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ABSTRACT 
Distribution maps are generally based on documented records rather than true occurrence patterns. This may be problematic 

for cryptic, under-reported species that occur in areas poorly covered by observers. Species distribution models may help 

overcome this challenge. Here, all available records of the migratory Anthus trivialis (tree pipit) and resident Anthus nyassae 

(wood pipit) for southern Africa and adjacent areas were assembled to train generalised linear models, random forest and 

gradient boosting machine species distribution models. Sampling pseudo-absences from a common species’ similarly biased 

records helped to account for the spatial sampling bias present in the data. The model outputs suggest that A. trivialis and 

A. nyassae display a latitudinal habitat suitability gradient in the area of interest, opposing a latitudinal reporting gradient. The 

migratory behaviour of A. trivialis may blur its ecological niche. More and more reliable field observations are needed to 

confirm these findings. This study provides a clear framework to assist distribution delimitations from citizen science data by 

counteracting observer and sampling biases. 
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INTRODUCTION 

Delimiting species distributions can be a challenging 

endeavour, as it attempts to discretize different levels 

of abundance from data that are often incomplete. 

The recent emergence of citizen-science platforms 

such as SABAP2 (Second Southern African Bird 

Atlas Project) (Brooks and Ryan 2023) has generated 

a wealth of data that can help improve the 

delimitation of distributions. However, sampling and 

observer biases in the data (Kosmala et al. 2016) may 

distort the results of these efforts. As such, 

distribution maps based on citizen science, while 

spatially detailed compared to broad, expert-drawn 

range maps, may condense observations rather than 

delimiting the true occurrence patterns of a species. 

SDMs (Species Distribution Models, introduced by 

Guisan et al. 2017, Guisan and Zimmermann 2000) 

may help to overcome this challenge by generating 

habitat models through the correlation of a taxon’s 

current presence or absence with prevailing 

environmental conditions. Thus, the models can be 

useful in detecting areas in which species may be 

under-recorded. 

Anthus trivialis (tree pipit) is a non-breeding 

palearctic migrant in sub-Saharan Africa, mainly 

present from October to March. It shares its 

woodland habitat with the resident Anthus nyassae 

(wood pipit). Few studies have examined the status 

and distribution of A. trivialis and A. nyassae in sub-

Saharan Africa (Clancey 1987, 1989, 1990, Adams et 

al. 2022). The available distribution maps of the two 

species vary significantly between sources due to 

poor observer coverage in certain areas (Clancey 

1987, 1989, 1990, BirdLife International 2016, 

2018). Furthermore, both species may be challenging 

to identify due to their cryptic appearance. They thus 

provide good examples and materials for testing 

whether available records spatially reflect their 

ecological niche, as modelled by SDMs. 

METHODS 

The study area covered Angola, Zambia, Malawi, 

Mozambique and countries to the south within which 

the area of interest was further delimited by both data 

availability and the centroids of the distribution of 

A. nyassae and the wintering distribution of 

A. trivialis, respectively. All available records of the 

two species in the area of interest were gathered by 

consulting eBird (Auer et al. 2022), GBIF (Global 

Biodiversity Information Facility) (multiple sources 

outlined below), accessed through rgbif 

(Chamberlain et al. 2023), iNaturalist (iNaturalist 

contributors 2023), ABAP (African Bird Atlas 

Project), accessed through SABAP2 (Brooks and 

Ryan 2023) and termed SABAP2 thereafter, SARBN 

(Southern African Rare Bird News) (SARBN 2023), 

SAFRING (South African bird ringing unit) 

(SAFRING 2023) and BirdPix (Navarro 2023). 
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Except for the SAFRING data and some GBIF 

entries, which are part of museum collections or other 

scientific occurrence datasets (multiple sources 

outlined below), all records are citizen science based. 

The datasets were cleaned of duplicates and merged 

(Table 1). Although partially overlapping, eBird and 

GBIF provided the most data, followed by SABAP2. 

The majority of data were recorded in recent years. 

Based on the ecology of A. nyassae and A. trivialis 

(Chittenden et al. 2018), seven environmental 

predictors were selected (Table 2) that appeared 

meaningful in determining the ecological niche of the 

two species. Although A. trivialis is only present in 

the region during the local summer months, the 

selected predictors quantifying precipitation and 

temperature span the whole year for both species, as 

the prevailing environmental conditions during the 

local summer months are dictated by the climatic 

conditions across all seasons. For example, winter 

temperatures may affect food availability during the 

summer, and the vegetation in winter rainfall areas 

does not rely on precipitation during the presence of 

A. trivialis. Furthermore, rare overwintering birds 

have been recorded (Chittenden et al. 2018). 

All data were acquired and converted into rasters 

with a spatial resolution of 1 km using Google Earth 

Engine (https://earthengine.google.com). The 

predictors and records were loaded into the 

R statistical package (R Core Team 2018). An auto-

correlation analysis yielded Pearson’s correlation 

coefficients below 0.6 for all combinations, ensuring 

limited covariance between predictors. Duplicate 

data points at 1 km resolution were removed. 

Sampled SABAP2 occurrences of the fork-tailed 

drongo (Dicrurus adsimilis) (Brooks and Ryan 

2023), a common bird present throughout most of 

southern Africa, served as pseudo-absences to 

counter the spatial sampling bias in the available 

records of A. nyassae and A. trivialis (Kramer-Schadt 

et al. 2013). The apparent habitat requirement of 

D. adsimilis is the presence of wooded cover, the 

same prerequisite for the occurrence of A. nyassae 

and A. trivialis (Chittenden et al. 2018). Thus, this 

step assumes that the absence of an observation of 

D. adsimilis at a given location implies a high 

probability that the location has not been sufficiently 

covered by observers to detect the presence of 

A. nyassae and A. trivialis. 

Three distinct SDMs were run for each species in R 

(R Core Team 2018), namely GLM (Generalised 

Linear Model), RF (Random Forest), and GBM 

(Gradient Boosting Machine) models. For the former, 

a set of 2,500 pseudo-absences was used, while for 

the two latter, this number was reduced to 500 to 

approximately match the number of presences, as 

recommended for tree-based algorithms (Guisan et 

al. 2017). The GLMs were fitted using linear and 

quadratic terms as well as a stepwise variable 

selection based on the AIC (Akaike Information 

Criterion). A minimum of 10 observations was kept 

for every node, and 500 trees were grown for the RF 

models using the ranger package (Wright et al. 2023). 

The GBMs were fitted with a minimum of 10 

observations per node, 500 trees, a learning rate of 

0.1, and 10 cross-validation folds using the gbm 

package (Greenwell et al. 2022). All models were 

trained on all available occurrences except for the 

Table 2: Environmental predictors included in the species distribution models for Anthus nyassae and A. trivialis. An 

autocorrelation test yielded Pearson’s correlation coefficients below 0.6 for all combinations. 

Predictor Ecological Scale Source 

Annual mean temperature Climatic Karger et al. (2017) 

Annual precipitation Climatic Karger et al. (2017) 

Elevation Topographic Amatulli et al. (2021) 

Tree density Ecological Crowther et al. (2015) 

Leaf area index Ecological Myneni et al. (2021) 

Human development Anthropogenic Tuanmu & Jetz (2014) 

Landscape intactness Anthropogenic Potapov et al. (2008) 

Table 1: Number of reported occurrences of Anthus nyassae and A. trivialis and time spans covered by cleaned datasets used 

in species distribution models. The indicated time span for GBIF is based on a minority of dated records. N/A: not applicable. 

Data source 
Anthus nyassae Anthus trivialis 

Records Years Records Years 

eBird 315 1971–2023 137 1971–2023 

GBIF 268 (2015–2023) 206 (2015–2023) 

iNaturalist 22 2011–2023 16 2014–2023 

SABAP2 127 2008–2023 60 2010–2023 

SARBN N/A N/A 6 2013–2019 

SAFRING; BirdPix 33 2006–2021 14 1960–2022 

Total 717 1971–2023 418 1960–2023 
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SAFRING (SAFRING 2023) and BirdPix (Navarro 

2023) datapoints. The latter were used for a visual 

comparison with the model predictions (Figure 1), as 

ringing data and reports covered by photographs are 

more reliable than ordinary citizen science records. 

The low number of data points and the sampling bias 

present in the SAFRING and BirdPix data prevented 

a computationally independent validation approach. 

Instead, a five-fold cross-validation was used to 

evaluate the models based on the ROC (Receiver 

Operating Characteristic) curve and AUC (Area 

Under Curve) values (Figure 2). The generated 

prediction layers were visualised using QGIS (QGIS 

Development Team 2023). For A. nyassae, the RF 

model was used to produce a projection, while for 

A. trivialis, the GBM was chosen based on model 

performance (high AUC values) and conservatism in 

predicting suitability (the model predicts high 

suitability less often). 

RESULTS 

All models performed well in terms of predictive 

performance. The Area Under Curve (AUC) of the 

Receiver Operating Characteristic (ROC) curves 

were all above 0.9, indicating good predictions 

(Swets 1988) (Figure 1). The climatic predictors 

performed best, and the anthropogenic variables 

(Table 2) performed worst in explaining habitat 

suitability for both species (Figure 2). Predictor 

   

Figure 1: Predictor importance across three species distribution models of two species of pipits (Anthus nyassae and 

A. trivialis). Generally, the climatic predictors (annual mean temperature and annual precipitation) performed best in 

explaining habitat suitability for both species, followed by topography and leaf area index. The tree-based algorithms 

(RF: Random Forest model; GBM: Gradient Boosting Machine model) yielded more balanced predictor importance values 

than the GLM (Generalised Linear Model). For the latter, only the coefficients of the linear terms are illustrated, as all 

regression coefficients of the quadratic terms were < 0.01. Furthermore, the stepwise variable selection based on Akaike 

Information Criterion excluded tree density and human development from the models. 

Anthus nyassae Anthus trivialis 

  

Figure 2: Receiver Operating Characteristic (ROC) curves and Area Under Curve (AUC) values for three species distribution 

models of two species of pipits (Anthus nyassae and A. trivialis), generated from five-fold cross-validation. All models 

performed well for both species (Swets 1988). GLM: Generalised Linear Model; RF: Random Forest model; GBM: Gradient 

Boosting Machine model. 
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importance values were generally lower for 

A. trivialis than for A. nyassae, coinciding with 

slightly lower AUC values for A. trivialis (Figure 1, 

Figure 2). 

The resulting habitat suitability maps (Figure 3) 

suggest that A. nyassae and A. trivialis display a 

latitudinal occurrence probability gradient: both 

species appear to be rare in the southern parts of the 

study area and more common further north. This 

contrasts with a latitudinal reporting gradient, as 

relatively few occurrences have been reported from 

potentially suitable areas such as Angola or northern 

Zambia. 

DISCUSSION 

The output suggests that current distribution maps 

exclude areas suitable for the potential occurrence of 

A. trivialis and A. nyassae, perhaps because they have 

been poorly covered by observers. Further 

exploration of the areas in question may yield new 

records of both species. 

The strong model performances (Swets 1988) 

indicate a clear delimitation of the ecological niches 

of both species: the birds can generally be found in 

broadleaved woodlands at 800 or more meters above 

sea level, with at least 500 mm of annual rainfall. 

Unlike the resident A. nyassae, A. trivialis is only 

present in sub-Saharan Africa from October to 

March. The migratory behaviour may be reflected in 

the marginally poorer performance of the models in 

predicting its presence or absence (Figure 1) and the 

generally slightly lower predictor importances 

(Figure 2). Temporal fluctuations in the migratory 

patterns of A. trivialis due to varying food availability 

or weather conditions between years may further blur 

the picture. 

Several sources of bias in the occurrence data need to 

be considered to contextualise the model outputs. 

Observer biases are inevitable in the context of both 

citizen science projects, such as eBird (Auer et al. 

2022), iNaturalist (iNaturalist contributors 2023), or 

SABAP2 (Brooks & Ryan 2023), and platforms that 

are partially fed by citizen science, including GBIF 

(multiple sources outlined below). While the amount 

of data produced by many citizen scientists may 

 

 

Figure 3: The white circles locate all available records for A. nyassae (left) and A. trivialis (right) in southern Africa and adjacent 

countries. The red polygons correspond to the (wintering for A. trivialis) distribution (BirdLife International 2016, 2018). The 

shades of green (A. nyassae) and blue (A. trivialis) show the potential distribution based on habitat suitability, as suggested by 

the random forest model (A. nyassae) and gradient boosting machine (A. trivialis) models. 
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make up for the quality trade-off (Kosmala et al. 

2016), data quality control mechanisms may not 

always be able to flag faulty records. Anthus pipits 

can be notoriously difficult to identify even for 

specialists; hence, citizen science records should be 

approached with cautious scepticism. Although 

scarce, data provided by ringers or backed with 

photographs are far more reliable and may help to 

validate both other records and model outputs 

(Figure 2). 

Furthermore, occurrence data may often be subject to 

a strong sampling bias as more accessible areas 

attract more observers (Kosmala et al. 2016). As 

opposed to SABAP1 (1987–1991), SABAP2 (Brooks 

& Ryan 2023) does not entail spatially systematic 

observations throughout the region (Bonnevie 2011). 

Instead, the observer decides where to observe. As 

such, the discrepancy between the model outputs and 

the number of reported sightings of A. trivialis around 

Gauteng, South Africa, is somewhat expected. On the 

other hand, the lack of records from central Angola 

for both species may be due to a lower observer 

density and less to the species absence. Choosing to 

sample pseudo-absences from a common species that 

shows the same sampling bias as the target species 

appears to be an efficient strategy to counteract this 

constraint in the modelling process (Kramer-Schadt 

et al. 2013). 

The conclusions suggested by the model outputs need 

to be considered with caution. SDMs attempt to 

model a taxon’s fundamental niche from occurrences 

that reflect the realised niche (Guisan et al. 2017). 

This can be problematic when niche parameters that 

are not captured by the model dictate where a species 

can occur, such as biotic interactions. While the 

output of this study may guide efforts to locate 

species where they have not been previously 

recorded, field records are needed to generate the 

final evidence. 

Applying this approach to other cryptic and 

potentially under-reported species occurring in areas 

yet poorly covered by observations may help to 

delimit distributions through citizen science. 

However, due to the correlative nature of SDMs, their 

output provides merely an indication of where a 

species may occur, while conclusive evidence 

remains dependent on field data. 
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ADDITIONAL RESOURCES 
The following GitHub repository provides this study’s 

Google Earth Engine script that was used to acquire and 

preprocess the predictors, as well as the R script that was 

used to preprocess the data and run the models: 

https://github.com/Manuel-Weber-ETH/Anthus_nyassae

_trivialis.git 

 


