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A variety of ecological applications require data from

broad spatial extents that cannot be collected using

field-based methods. Remote sensing data and tech-

niques address these needs, which include identifying

and detailing the biophysical characteristics of species’

habitats, predicting the distribution of species and

spatial variability in species richness, and detecting

natural and human-caused change at scales ranging

from individual landscapes to the entire world. Such

measurements are subject to substantial errors that can

be difficult to overcome, but corrected data are readily

available and can be of sufficiently high resolution to

be integrated into traditional field-based studies. Eco-

logists and conservation biologists are finding new

ways to approach their research with the powerful suite

of tools and data from remote sensing.

Human activities now affect most of the terrestrial bio-
sphere and are increasing in intensity and extent. Ensuing
habitat loss and degradation impair ecosystem function [1]
and reduce the value of ecosystem services for humans [2].
Although ecologists are improving their understanding of
the factors limiting the distribution of species [3], extinc-
tion rates continue to accelerate [4,5]. The need to be able
to detect and predict changes in the natural environment
has never been greater. However, traditional field eco-
logical data do not translate readily to regional or global
extents, and models derived purely from such local data
are unlikely to predict the global consequences of human
activities. Therefore, ecologists and conservation biologists
are turning to the rapidly developing discipline of remote
sensing to provide the techniques and data sources neces-
sary to prepare scientific responses to environmental
change. Although the need for remote sensing is especially
urgent for conservation-related science, satellite-based
earth observations are also being used for basic ecological
research.

Satellite remote sensing data are subject to large errors
that, if uncorrected, substantially reduce their utility for
ecological applications. Before reflected radiation reaches
a satellite, it interacts with two ‘noisy’ environments: the
surface of the Earth and the atmosphere. Atmospheric
contamination of the remote sensing signal can arise
through interaction with ozone, water vapour, aerosols,
and other atmospheric constituents (e.g. [6]). On a cloudy
day, satellite-borne optical remote sensors (Box 1) see little

but the tops of clouds. Shadows, particularly when they
vary across the fields of view of sensors that see across
broad areas [e.g. Advanced Very High Resolution Radio-
meter (AVHRR) or Vegetation (VGT) sensors], haze and
scatter from terrestrial surfaces can severely reduce data
consistency and such effects are very difficult to remove
[7]. Although long-wave, active remote sensing systems
(e.g. synthetic aperture radar) are much less affected by
the vagaries of the weather, they are subject to their own
suite of shortcomings, and optical remote sensing data are
still used more widely for ecological applications. Fortu-
nately, many freely available remote sensing data sets
(Table 1) have already been processed to reduce contami-
nation and other errors and are readily available for
ecological research.

Here, we discuss recent ecological and conservation
applications of satellite remote sensing data as well as
some of the limitations inherent to measurements fre-
quently taken from .700 km above the surface of the
Earth. Remote sensing generates a remarkable array of
ecologically valuable measurements, which includes the
details of habitats (land cover classification) and their
biophysical properties (integrated ecosystem measure-
ments) as well as the capacity to detect natural and
human-induced changes within and across landscapes
(change detection). Although there is a perceived mis-
match between broad-scale remote sensing and local-scale
field ecological data (Box 2), remote sensing is providing
the impetus for an increasingly wide range of ecological
and conservation biological discoveries.

Land cover classification

Satellite remote sensing can be used to estimate the
variety, type and extent of land cover throughout a study
region, meeting a fundamental need that is common to
many ecological applications. Land cover data describe the
physiographical characteristics of the surface environ-
ment, which can range from bare rock to tropical forest [8]
and that are usually derived by applying statistical
clustering methods to multispectral remote sensing data
(Fig. 1). Remote sensing can also assist in the development
of land use data that reflect human interactions with the
physical environment, although the relationship between
land cover and land use [9,10] is not necessarily one-to-one
(e.g. forest and grassland are different land covers but
they can have the same recreational land use if they are
both found within a park). Depending on the remote
sensing and field-based resources available, land coverCorresponding author: Jeremy T. Kerr ( jkerr@uottawa.ca).
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classifications can identify very specific habitats. The
National Vegetation Classification System (NVCS;
http://biology.usgs.gov/fgdc.veg/) is a standard land cover
classification system that was developed cooperatively by
several major scientific and conservation organizations,
including The Nature Conservancy and Ecological Society
of America, and which continues to evolve. It is now widely
used for wildlife habitat modeling. Different land cover
classification approaches vary in their potential for dis-
cerning detail (Fig. 1) and, consequently, their utility for
meeting specific needs (e.g. the identification of all
examples of a particular habitat) [11]. Regardless of the
approach taken, validation of the classification results is
needed to estimate and, where necessary, improve land
cover classification accuracy. Ground-truth data are most
commonly used for this purpose and comprise positive

identification of examples of each land cover of interest
that are then used to test classification accuracy.

Land cover data have proven especially valuable for
predicting the distribution of both individual species
[12,13] and species assemblages [14] across broad areas
that could not otherwise be surveyed. Various predictive
models have gained currency as the availability and
accuracy of land cover data sets have improved. The Gap
Analysis Program (GAP) is the largest species distribution
modeling effort and aims to develop detailed maps of
habitat preferences for target species. The primary pro-
ducts from GAP are readily available (Table 1). Climato-
logical, biophysical and land cover data can also be
integrated to predict the presence and absence of indi-
vidual species throughout their ranges with the use
of genetic algorithms (http://biodi.sdsc.edu/) or logistic

Box 1. From pixels to properties of ecosystems

Ecological applications of remote sensing draw most extensively on a

few satellite-borne optical remote sensors that vary in their respective

spatial and temporal resolutions (Table I). Spatial resolution refers to

the pixel size of the data collected by the sensor. For example, Landsat

collects relatively high resolution imagery (clearly focused, with pixels

ranging from 15 m to 60 m across), whereas Advanced Very High

Resolution Radiometer (AVHRR) collects coarse resolution imagery

(pixels are .1 km across). Temporal resolution refers to the frequency

with which sensors can collect data from the same place. AVHRR and

Vegetation (VGT) sensors collect data from a particular region every

day, whereas Landsat 7 returns every 16 days. The multispectral data

collected from such sensors can be combined or used as input for

models to develop measurements of the biophysical properties of

ecosystems. Normalized Difference Vegetation Index (NDVI) combines

reflected red and near infrared (NIR) radiation according to the simple

equation: NDVI ¼ (NIR 2 RED)/(NIR þ RED). Through its strong corre-

lation with aboveground net primary productivity and absorbed

photosynthetically active radiation, NDVI provides an index of eco-

system function. There are, however, many alternative vegetation

indices that serve more specific purposes or that can reduce some

errors associated with NDVI, such as sensitivity to differences in soil

reflectance or nonlinear relationships with ecological properties,

such as leaf area index [7,45,46]. Remote-sensing estimates of land

surface temperature require relatively complex calculation and ancillary

data but can be used to measure accurately and precisely surface

temperature [47].

Table I. Characteristics and applications of commonly used multispectral satellite sensors

Sensor

Spatial

resolution

(m) Banda

Spectral range

(mm) Common applications

Landsat 7 ETM þ b 15–120 Blue 450 to 0.515 Coastal water mapping; differentiation of vegetation from soils

Green 0.525 to 0.605 Assessment of vegetation vigor

Red 0.63 to 0.69 Chlorophyll absorption for vegetation differentiation

NIR 0.75 to 0.90 Biomass surveys and delineation of water bodies

MIR 1.55 to 1.75 Vegetation and soil moisture measurements; differentiation between snow and

cloud

TIR 10.4 to 12.50 Thermal mapping, soil moisture studies, plant heat stress measurement

MIR 2.09 to 2.35 Hydrothermal mapping

PAN 0.52 to 0.90 Large area mapping, urban change studies

NOAA-16c AVHRR 1100–4000d Red 0.58 to 0.68 Global vegetation monitoring, forest fire activity, canopy gaps

NIR 0.725 to 1.00 Global vegetation monitoring, forest fire activity, canopy gaps

MIR 3.55 to 3.93 Land-water boundaries, global vegetation monitoring, forest fire activity, canopy

gaps

TIR 10.30 to 11.30 Sea surface temperature, volcanoes, and forest fire activity

TIR 11.50 to 12.50 Sea surface temperature, urban studies (urban heat island effect)

SPOT 4, SPOT 5e

(Vegetation)

1000 Blue 0.43 to 0.47 Detection of very low vegetation cover (minimized atmospheric reflectance)

Red 0.61 to 0.68 Plant canopy characterization, forest and agricultural monitoring

NIR 0.78 to 0.89 Canopy structural properties

MIR 1.58 to 1.75 Canopy structure and water content of leaves

aAbbreviations: MIR, middle infrared; NIR, near infrared; PAN, panchromatic; TIR, thermal infrared. Bands are listed according to sensor-specific

numbering schemes (e.g. Landsat 7 Band 1 detect blue radiation).
bLandsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper þ have variable spatial resolutions. Nonthermal bands 1–7 have pixel

resolutions of 30 m. Landsat 5’s thermal channel has a 120 m resolution, whereas the thermal channel of Landsat 7 has a resolution of 60 m. Landsat

7 has an additional, panchromatic channel, which has a resolution of 15 m.
cNOAA-14 has channel 3 (3.55–3.93 mm) only. NOAA-16 alternates between daytime reception of NIR and nighttime reception of MIR.
dAVHRR has a pixel resolution of 1100 m at nadir and 4000 m at the edges of its field of view.
eThese satellites also carry two HRVIR instruments, the High Resolution Visible and Infrared, that collect localized data in the same spectral bands as

the Vegetation instrument but at resolutions of 10–20 m (the modified HRVIR system on SPOT5 includes a panchromatic channel with a maximum

2.5 m resolution).
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models [15]. At broader scales, habitat heterogeneity data
derived from thematically detailed land cover predicts
Canadian butterfly species richness and community simi-
larity better than does any other factor yet discovered [14].

Successful prediction of species distributions with the
use of land cover data depends on the characteristics of the
species. For species that do not occupy all suitable habitats
for any reason (such as for species with metapopulation
structure), land cover maps might predict only potential
rather than actual species distributions. For example, the
presence of particular butterfly, plant, or bird species in
Yellowstone National Park is predictable when they have
specific habitat requirements, they are abundant, or both.
The actual distributions of rare species that are not specific
to particular habitats could not be predicted from even
remarkably detailed and accurate land cover data [13].
Land cover classifications used for wildlife habitat model-
ing must be of sufficient spatial and thematic resolution

to identify reliably the habitats that the target species
potentially occupy (Box 2). It will almost certainly be
necessary to collect in situ (or other ancillary) measure-
ments to meet such stringent requirements for predicting
the realized distributions of many species.

Integrated ecosystem measurements

Unlike field-based measurements of ecosystem function,
which cannot easily be converted to estimates of function
across entire ecosystems, remote sensing can provide
simultaneous estimates of ecosystem function over wide
areas. Remote sensing of vegetation offers promising and
urgently needed measurements of ecosystem function
at spatial scales that are most comparable to the extents
of human-caused environmental change (Box 2). Net
primary productivity (NPP) represents one aspect of inte-
grated ecosystem function for which the normalized dif-
ference vegetation index (NDVI, Box 1) is used, particularly

Table 1. Online remote sensing data sources, sensor descriptions, and learning resourcesa

Data source/Information link

Spatial

resolution

(m) Description URL

Freely available satellite data sets for ecological applications

Global and NDVI 1100–4000 AVHRR global/continental land cover

products using six different classification

schemes. Monthly NDVI composites.

Data derived from 1992/1993

http://edcdaac.usgs.gov/glcc/

glcc_version1.html#Global

SPOT/VGT composites 1000 10-day composites available from 1998 to

present for SPOT4/SPOT5 VEGETATION

sensors

http://free.vgt.vito.be/

University of Maryland Global Land cover

Facility

Various Very large satellite data archive including

land cover products and processed

satellite imagery with global coverage

http://glcf.umiacs.umd.edu/index.shtml

Global Land Cover 2000 1000 Global land cover mapping initiative based

on VEGETATION data; will comprise a

core data set for the global Millennium

Ecosystem Assessment

http://www.gvm.sai.jrc.it/glc2000/

defaultGLC2000.htm

http://www.millenniumassessment.org

CORINE data page 250 High-resolution European land cover data http://dataservice.eea.eu.int/dataservice/

metadetails.asp?table=landcover&i=1

Canadian spatial data Various Various satellite and geospatial data http://geogratis.cgdi.gc.ca/frames.html

USGS Gap Analysis Program 30 Classified Landsat 7 land cover data (based

on NVCS) and species’ habitat suitability

maps

http://www.gap.uidaho.edu/

Global Fire Monitoring Centre Various Near-real time fire detection and mapping http://www.fire.uni-freiburg.de/current/

globalfire.htm

Global Burnt Area 2000 1000 Global mapping of burnt areas throughout

2000 from VEGETATION data

http://www.gvm.sai.jrc.it/fire/

gba2000_website/index.htm

Home pages for commonly used sensors

AVHRR 1100 Description of AVHRR data and various

NOAA satellite missions

http://edcdaac.usgs.gov/1KM/

avhrr_sensor.html

SPOT4/SPOT5 1000 Description of SPOT4 and SPOT5 missions

and sensors (including VGT1 and VGT2

sensors, as well as HRVIR)

http://www.spotimage.fr/home/

Landsat 7 15–60 Description of sensor and data

characteristics

http://landsat.gsfc.nasa.gov/

MODIS 250–1000 Description of sensor and data

characteristics

http://modis.gsfc.nasa.gov/

Remote-sensing learning resources

Online remote sensing tutorials http://www.ccrs.nrcan.gc.ca/ccrs/learn/

learn_e.html

http://rst.gsfc.nasa.gov/start.html

http://www.research.umbc.edu/~tbenja1/

aAbbreviations: AVHRR, Advanced Very High Resolution Radiometer; CORINE, Coordination of Information on the Environment; HRVIR, High Resolution Visible and Infrared;

MODIS, Moderate Resolution Imaging Spectroradiometer; NDVI, Normalized Difference Vegetation Index; NOAA, National Oceanic and Atmospheric Administration; NVCS,

National Vegetation Classification System; SPOT, Système Probatoire d’Observation de la Terre; USGS, US Geological Survey; VGT, Vegetation sensor onboard SPOT 4 and 5

satellites.
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when refined with meteorological and soil data [16]. NDVI
also correlates strongly with absorbed photosynthetically
active radiation (APAR), which has helped lead to its
common use as an estimator of aboveground NPP [17,18].
Similar to NPP, NDVI is sensitive to changes in both
temperature and precipitation [16,19].

NDVI measurements, especially when combined with
land use data, are increasingly important to studies that
must differentiate between natural variation in ecosystem
function and variation arising from human activities, such
as habitat conversion. In a study of native grasslands and
cultivated fields, land use emerged as the most important
influence on ecosystem function as measured by inte-
grated annual NDVI [20]. NDVI is also considerably more
variable in highly agricultural and urban areas [21] and
is strongly related to the extent of vegetation cover [22]
(Box 2). It can be used to detect land cover changes
(e.g. forest replacement by agriculture [23]) and as an
indicator of both landscape heterogeneity and biological
diversity, making it possible to identify priority conserva-
tion areas [24] and predict habitat suitability for species

[25]. NDVI is no panacea, however: as with most remote
sensing data, it is error-prone in regions of high topo-
graphical relief [26]. It also does not relate simply to some
ecological parameters that interest many biologists, such
as leaf area index (LAI) [27] and can be influenced by the
reflectivity of substrates underlying partial vegetation
covers. A host of other vegetation indices are available
that might be better adapted for some applications or
that correct for some of the errors to which NDVI is
subject (e.g. reduced simple ratio vegetation index
more directly estimates LAI [7]). NDVI, however, remains
the most commonly used and most intensively studied
vegetation index.

Other integrated measures of ecosystem function, such
as surface brightness temperature (Ts), are used by the
remote sensing community but relatively rarely by eco-
logists (Box 1). Ts measures the amount of emitted thermal
energy and the energy efficiency of terrestrial ecosystems
[28]. Modifications to ecosystem energy budgets follow
many human or natural disturbances, particularly if these
lead to simplification of ecosystem structural properties,

Box 2. Combining remote sensing and ecological measurements

Solutions to the problem of scale mismatch between traditional field

ecological data and most remote sensing data sources will probably be

application-specific [48]. As with many scale issues in ecology, this

problem is simple, at least conceptually: studies in the field provide

detailed measurements over small areas at different times, whereas

the most commonly used remote sensing data provide synchronous

measurement of broad areas but with reduced potential for local detail

(Fig. I). Ecological and remote sensing data can be linked by defining a

nestedsetofsites tobesampledwith the useoffield techniques, whichfall

within larger areas containing habitats that are identifiable by remote

sensing [49]. Although such a detailed approach will not always be

necessary, interpretations from remotely sensed data sets will frequently

be suspect if they are not supported by reliable field data. Even relatively

high resolution (e.g. at 20 m) remote sensing data might be insufficient to

identify landscape and habitat factors needed to predict the occurrences

of some species [13]. This perceived ‘scale gap’ is narrowing, however,

with the increasing availability of very high-resolution data that can be

linked directly to traditional field ecological measurements [50].

The key habitats of species can be identified by combining satellite-

and field-based habitat data, landscape structure and species abun-

dance information [13,51]. Measurements of genetic diversity can also

be related to landscape attributes to make spatially explicit predictions

of species occurrence [51]. With such data in hand, both species and

genetic diversity can be monitored over time. Detailed satellite land

cover data can identify habitat boundaries and biophysical character-

istics, such as productivity, that could not be discerned from hand-

drawn maps (e.g. topographical maps) that include little detail within

habitat types or ecotones. Habitat edges, such as riparian buffer zones,

are important as species refugia and for their ecosystem functions

of modulating sediment and nutrient flux. Factors known to affect

pathogen and pest abundance, such as host availability, habitat

quality and climatic conditions, can also be modeled and predicted

with the use of remote sensing data [52,53] as well as the distribution

of particular vectors, especially when combined with field-based

collections [54].

Fig. I. Ecosystem function indexed by low and high-resolution imagery. NDVI (Normalized Difference Vegetation Index) varies continuously with the amount and vigor

of vegetative cover. (a) Coarse resolution NDVI measurements (SPOT4/Vegetation composite from July–August 1998 over southern Ontario, Canada, 1 km pixels)

show strong contrasts between urban (low NDVI, darker masses) and vegetated areas (high NDVI, brighter areas). (b) comprises relatively high-resolution NDVI data

from the boxed area in (a) (Landsat 7 ETM þ path 18, row 30, September 3, 2000, 30 m pixels). Highly productive forest remnants, essential for wildlife conservation in

Canada, are shaded most brightly.

Review TRENDS in Ecology and Evolution Vol.18 No.6 June 2003302

http://tree.trends.com

http://www.trends.com


and characteristic changes to Ts can follow [29]. Bright-
ness temperature is less widely used than is NDVI as an
index of ecosystem function but has significant potential
for this purpose.

Change detection

Ecological studies increasingly require biophysical and
habitat data through time and over significant areas,
a task for which remote sensing is especially powerful.
Near-global-scale remote sensing data sets have been
available continuously since the early 1980s from a series
of meteorological satellites carrying AVHRR (Box 1). Most
AVHRR data are readily accessible (Table 1) and provide
the only near-continuous, long-term (,21 years) measure-
ments of key ecological parameters, such as habitat extent,
heterogeneity or primary productivity, at regional or
global scales. Landsat sensors have been collecting data
for even longer (since the early 1970s) and have better
spatial resolution than do AVHRR or Vegetation (15–120-m
pixels versus ,1-km pixels; Box 1). Landsat data cannot
provide near-real time ecosystem monitoring across broad
areas because of the relatively long site revisit times of the
satellite (16–18 days). However, the Landsat data record
is the longest of any satellite and its improved spatial
resolution enables the detection of subtle environmental
changes that could be missed by coarser resolution sensors.

Climate change

Remote sensing data have provided convincing evidence
that climate has been changing rapidly [30], complement-
ing ecological discoveries of poleward shifts in the ranges
of many species [31,32]. Although the distributions of

species have also responded to concurrent land use
changes [33], time series AVHRR data demonstrate that
substantial alteration to vegetation structure, primary
productivity and growing season length have occurred
even over the past 20 years. In boreal forests, which
studies increasingly indicate to be crucial sinks for carbon
dioxide, long-term analysis (1981–1999) of NDVI trends
show a general increase in growing season length, annual
primary productivity and northward extension of the
treeline [34,35]. Integrated NDVI (the sum of NDVI
measurements from all AVHRR composites measured
throughout the growing season) correlates with field-
based measurements of net primary productivity, biomass
accumulation and temperature. Warming, moistening
trends have also been detected with the use of AVHRR
and more specialized sensors over marine systems [36],
providing important corroborative evidence of climate
change. Widespread, synchronous coral bleaching events
are due primarily to increasing sea temperatures and can
be monitored with the use of Landsat 7 ETM þ data [37].
Several biological consequences of climate change can be
observed remotely, but field-based research also provides
convincing corroboration of biotic consequences of climate
change [38,39].

Habitat loss

Satellite measurements of broad-scale trends in vege-
tation provide direct estimates of habitat loss, increasing
the power of applied ecological studies to detect changes
in species distributions or model extinction rates. Defore-
station in humid tropical forests, which house many
terrestrial biodiversity hotspots, is a globally leading
cause of species loss [40,41]. It has proven very difficult
to estimate accurately the extent of humid tropical
deforestation because of poor monitoring infrastructure
in many countries and inconsistencies among existing
monitoring regimes. Satellite data from the 1990s, based
on AVHRR and SPOT4/Vegetation and supplemented by
high-resolution Landsat and SPOT4/HRVIR (high resol-
ution visible and infrared) data, have been integrated to
generate the best estimates yet of rates of deforestation
among remaining humid tropical forests [42]. These new
data demonstrated that these rates were ,23% lower
than FAO (Food and Agriculture Organization) estimates.
Deforestation ‘hotspots’ could also be detected. Fire,
another leading source of change, can be especially
extensive in areas that have previously been damaged
by deforestation. A combination of AVHRR, Landsat
TM (Thematic Mapper) and radar data were used to
detect the impact of deforestation on the burn like-
lihood of forests in East Kalimantan, Indonesia [43].
Forests that were undisturbed or had been logged long
ago were far less likely to be included in the massive
fire event of 1997/1998 and were also subject to less
intense fire damage. In total, 5.7% of unlogged forests
were affected by the fire, compared with 59% of forests
that were subject to recent logging disturbances. These
forest fires, which burned part of the underlying peat
substrate, also emitted a massive pulse of carbon
dioxide that comprised between 13% and 40% of the
total global annual carbon dioxide release from fossil

Fig. 1. Identifying habitats through land cover classification. A multispectral image

from southern Ontario, Canada just south of Toronto based on Landsat 7 imagery

(path 18, row 30, September 3, 2000, 30 m pixels) that indicates the potential for

land cover detail at this resolution. It is derived from the near infrared, middle

infrared, and red channels (i.e. band combination 4,5,3) from the remote sensing

imagery. Outlined areas are major forest habitat remnants that are home to many

endangered species.
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fuel burning [44]. Satellite detection of fires now occurs
in near-real time throughout much of the world (based
especially on AVHRR and MODIS, the Moderate Resol-
ution Imaging Spectroradiometer) and global burned area
mapping initiatives, such as Global Burnt Area 2000
(Table 1), are in progress.

Conclusion

Remote sensing is indispensable for ecological and con-
servation biological applications and will play an increas-
ingly important role in the future. For many purposes, it
provides the only means of measuring the characteristics
of habitats across broad areas and detecting environ-
mental changes that occur as a result of human or natural
processes. These data are increasingly easy to find and use.
Although field and remote sensing data are often collected
at divergent spatial scales, ecologists have begun to recog-
nize both the potential and the pitfalls of satellite
information. Established remote sensing systems provide
opportunities to develop and apply new measurements
of ecosystem function across landscapes, regions and
continents. New efforts to predict the consequences of
ecosystem function change, both natural and human-
induced, on the regional and global distributions and
abundances of species should be a high research priority.
The full range of remote sensing techniques for identifying
land covers, measuring the biophysical properties of
ecosystems and detecting environmental change will
need to be integrated with existing and new ecological
data to meet this ambitious challenge.
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