

where lmean is the mean of the surviving pixels and lstdev

is the standard deviation of the surviving pixels. The optimal

value of kf was determined to be 1.5 for this region based

on several iterations. Several criteria are examined during the

calibration of the kf value; including amount of remaining

speckle and its coverage, visual correlation to Landsat imagery

and aerial photographs, and identification of characteristic

Figure 2. Example of pre­processed Radarsat­2 SAR images taken
pre­flood (top) and post­flood (bottom). Darkened areas are
associated with flooding. Lake Liambezi is indicated at the bottom
left.

flooding patterns (i.e. proximity to rivers and inundation of

dry streambeds).

If the inundation criterion is not met, the pixel is then

evaluated for flooding in vegetated or urban areas using

the brightness variance and a multiplicative coefficient to

determine the threshold criteria. In the case of flooding in

vegetated areas, the threshold criterion is that the pixel is

greater than the mean pixel value minus the standard deviation

times some coefficient kfv. The following criterion determines

if the pixel is inundated in a vegetated area:

PD > ({lmean[D]} + kfv ∗ {lstdev[D]}). (3)

The optimal value of kfv was determined to be 2.5 for

this region using the same method as for the value of kf .
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Figure 3. Histogram of the 2011 differenced image showing the
mean and flooding ranges.

The threshold coefficients showed sensitivity to the scale of

the image and extent of flooding. For example, the 12 March

2013 image was small in scale and almost the entire image

was flooded resulting in a lower local mean of the image and

smaller local standard deviation, which could have caused an

overestimation of flooded pixels.

A log scale histogram of the 2011­differenced image is

shown in figure 3. Ignoring background values, the range

of the flooded images relies on the mean and standard

deviation of the pixel values of the entire image In the 2011

differenced image the majority of the pixels are unchanged

(near zero), representing normal river boundaries and land

cover unaffected by flood. The peak in the number of pixels

below the mean represents the large population of flooded

pixels.

SAR image brightness depends on incidence angle of the

sensor during acquisition (Gan et al 2012). However, this

method relies on statistical relationships of the differenced

values, eliminating the need to retain the explicit brightness

values. This means that SAR scenes with different incidence

angles can be used to evaluate flooding without issue.

3.2.2. Segmentation and extraction. The ENVI Segmenta­

tion tool clusters classified pixels into groups of the same class

type, and puts the data in a raster format with separate object

ID’s for each grouping. Segmentation is a useful postprocess­

ing tool for radar because of the minimum pixel requirement

for the groupings, ignoring sporadic bright or dark pixels

associated with image speckle that were missed by the prepro­

cessing. It also grows flooded regions by connecting groups

based on neighboring pixel classifications. Segmentation was

performed separately for Class 2 (Flood) and Class 3 (Flood

in Vegetation). The tool groups pixels based on the number of

neighboring pixels (4 or 8) and the minimum number of pixels

per group. While many combination options were examined,

better results were found (i.e. less speckle and flooded feature

retention) when neighboring groups were larger (8 neighbors)

and the number of pixels per group was smaller (a minimum

of 30). This way, denser groups of flooded pixels and smaller

flooded features could be identified among the speckle.

Table 2. Total area of flooding increase for each evaluated year and
percent of total flooding that is considered flooding in vegetation.

Flood year 2009 2011 2012 2013

Total flooded

area (km2)

541.69 719.71 673.22 551.38

Percent as flooding in
vegetation (%)

30.68 5.83 12.27 1.05

Figure 4. The 2009 flood extent (blue) and flooding in vegetation
(green) using the CDAT method with ASAR images.

4. Results and discussion

4.1. Flood extent of the Chobe floodplain

Table 2 shows the total area of flooding increase for each

evaluated flood event. The 2011 event showed the largest flood

extent (about 720 km2) and the 2009 event had the smallest

extent (about 540 km2). The 2013 flood event showed the

least amount of flooding in vegetation (about 1% of the total

flooding), which may be a result of the finer resolution of the

SAR image.

The 2009 flood event was evaluated with available EN­

VISAT/ASAR images from 26 February 2008 and 20 March

2009. Figure 4 shows the flood extent in blue (for open water)

and green (for flooding in vegetated areas). The extent of

flooding evaluated is only illustrating the increase in flood

extent from the previous year and not the entire extent. It

should also be noted that the flood in 2009 continued to expand

even after the image was captured on 20 March 2009.

Of the images available, the most appropriate reference

SAR image for the 2011/2012 period was 16 February 2012

due to the relative ‘dryness’ of the floodplain. This image was

used to process the 2011 and 2012 flood events with the CDAT

method. Results show excellent spatial correlation to the actual

flooded areas.

Figure 5 shows the 2011 flood extent as determined by

the CDAT with SAR method. The flood event was captured

by Radarsat­2 on 16 March 2011 and compared to the 16

5
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Figure 5. The 2011 flood extent (blue) and flooding in vegetation
(green), extracted using the CDAT method with Radarsat­2 images.

February 2012 image. Shown in figure 6 is the 2012 flood

extent as determined by the CDAT with Radarsat­2 method

for 29 April 2012 as compared to the 16 February 2012

image. Flood extents from 2011 and 2012 are similar; however,

flooding along the Chobe River is more extensive in 2011.

Both maps show flooding in vegetation along the Zambezi

and its marshland or delta. In addition, both maps captured

some swelling of lake Liambezi near the Linyati River. This

appears flooded near the banks of the lake in 2011 and flooded

in vegetation in 2012, possibly indicating land cover change.

4.2. Time to flood

The extent of flooding between 30 January 2013 and 12 March

2013 was determined from the CDAT with Radarsat­2 images.

Figure 6. The 2012 flood extent (blue) and flooding in vegetation
(green) using the CDAT method with Radarsat­2 images.

Several SAR images were available for the 2013 flood in

the Chobe floodplain, beginning from the start of the flood

season on 30 January 2013 and ending on 12 March 2013 (see

table 1 for a list of available images). The images were from

Radarsat­2 and were taken using Fine beam mode or wide

fine beam mode, with the exception of the 4 February image

taken in Standard mode. The images were all resampled to

12.5 m × 12.5 m resolution and smoothed using the adaptive

Gamma filter.

The time to maximum flood extent is very rapid in the

Chobe Floodplain, depending on the season. A time series of

SAR images for the 2013 flood season was evaluated. Figure 7

shows extent of inundation with time and figure 8 graphs the

percent of inundated pixels with time. The flood extent is

shown in blue and flooding in vegetation in green. The area

Figure 7. Flood maps from 30 January 2013 to 12 March 2013.
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Figure 8. Percent of flooded pixels for the 2013 flood season.

available for study, as determined by the size of the available

images, is outlined on the map. The flood extent maps, which

are limited spatially due to the small swath of the SAR images,

suggest that the full extent of flooding was reached on 7 March

2013. Since the initiation of flooding in early February, the

extent of flooding changed very rapidly increasing by 20%

and inundating over 550 km2 in 27 days.

4.3. Landsat comparison

Landsat images were downloaded from the USGS EarthEx­

plorer website (http://earthexplorer.usgs.gov/) for flood extent

comparison to the CDAT with SAR method. Landsat scenes

were selected based on the dates of the SAR images and scene

clarity. Landsat TM, ETM+ and OLI sensors have a short­

wave infrared (SWIR) band, which is useful for determining

inundated regions (Gala and Melesse 2012). A density slice of

the SWIR band (Band 5 for TM or ETM+) or a multi­band

classification of Bands 2–6 with Landsat 8 OLI was used; both

methods performed equally well for defining water extent. The

flooded areas were then subtracted from the classification of a

non­flooded day on about the same dates as the SAR reference

images. Subtracted results were then compared to the flood

extents determined using the CDAT method. Because it is

difficult to determine flooding in vegetation using Landsat,

this was not considered during the comparison.

The system for evaluating the pixel­based comparison

includes the use of upper and lower­case letters which indicate

percentage of flooded pixels (‘F’ for the SAR method and ‘f’

for the Landsat method) and non­flooded pixels (‘N’ for the

SAR method and ‘n’ for the Landsat method). ‘Ff’ represents

pixels which are considered flooded for both methods, ‘Nn’

are pixels which are considered non­flooded for both methods,

‘Nf’ are pixels which are considered non­flooded for the SAR

method and flooded for the Landsat method and ‘Fn’ are

pixels which are considered flooded for the SAR method and

non­flooded for the Landsat method.

Table 3 shows the pixel­based comparison of the CDAT

with SAR method and the Landsat classification. The CDAT

method produced a large percentage of non­matching pixels

(Nf plus Fn) due in large part to the cloudiness of the

Landsat scenes, difference in time of acquisition for the

Table 3. Pixel­based comparison of Landsat and SAR methods for
three flood events. Shown are the percentages of pixels marked as Ff
(flooded for both methods), Nn (non­flooded for both methods), Fn
(flooded for the SAR method only), or Nf (flooded for the Landsat
method only).

Flooding year 2009 2011 2013

Ff (both flooded) 0.88 4.50 7.24

Nn (both non­flooded) 90.80 84.20 69.87

Fn (SAR flooded) 2.47 0.82 15.52

Nf (landsat flooded) 5.86 10.48 7.37

Total non­matching pixels 8.32 11.30 22.89

Landsat and SAR images, image resolution, and method of

flood extent detection. For all three evaluated years, 30–90%

of the total non­matching pixels came from areas marked

non­flooded in the SAR images yet are considered flooded

by Landsat classification due to darkening by cloud shadow

in the Landsat scene, additional land cover changes occurring

between Landsat scenes, or because the flood extent increased

in the moments between the SAR and Landsat acquisition.

One exception is the 2013 flood year, which showed a greater

number of flooded pixels in the SAR image. This may be

due to the improved ability of the CDAT with SAR method

to capture flooded areas, as much of the Landsat scene has

emergent vegetation which can be erroneously classified as

non­flooded.

The percentage of pixels in error (or non­matching) in­

creased with the increasing resolution of the SAR images. For

the 2009 flood, the method was tested using ENVISAT/ASAR

images with 60 m resolution, the 2011 flood event was imaged

with Radarsat­2 with a resolution of 12.5 m, and the 2013

images have a raw resolution of 6.25 m. The increasing

resolution (from 60 to 6.25 m) results in increasingly detailed

outlines of inundated areas and may allow for inundated area

separation due to SAR speckle.

Despite the large pixel error, the maximum spatial extent

of flooding corresponds well with that of the Landsat scenes.

For the 2009 flood extent, much of the flooded area matches

up well on visual inspection with a Landsat 5 TM scene from

the following month. However, the Landsat image is marred

by clouds; a common optical problem which does not affect

SAR imagery. The ability to acquire images despite cloud

cover or time of day gives the CDAT with SAR method a clear

advantage over optical methods, such as classification with

Landsat.

It is with caution that we compare two image acquisitions,

two sets of differenced images, even two images from different

imaging modes; but it is with particular caution that we com­

pare two different physical means of obtaining land surface

information (optical and radar). Townsend and Walsh (1998)

found Landsat TM data to be a poor indicator of flooding,

especially during periods of ‘leaf­on’. They concluded that

SAR images are superior to optical for determining flooded

pixels (Townsend and Walsh 1998). However, there are few

other options for ground­truthing in this remote region of the

world and Landsat, which is free and publicly accessible, can

be used for visual inspection.
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Figure 9. Frequency of total flooding for 4 seasons (2009 and
2011–2013).

4.4. Flooding frequency

Figure 9 spatially illustrates the frequency with which flooding

occurs. This indicates potential extent of seasonal flooding. In

figure 9, areas in red and orange have been flooded more

frequently from 2009 to 2013 and represent a certainty of

flooding for future flood seasons. In all four years, 22% of

flooded pixels have flooded at least twice (either open flooding

or flooding in vegetation) and 9.8% have flooded at least three

times.

5. Conclusion

Recent flooding was evaluated in the Chobe floodplain in the

Caprivi region of Namibia using a novel change detection

and thresholding technique, the CDAT method, with SAR

images from ENVISAT/ASAR and Radarsat­2. The method

uses threshold values based on the statistics of each set of

differenced SAR images, allowing an individualized estima­

tion of flooding. The straightforwardness of the difference

and classification method allows for future automation for

near real­time flood extent mapping. The CDAT method is

novel in that it utilizes statistical thresholding techniques after

the images are subtracted. This process provides the extent

of additional flooding, and eliminates the need for detailed

floodplain or river bank delineations, which may change over

time and can be difficult to obtain for remote regions of the

world.

The 2009 Chobe flood was compared with the less intense

2008 flood and showed an increase of inundation of about

542 km2. The flood was recognized as a disaster by relief

agencies mainly because it caused a re­emergence of perennial

wetlands, which were dry for 13 years and had been claimed

as farmland in that time. Many were displaced by the flood,

experienced property damage or loss, or were threatened by the

loss of food security (IRIN 2009). The 2009 flood extent maps

created using the CDAT with ASAR showed good correlation

to the 2009 Landsat classification both spatially and on a

pixel­based comparison.

The 2011 and 2012 flood events in March and April were

evaluated with a relatively dry image from 17 February 2012

as the reference. These flood extent maps illustrate the full

extent of inundation (720 km2 in 2011 and 673 km2 in 2012)

including flooding in vegetated areas along river banks and

around wetlands. The 2011 flood extent map showed good

correlation to the Landsat flood extent classification; however,

the difference of image acquisition dates and cloudiness

of the Landsat images caused moderate pixel error during

comparison.

Although the pixel error was high for 2013, the inundation

extent was spatially similar to that of the Landsat classification.

Because several Radarsat­2 images were available, the flood

event was tracked with time revealing a relatively fast speed

of inundation (27 days to flood about 550 km2). The speed

and pattern with which the wetland floods are important to

evaluate as it is rapid flooding in unprepared regions which

can be the most devastating and destructive. This method can

also be used to evaluate drainage rates in this region, allowing

communities and relief agencies to plan accordingly.

One restriction of this method is the date of acquisitions

of the reference image. Reference images provide knowledge

of the ‘dry’ or non­flooded scenes, and have great weight in

the analysis of the flood extents. When a reference image is

also flooded, as is the case of the 2009 flood analysis, the

resulting flood extent map is actually illustrating the extent

of additional flooding and should be clarified. SAR imagery

can also be expensive (depending on the satellite, sensor type,

or image resolution) or coverage may be absent, making it

difficult to obtain a new reference image. This restriction is

easily controlled when there is understanding of the hydrology

of the region prior to image acquisition.

The use of SAR imagery has proven useful for a variety

of flood extent mapping methods (Gala and Melesse 2012,

Gan et al 2012, Hess et al 1990, Inglada and Mercier 2007,

Townsend and Walsh 1998). The CDAT method was developed

based on the use of SAR due to the rapid image acquisitions,

consistency of imagery (day/night and all­weather) and ease

of processing (one band). This technique has been successful

at mapping the extents of seasonal floods in Caprivi, Namibia

in 2009, 2011, 2012 and 2013 and answers the work of Pricope

(2013) with more accurate flood extent analysis.
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