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Abstract 

Camera-traps are a versatile and widely adopted tool for collecting biological 

data for wildlife conservation and management. While estimating population 

abundance from camera-trap data is the primarily goal of many projects, the 

question of which population estimator is suitable for analysing these data needs 

to be investigated. We took advantage of a 21 day camera-trap monitoring 

period of giraffes (Giraffa camelopardalis angolensis) on the Ongava Game 

Reserve (Namibia) to compare capture-recapture (CR), rarefaction curves and N-

mixture estimators of population abundance. A marked variation in detection 

probability of giraffes was observed both in time and between individuals, with a 

skewed occurrence of animals at some waterholes. The mean daily visit 

frequency of waterholes by giraffes was f = 0.25 although they were less likely to 

be detected after they were seen at a waterhole. We estimated the population 

size to be 104 giraffes (Cv = 0.02) using the most robust reference estimator (CR). 

All other estimators deviated from the CR population size by ca. −16 to > +106%. 

This was due the fact that these models did not account for the temporal and 

individual variations in detection probability. We found that modelling choice 

was much less forgiving for N-mixture models than CR estimators because the 

former leads to very variable and inconsistent estimations of abundance. Double 

counts were problematic for N-mixture models, challenging the use of raw 

counts (i.e. when individuals are not identified), to monitor the abundance of 

giraffe or of other species without idiosyncratic coat patterns. 
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Introduction 

The on-going development and large-scale deployment of camera trapping 

technology offers a promising and appealing way for ecologists to collect a variety 

of biological data at an unprecedented scale and speed (Swanson et al. 2015). 

Habitat use, activity patterns and population abundance are now frequently 

studied using camera trap data (O’Connell et al. 2011; Trolliet et al. 2014). 

Sampling a population with camera-traps is indeed particularly useful and efficient 

(Wearn & Glover-Kapfer 2019), even more so for species with idiosyncratic coat 

patterns from which individual identification is possible (e.g. Jackson et al. (2006); 

Karanth & Nichols (1998); Stratford & Stratford (2011)). Camera trap data are 

increasingly used to estimate population abundance (Burton et al. 2015; Gilbert et 

al. 2021) but such data come with specific problems. Detection rate is not perfect, 

and sampling design and effort are likely different from physical captures (Hamel 

et al. 2013; Gilbert et al. 2021). While obtaining unbiased estimates of abundance 

is of central importance for conservation and wildlife management to set 

appropriate goals and policies (Anderson 2001), the suitability of the currently 

available population abundance estimators for camera-trap data remains to be 

evaluated empirically. 

For populations living in the wild, the main issue is of an underestimation of 

abundance because an unknown proportion of animals are missed during surveys, 

i.e. animal detection is not perfect (Strandgaard 1967; Apollonio et al. 2010). 

Imperfect detection is the main reason why detection probability of individuals 
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underpins most population abundance estimators (Seber 1982; Schwarz & Seber 

1999). Past empirical studies showed how detection probability can vary in both 

time and space (Otis et al. 1978). For instance, detection probability was reported 

to increase with habitat openness (Choquenot 1995), vary between con-specifics 

with different behavioural repertoires (i.e. personalities, see Le Cœur et al. 2015, 

for an example on Siberian chipmunk Tamias sibiricus), decrease with the distance 

of animals from the observer (Burnham et al. 1980; Buckland et al. 2000), between 

observers themselves depending on their experience or motivation in spotting 

animals (Collier et al. 2007; Zett et al. 2022), and between camera trap brands or 

orientation (Rovero et al. 2013). 

Accounting for these intrinsic and extrinsic sources of detection heterogeneity 

has profound consequences for the accuracy and precision of population 

abundance estimations (Veech et al. 2016). Currently, only a handful of population 

abundance estimators can account for the multiple sources of variability in 

detection probability, and most derive from either distance sampling (DS) and 

capture-recapture (CR). Both families of estimators can accommodate detection 

rate for known sources of variability like time of the year, habitat type, or sex and 

age of individuals (Pollock 1980; Schwarz & Seber 1999). However, only the CR 

approach can model unmeasured or unknown sources of heterogeneity. The 

reason why these two methods are not systematically implemented in the field is 

due to serious practical limitations. CR requires a substantial proportion of the 

population to be recognizable: for instance Strandgaard (1972) recommended that 

up to 2/3 of a roe deer (Capreolus capreolus) population should be marked to 
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obtain robust results. In addition, the capture and marking of wild animals can 

raise ethical questions for endangered species. DS on the other hand, is quite 

sensitive to the sampling design (e.g. linear transects and coverage), and is 

sometimes difficult to carry out in dense tropical forests of Africa (Duckworth 

1998), or when human disturbance induces behavioural responses (see Elenga et 

al. 2020, on blue duikers Philantomba monticola). In other words, these two 

reference methods for estimating animal abundance can rapidly become 

prohibitively expensive, time consuming and difficult to implement at large spatial 

scale for wildlife managers (Morellet et al. 2007). 

By seeking to keep implementation costs low, practitioners often make use of 

easier-to-implement, cheaper methods to monitor wildlife populations at spatial 

scales compatible with wildlife management (Morellet et al. 2007). This choice 

often comes at the costs of using estimators with less flexibility in accounting for 

variability in detection rate. For instance, catch-per-unit effort (Leslie & Davis 

1939) or rarefaction curves (Petit & Valiere 2006) can return an estimate of` 

population size from unmarked animals, but both assume constant detection rates 

for all individuals over the sampling period. A noticeable exception is the N-

mixture model (Royle 2004), which allows the separation of population size from 

detection probability using repeated counts of animals in time and space. The 

robustness and accuracy of N-mixture abundance estimators is, however, 

frequently questioned (Kéry 2018). 

For decades in large African national parks, a common practice has been to 

monitor wildlife using indices of population abundance of large herbivore species 
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from direct (observation of animals) or indirect observations (observation of signs 

like tracks, faeces) (Jachmann 2002; 2012). Such indices can be obtained through 

road transects counts (with visibility issues), aerial counts (with visibility issues and 

high costs), and waterhole counts of various duration (with the risk of missing 

water-independent species). The underlying assumption of a constant detection 

rate has been advanced to be the main reason for indices of population 

abundance to fail at monitoring wildlife abundance reliably (Anderson 2001). 

However, these indices might be suitable for use by managers following a 

validation test against a reference method (Morellet et al. 2007). While several 

studies show that not accounting for detection variability can indeed bias 

population abundance estimates (Dail & Madsen 2011), the magnitude and 

direction of this bias is seldom quantified empirically. 

The giraffe (Giraffa camelopardalis ssp.) is a charismatic species of 

conservation significance with decreasing populations in many parts of Africa 

(O’connor et al. 2019). The assessment of local populations’ conservation status 

and their long-term viability are however hampered by the many different ways 

abundance has been estimated between study areas. Here, we propose to take 

advantage of waterhole monitoring with camera traps on the Ongava Game 

Reserve, Namibia, to compare six population size estimators to characterize the 

biases associated with spatial, temporal and individual variability in detection 

rates. Being water dependent but with a capacity to spend several days without 

drinking, individual giraffes typically come to drink every two or three days 

(Shorrocks 2016). This behaviour can potentially generate variation in detection 
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probability once individuals have visited a waterhole, i.e. an individual seen on a 

given day will be less likely to be seen on the following day. It is also known that 

males and females have different behaviours and resource requirements (see 

Gaillard et al. 2003, for examples in different large herbivore species), therefore 

the frequency of waterhole visit might differ between sexes (Shorrocks 2016). 

A practical advantage of using giraffe as a study species is that one can use its 

idiosyncratic coat patterns to uniquely identify individuals from photographs, and 

then apply CR estimators to evaluate population abundance (Brown et al. 2019; 

Lee et al. 2022). This biological feature offers the opportunity to quantify the 

impact of detection heterogeneity on population size estimates, and to assess the 

relevance of simpler indices of abundance to monitor giraffe (and other species) 

populations. We compared the abundance estimates obtained from proven CR 

methodologies, with N-mixture estimates, rarefaction curves, and raw count data 

(by observers) on the Ongava Game Reserve in 2016. 

Material and Methods 

Study area 

Ongava Game Reserve (OGR) is located in Namibia, covering an area of 

approximately 300km2 immediately to the south of Etosha National Park with a 

common boundary on Ongava’s north side (Fig. 1). OGR is enclosed by electrified 

fences preventing movement of ungulates in and out the reserve. OGR hosts 

several large mammalian predators including lion (Panthera leo), cheetah 
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(Acynonyx jubatus), leopard (Panthera pardus) and spotted hyena (Crocuta 

crocuta), all potential predators of juvenile or adult giraffes (Shorrocks 2016). 

Hunting is prohibited on OGR and poaching of giraffes is unlikely due to a high-

intensity anti-poaching presence on the reserve. 

The habitat is termed Karstveld, with vegetation primarily (Colophospermum 

mopane) shrub and woodland, with some areas savannah-like. OGR’s relief is 

mostly dolomite hills, with a few small open plain areas and a well-defined ridge 

and small mountains in the central and northern part of the reserve. The weather 

zone for the reserve is typical for semi-arid northern Namibia, with an average 

annual rainfall of 380mm (see Stratford & Stratford 2011, for further details). 

There are several natural dams on the reserve, although most of these only 

contain water during the rainy season (January - April). During the dry season 

(May to December) water is only available at 12 artificial waterholes. 

Count data 

From the 8th to the 28th of September 2016 (a total of 21 days), between three and 

eight camera traps (®Reconyx RC-55 and HC-500 and ®Bushnell Trophy series) 

were deployed at each waterhole to monitor their usage by wildlife (see Table S1). 

Each camera was mounted inside a stainless-steel protection case bolted to a tree 

or a pole within 10–15m of the waterhole. Reconyx cameras were set to record a 

sequence of 10 images with a delay of 30 seconds between sequences, while 

Bushnell cameras recorded sequences of 3 images with a delay of 15 seconds. We 
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extracted all images containing giraffe and their associated metadata (date and 

time). 

The camera traps yielded a total of 30 913 giraffe images. From these, 85 were 

discarded because the date and time of capture recorded by the camera were 

wrong. When possible, individual giraffe were manually identified in each image 

based on their unique coat patterns with the help of HotSpotter software (Crall et 

al. 2013). Whenever a giraffe could not be identified from its coat patterns or with 

the help of other images in the sequence, it was labelled as unknown. Where 

possible, we recorded the age-class (adults, sub-adults and juveniles) and sex of 

each individual. 

Population size estimations 

Capture-Recapture models 

We built daily capture histories for each individual giraffe over the t = 21 days of 

the camera trap survey. We then analysed these capture histories with CR 

methods (Lebreton et al. 1992) in a Bayesian framework (see Kéry & Schaub 

2011). Each giraffe observation at a waterhole is the product of survival (φ) and 

detection (p) probabilities, conditional on first observation. We implemented 

closed population estimators of abundance because of the fence running all 

around OGR, and because preliminary analyses estimated survival rate to φ = 1 

from open population models. We modelled detection probability p on the logit 

scale as a function of time (i.e day, categorical variable with 20 levels), whether 
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the individual was seen at any waterhole the previous day or not (categorical 

variable with 2 levels), and of the total number of functioning cameras 

(covariate). We also included random effects of the individual (σ2
id) and of time 

(σ2
t ). Because we could not identify the sex of two individuals, we treated sex as a 

latent Bernouilli variable S i of parameter π corresponding to the population sex-

ratio. We then entered S i as an explanatory variable (categorical variable with 2 

levels) of p. Taken together, our set of fitted models covered the standard 

estimators for population size namely Mt (time effect), Mth (time and individual 

heterogeneity effects) and Mtbh (time, individual heterogeneity and behavioural 

effects: see Otis et al. 1978). In addition to these standard models, we fitted a 

spatially explicit model (SECR, Efford 2004) to estimate giraffe population size 

using the the SCRBayes R package (Royle et al. 2009), hence accounting for 

movement of animals between waterholes. We selected the statistically significant 

variables from the posterior parameter distributions and only kept variables for 

which 0 was excluded from the 95% credible interval. 

Rarefaction curves 

We also estimated population size using the rarefaction curves method (see Petit 

& Valiere 2006). Rarefaction curves have been used for decades to estimate` 

species diversity (Colwell & Coddington 1994). Over the course of the survey, the 

cumulative number of different giraffe seen at waterholes (hereafter noted Ct) 
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increased from day 1 to day 21 (see Fig. 2). Two different non-linear functions 

have been proposed in the literature for the case of population size estimation: 

1. the hyperbolic function (Kohn et al. 1999): Ct = (Ns × t)/(b − t); 

2. the exponential function (Eggert et al. 2003): Ct = Ns × (1 − e−c×t); 

where t is time in days ranging from 1 to 20, and b and c are breakage 

parameters, i.e. the rate of decrease of the number of new individuals adding up 

in time. We therefore fitted the two functions to the cumulative number of new 

giraffe Ct in a Bayesian model to produce another estimate of population size (Ns). 

Note that this approach assumes a constant detection rate over time, space and 

between individuals, given by ps = C21/Ns and requires individuals to be uniquely 

identified. We assessed the fit of the data to these models with a χ2 goodness-of-

fit (GOF) test. We hence compared the sum of the difference between fitted and 

expected numbers of giraffes seen per day, each squared and divided by the 

expected value, to a χ2 with t − 3 degrees of freedom (two model parameters + 1) 

at a significance level α = 0.05. 

N-mixture models 

The third population size estimator we applied was the N-mixture model (Royle 

2004). The N-mixture model assumes that repeated counts of animals in time and 

space are the outcome of combined probability models for the unknown 

population abundance (NN) and for the detection (pN). For population abundance, 

the Poisson, negative binomial and zero-inflated Poisson distributions are the 
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most commonly used, but other discrete distributions may be considered (see 

below). For the detection process, a binomial distribution (with parameters NN and 

pN) accounts for undetected animals. The N-mixture model assumes a 

demographically closed population and an equal detection probability for all 

individuals. We estimated population size by fitting four N-mixture models to the 

giraffe data (t = 20 days, s = 12 waterholes), allowing for temporal variation in 

detection probabilities (Kéry et al. 2009). 

We replicated the analyses of population size estimation for two data sets. The 

first data set consisted in the number of different and uniquely recognized giraffe 

seen per day at each of the 12 waterholes. We used a binomial distribution to 

model the observation process. Here, we considered another distribution mixture 

accounting for the non-independence between individuals, the β-binomial–

binomial N-mixture models (Martin et al. 2011). We discarded the zero inflated 

Poisson – binomial mixture because of its poor performance in general (Veech et 

al. 2016). For the second data set, we used the total number of giraffe seen 

(without individual recognition) and was hence more closely related to counts 

carried out in many reserves where individuals identification is not done. Here, we 

used a Poisson model for the observation process because double counts were 

very frequent from camera-trap photographs, resulting in a Poisson–Poisson 

distribution mixture (Kéry & Royle 2020). To achieve convergence and facilitate 

parameter estimations, we included a temporal correlation for detection rates 

(first order autoregressive model, see Kéry & Royle 2020, p. 305–306). Note that in 
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the case of Poisson – Poisson N-mixture models, we no longer estimate a 

detection probability (0 < p < 1) but a detection rate instead (ψ > 0). 

We fitted all CR (except SECR), rarefaction and N-mixture models using 

JAGS 4.0 (Plummer et al. 2003). We used non-informative prior distributions for all 

estimated parameters except for Ns in the rarefaction curves models, for which we 

used a half-normal distribution to ensure that number of animals was > 0. We ran 

three Monte-Carlo (MCMC) chains, with a burn-in of 10000 iterations before saving 

5000 iterations to get the posterior distributions of parameters at convergence. We 

checked convergence graphically to ensure good mixing of MCMC chains and used 

Gelman’s h for an objective convergence criterion (convergence is reached when h 

is close to 1 Gelman & Pardoe 2006). The R and JAGS code we used is freely 

accessible on-line at https://github.com/cbonenfant. 

Results 

Camera trap data set 

Giraffe were recorded at 10 of the 12 waterholes surveyed. A total of 101 

individuals were identified from the camera trap images: 58 adult females, 41 

adult males and two juvenile of unknown sex. For all but six individuals, we 

obtained identification images from both sides of the animal. For five individuals, 

we only had images from the left side and only a front shot for the remaining 

animal. The majority of individuals (66%, n = 58) were seen at a single waterhole, 

while 27% (n = 24) and 7% (n = 6) were seen at two and three waterholes 
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respectively. On average, 28 unique giraffes were detected per day with camera 

traps, with a minimum of 8 and a maximum of 54 (median of 29.5 individuals). For 

98% of the individuals, we could assign the age-class. 

 

Population size estimates 

Capture-recapture models 

From capture histories, the best model describing the observed variability in 

detection rate included time variation (i.e. differences in detection probability 

between days), sex (�̂� = −0.60 −0.14 0.30), whether the individual was seen at any 

waterhole the day before (�̂� = −2.95 −2.32 −1.74), and the first order interaction 

between sex and previous visit (�̂� = 0.41 1.17 1.93). We detected a marked variability 

in daily detection probabilities over the course the of the study, ranging from �̂� = 

0.00 0.02 0.05 on day 1, to �̂� = 0.35 0.47 0.59 on day 15. On any day, females were 0.03 

0.11 0.18 times less likely to be detected at any waterhole 

following a detection, while a male was 0.15 0.30 0.50 times less likely to be detected 

if it was seen the day before. Once time, sex and previous visit had been 

accounted for, the remaining individual heterogeneity in detection rate was (�̂�2
id = 

0.40 0.71 1.21). The population size estimate returned from our best model of 

detection rate was �̂� = 101 104 109 individuals (Table 1). Using SECR to account for 

animal movement and the spatial distribution of camera traps on 

OGR increased the population size by 5%, with an estimate of �̂� = 103 109 115. 

Parameter estimates for the SECR models were �̂� = 1868.92 1981.20 2102.03 for scale 

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

https://www.editorialsystem.com/pdf/download/1733427/a0f461431e705355cbc22add9edd424f/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (521.06 kB)

 

15 

 

 

 

of the half-normal distribution, corresponding to the average movement radius of 

giraffes, and �̂�0 = 0.24 0.28 0.32 for the expected detection rate of an individual 

whose home-range centre is exactly at the trap location. 

Rarefaction curve models 

We calculated the cumulative number of newly detected individuals over the 20 

days duration of the study (Fig. 2). The number of new individuals increased 

steeply up from day 1 to day 16 when it started to level off. It took 19 days to 

observe all the individuals identified during the study period (Fig. 2). Fitting the 

hyperbolic and exponential rarefaction curves to estimate population size gave 

contrasting results (Table 1). While the exponential equation returned a 

population size of 104 117 134 giraffe, the hyperbolic equation projected a 

population size 49% larger (145 175 215). Breakage coefficients were �̂� = 0.09 0.12 0.16 

and �̂� = 7.9 11.9 17.7 for the exponential and hyperbolic equations respectively. 

Overall, the fit of the two rarefaction curves to the data was poor for the 

exponential and hyperbolic equations (Fig. 2), with χ2
df=18 = 339.4 and χ2

df=18 = 

330.1, both GOF tests rejected the null (χ2
df=18 = 9.39 at the confidence level α = 

0.05). Precision of the estimates was of the same magnitude, close to 10% for 

both models (Table 1). 

N-mixture models 

We applied three different N-mixture models yielding contrasting results. The 
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Poisson–binomial model returned an estimate of �̂�PB = 173 215 263 giraffes (Table 1), 

hence 80% larger than the estimation from the best CR model. The β-binomial – 

binomial mixture estimated abundance to �̂�βBB = 107 124 156 giraffes. The associated 

parameters of the β-binomial function were �̂� = 0.32 0.44 0.58 and �̂� = 1.13 1.82 2.91, giving a correlation �̂� = 0.22 0.31 0.40. According 

to this model, the mean daily detection probability was �̂� = 0.14 0.20 0.25, ranging 

between �̂� = 0.00 0.01 0.10 and �̂� = 0.63 0.87 0.99. Fitting a Poisson–Poisson N-mixture 

model to raw observations led to an estimated population size of �̂�PP = 79 87 99 

giraffe (Table 1). The mean detection rate was �̂� = 0.55 but varied from �̂�k,t = 0.00 

0.01 0.03 to �̂�k,t = 1.79 3.11 5.10 according to time and space. The first order temporal 

auto-correlation coefficient (AR(1)) was estimated as �̂� = −1.00 −0.56 −0.03. Note that 

the Poisson-Poisson model was particularly difficult to fit to the data as we 

experienced many convergence 

issues. 

Frequency of waterhole visits 

We computed the mean time of return to a waterhole and frequency of visits from 

the daily probabilities as estimated from the CR model. To do so, we simulated 5 

000 capture histories from a multinomial distribution taking the observed 

detection probabilities for each day as the distribution model parameters. For 

each capture history, we calculated the difference in days between successive 

visits to any waterhole, and its inverse to get the frequency of visits. The mean 
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time of return to a waterhole of giraffe was �̂�l = 1.6 5.0 14.0 days for males, yielding a 

frequency of 𝑓 = 0.07 0.26 0.62. Females tended to visit waterholes more frequently 

with a mean time lag of �̂�l = 1.7 4.0 9.5 days between two observations, and a 

frequency 𝑓 = 0.10 0.30 0.58 over 20 days of monitoring. 

Discussion 

Population abundance is the core state variable of population dynamics from 

which the population growth rates are derived (Caughley 1977). Our study system 

at OGR offers a unique opportunity to apply and compare different methods to 

estimating giraffe abundance. Because giraffe can be recognized from their coat 

patterns, we were able to apply methods based on the re-observations of 

individuals (capture-recapture sensu largo), which were then compared to other 

abundance estimators traditionally used in wildlife monitoring in African national 

parks (Jachmann 2012). With the exception of the Poisson-binomial N-mixture 

model, all estimators yielded potentially acceptable results (see Table 1). In 

comparison to the CR estimate, the other abundance estimators deviated by −16 

to +106%. We caution against over-estimating giraffe abundance when using N-

mixture models or rarefaction curves at large scale and for conservation purposes. 

As there is marked heterogeneity in detection probability in time and among 

individuals, the drinking behaviour of giraffe likely accounts for the discrepancies 

we report among abundance estimators, and should be carefully considered for 

other species monitored at waterholes. 
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Individual variability, local habitats and the use of a plethora of available 

methods to estimate population abundance (Seber 1982) have led to inconsistent 

ways of monitoring wild populations of large herbivores among and, sometimes, 

within sites. For instance, in Hwange National Park, Zimbabwe, giraffe density 

estimation was derived from distance sampling (Valeix et al. 2008), while in the 

Serengeti, Kenya, aerial counts were preferred as an index of abundance (Strauss 

2014, see also Table 1 for an overview). We show here that the choice of a 

particular method to estimate giraffe abundance has profound consequences on 

the results. On OGR, the range of estimated population sizes varied by more than 

two-fold, from 87 to 215, yielding densities of 0.29 and 0.71 individuals.km−2. 

Which estimator to implement and to apply to empirical data is not trivial, and 

comparisons of results with well-known, reference methods is advised (e.g. 

Corlatti et al. 2017; Pellerin et al. 2017). In our case, and in the absence of 

knowledge of the true number of giraffes, we considered the population size of 

104 giraffes (density of 0.34 individuals.km−2) derived from CR models to be the 

most reliable among all estimates. CR methods are usually regarded as the gold 

standard because of their flexibility in dealing with detection probability and the 

long history of use since the publication of its principle by Petersen-Lincoln 

(Pollock 1976). 

While population size as estimated from Eggert’s equation is somewhat close 

to CR models (117 vs. 104), the estimation from Kohn’s equation seems 

biologically unrealistic and should be disregarded (see also Frantz & Roper 2006, 
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for similar results on simulated data). With 175 individuals, giraffe density (0.58 

individuals.km−2) would be almost 3 times larger than previous estimates at Etosha 

National Park (Table 2), neighbouring OGR with similar rainfall conditions (Fig. 1). 

Such a high population density should trigger density-dependent processes, first 

manifested by a reduction in reproduction rates of females or low juvenile survival 

in large herbivores (Bonenfant et al. 2009). Rarefaction curves were shown to give 

biased estimation of biodiversity when species are not uniformly distributed in 

space (Collins & Simberloff 2009). Similarly, projecting the number of total 

individuals from rarefaction curves (e.g. Petit & Valiere 2006) is likely to be 

influenced by heterogeneity in detection` probability among individuals. While 

Kohn’s equation returned a large number of giraffe compared to the CR estimate, 

Eggert’s equation almost matched our reference population size. However, with 

no replication of our observations and counts, we cannot assess the robustness of 

Eggert’s equation to heterogeneity in detection probability among individuals. All 

in all, the fit of the two rarefaction curves were poor (Fig. 2) making the inference 

on population size spurious at best, in addition to requiring individual 

identification of giraffes. If individual identification is to be done, we advise the 

use of CR methods instead of rarefaction curves to estimate giraffe abundance. 

Although N-mixture models are more and more used to analyse count data, 

their reliability is regularly questioned (Dennis et al. 2015; Link et al. 2018; Knape 

et al. 2018; Nakashima 2020). Comparisons with other proven methods such as CR 

are scarce, despite their value. For giraffe, the estimation of population 
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abundance from N-mixture models suffers from either a severe overestimation 

(215 for the Poisson–binomial) to an underestimation (87 for the Poisson–Poisson) 

when applied on raw, unprocessed data without identification of individuals. If 

individual identification is not possible, double counts are likely to occur in the raw 

counts. Double counting therefore be a commonly encountered situation in count 

operations at waterholes in many African parks. A Poisson-Poisson N-mixture is 

the natural solution to this situation by estimating a detection rate (ψ > 1) where 

individuals can be seen more than once. Unfortunately, our results suggest poor 

performance of the Poisson–Poisson N-mixture model in estimating giraffe 

abundance. This model produced the lowest population size estimate, being −36% 

smaller than CR estimate (87 vs 119 giraffe). Despite the occurrence of frequent 

double counts (empirical rate: 568/119 = 4.77 from CR data), the Poisson–Poisson 

N-mixture model failed to estimate this quantity correctly (λˆ × ψˆ = 1.06), maybe 

because of unmodelled heterogeneity, in addition to temporal and spatial 

variation in the detection probability of animals. Since most giraffe live in groups, 

we also faced non-independence of individual detection which, when accounted 

for with a β–binomial distribution in the N-mixture model (Martin et al. 2011), 

returns much more sensible estimates of population size (124 individuals) than 

any other assumed distributions of the detection process (Table 1). 

A strength of CR estimators over the rarefaction curves and N-mixture models 

is their ability to model detection probabilities not only in time and space, but also 

at the individual level. An important source of heterogeneity in detection 

probability we observed was the frequency of visit to waterholes. Giraffe visit to 
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waterholes is primarily motivated by thirst, and if they must drink on a regular 

basis, they can skip drinking for several days in a row (Shorrocks 2016). On OGR, 

giraffe’s return frequency to waterholes was between 0.26 and 0.30 for males and 

females respectively (one visit every 4–5 days on average), which is lower than 

previously observed. For instance Shorrocks (2016) reported a frequency of 0.61, 

while (Caister et al. 2003) recorded daily drinking in Niger (f ≈ 1). Such a marked 

difference in drinking frequency may have both biological and technical 

explanations. On OGR, giraffes may find enough water in forage or access to small, 

non-monitored water sources, making the need to visit larger but dangerous 

waterholes less stringent. An alternative would be that camera traps might fail to 

trigger in the presence of an animal, which is sensitive to camera placement, 

settings and performance (Rovero et al. 2013; McIntyre et al. 2020), or because 

the photograph was of too low quality to allow for individual identification (e.g. 

blurry or dark images). Independently of its cause, this behaviour generates a 

particular detection pattern. Once an animal has visited a waterhole to drink, it 

will be less likely to be detected the following days, therefore breaking the 

assumption of constant detectability of many abundance estimators. In CR 

terminology, giraffe are “trap shy” and several solutions have been proposed by 

statisticians to reduce bias on abundance estimates in the CR framework (Pollock 

1980). 

Our study on OGR is a clear illustration that the assumption of a constant 

detection rate is not met, even with a fixed sampling design and a fine, daily, 

temporal resolution of the monitoring. Detection probability varied substantially 
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from one day to another, ranging from 0.02 to 0.47. This result is a major warning 

against the use of raw (i.e. unidentified individuals) count data, such as the 

number of giraffes seen per day, to monitor giraffe populations in the wild (see 

Anderson 2001, for a general argument). Variation in daily detection probability 

resulted not only from the drinking and grouping behaviour of giraffe, but also 

from the number of camera traps in service over the course of the study. Several 

cameras stopped recording pictures because of battery failure or full memory 

cards. A sampling design based on fixed camera traps at waterholes hence does 

not guarantee a constant detectability. This marked variability in detection 

probability in time likely accounts for the discrepancy we report among the six 

population abundance estimators. In practice, estimating abundance of giraffe 

should preferably consider methods flexible enough to account for their drinking 

behaviour. 

Sampling large mammal populations with camera traps is of great practical 

advantage. When it comes to estimation of population abundance from camera-

trap data, the long-standing issues of detection and the modelling of its 

heterogeneity in time, space and among individuals still apply. We found the 

deviation of N-mixture and rarefaction curve models from our reference CR 

estimation deteriorated when the data are not processed using individual 

identification. For species with unique coat patterns, individual identification with 

machine learning and artificial intelligence is now robust, efficient, and is 

becoming more easily available and less of an obstacle for wildlife managers (see 

Miele et al. 2021). This may apply to other African species of large herbivores such 
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as zebras sp., greater (Tragelaphus strepsiceros) and lesser kudu (T. imberbis), 

wildebeest (Connochaetes taurinus) or bushbuck (Tragelaphus scriptus) that all 

bear idiosyncratic marks. We believe the gain in precision in population 

abundance estimation is worth the time allocated to it and will serve the 

conservation of such species. 
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Table 1 – Estimated population size (�̂�) of giraffe (Giraffa camelopardalis 

angolensis) at Ongava Game Reserve, Namibia, in September 2016, 

from the monitoring of 12 waterholes for 21 days. The capture-

recapture estimator modelled detection probability of animals 

accounting for daily variation (t), sex of individual (sex), and whether 

the giraffe has previously visited a waterhole the day before or not (b). 

h stands for the individual variation in detection probability. For the 

sake of comparisons, we present the average detection probabilities  �̅� a posteriori as the number of counted animals divided by �̂�. For N-

mixture models, abundance estimation used the number of uniquely 

identified giraffe each day at every waterhole, hence removing double 

counts (Poisson–binomial and β-binomial–binomial mixtures) to return 

population size and detection probability. Another N-mixture model 

used the raw number of giraffe counted at each waterhole instead 

(Poisson–Poisson N-mixture), which is the most common configuration 

in wildlife counts in Africa. In this case, the model accounts for 

multiple counts of the same giraffe. We report here the point estimate 

and associated 95% credible intervals as: lower limit mean upper limit. Cv 

stands for the coefficient of variation of �̂�. 

Abundance estimator �̂� �̅� Cv 

Capture-recapture pt 101 101 103 0.99 0.99 1.00 1.0% 

Capture-recapture pt+h 101 103 107 0.94 0.98 1.00 1.7% 

Capture-recapture pt+sex+h 101 103 108 0.93 0.98 1.00 1.7% 

Capture-recapture pt+sex+b+h 101 104 109 0.92 0.98 1.00 2.1% 

Capture-recapture pt+sex×b+h 101 104 110 0.92 0.97 1.00 2.2% 

Spatially explicit capture-recapture 103 109 115 0.87 0.92 0.98 3.1% 

Rarefaction curve (Kohn) 145 175 215 0.47 0.57 0.70 10.0% 

Rarefaction curve (Eggert) 104 117 134 0.75 0.86 0.97 6.3% 

N-mixture (Poisson–binomial) 173 215 263 0.38 0.47 0.58 4.4% 

N-mixture (ZIP–binomial) 173 215 263 0.38 0.47 0.58 4.4% 

N-mixture (β-binomial–binomial) 107 124 156 0.65 0.81 0.94 10.1% 

N-mixture (Poisson–Poisson) 79 87 99 1.02 1.16 1.28
a 5.4% 

aFor this N-mixture model, detection is no longer a probability but a rate that can take 

values > 1.

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

https://www.editorialsystem.com/pdf/download/1733427/a0f461431e705355cbc22add9edd424f/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download source file (521.06 kB)

 

Table 2 – Reported densities of giraffe (Giraffa camelopardalis ssp.) populations in Africa (in number of 

individuals per km²). When abundance was estimated for several years, repeated lines in the same 

location give the range of densities recorded on the site. 

Site Ecosystem Country Density Estimator Reference 

Chobe National Park Floodplains — mixed woodland      Botswana 0.110 (—)  Aerial counts Mcqualter (2018) 

Great Rift Valley Savannah Kenya 0.468 (88/188) Ground census Muller (2019) 

Great Rift Valley Savannah Kenya 0.405 (77/190) Ground census Muller (2019) 

Mara Region Open grassland Kenya 0.750 (—) Aerial counts Ogutu et al. (2011)  

Mara Region Open grassland Kenya 0.080(—)  Aerial counts Ogutu et al. (2011)  

Etosha National Park  Savannah plains / mixed savannah   Namibia 0.150(—)  Aerial counts Brand (2007) 

Etosha National Park  Savannah plains / mixed savannah   Namibia 0.200(—)  Aerial counts Brand (2007) 

Ongava Forest savannah Namibia 0.336 (—) Capture-recapture This study 

Kouré and Fandou Plateaus  Forest savannah Niger 0.241 (—)  Census (photo ID) Suraud et al. (2012)  

Lake Manyara National Park  Evergreen groundwater forests Tanzania 0.570 (0.570-0.580) Distance sampling Kiffner et al. (2020)  

Lake Manyara National Park  Evergreen groundwater forests Tanzania 1.210 (1.180-1.25) Distance sampling Kiffner et al. (2020)  

Mkomazi National Park  Savannah-woodland ecosystem Tanzania 1.165 (0.808) Distance sampling Mseja et al. (2020)  

Tarangire Ecosystem  Savannah-woodland ecosystem Tanzania 0.791 (0.073) Capture-recapture Lee & Bond (2016)  

Tarangire Ecosystem  Savannah-woodland ecosystem Tanzania 1.202 (0.760) Capture-recapture Lee & Bond (2016)  

Tarangire Ecosystem  Savannah-woodland ecosystem Tanzania 0.173 (0.057)  Capture-recapture Lee & Bond (2016)  

Saadani National Park  Savannah-forest mosaic Tanzania 0.106—1.400  Distance sampling Treydte et al. (2005)  

Serengeti Scrub thicket-open grassland Tanzania 0.18—2.59  Aerial counts Strauss (2014)  

Shamwari ecosystems  Forest (?) South Africa 0.744 (—)  Walked transects Hayward et al. (2007 ) 

Lupande Mopane/miombo woodlands Zambia 1.274 (930/730)  Double counts (aerial) Jachmann (2002)  

Hwange National Park  Forest savannah Zimbabwe 0.170 (—)  Distance sampling Valeix et al. (2008)  

Gonarezhou National Park Dry deciduous savannah Zimbabwe 0.470 (0.140) Distance sampling Ndiweni et al. (2015)  

Malipati Sarafi Area Dry deciduous savannah Zimbabwe 0.010 (0.030) Distance sampling Ndiweni et al. (2015)  
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Figure legend 

Figure 1 – Spatial distribution of waterholes surveyed in 2016 with camera traps to 

monitor wildlife abundance at Ongava Game Reserve, Namibia. We extracted 

abundance data for giraffe (Giraffa camelopardalis angolensis) to be apply to 

different estimators of giraffe population size. 

Figure 2 – Rarefaction curves for individual giraffe (Giraffa camelopardalis 

angolensis) detected during the 21-day study period on Ongava Game Reserve, 

Namibia (step curve in black). Continuous lines and associated shaded areas 

represent predictions and credible intervals of rarefaction models. We fitted two 

rarefaction equations proposed by Eggert et al. (2003) and Kohn et al. (1999) to 

the problem of population size estimation using a Bayesian framework.  
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Figure 1 – 
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