Cooperation in the commons? Evidence from a cross-cultural field experiment on common-pool resource management

Sebastian Prediger (1), Bjørn Vollan and Markus Frölich (2)

- (1) University of Marburg; Department of Economics; Institute for Co-operation in developing Countries; Am Plan 2, D-35037 Marburg, Germany.
- (2) University of Mannheim; Department of Economics; Chair of Econometrics; L7,3-5, D-68131 Mannheim, Germany.

Common-pool resources

- Resources characterized by <u>rivalry in consumption</u> and <u>costly</u> <u>exclusion</u> of other users (e.g.pastures, water, community forests, biodiversity)
- **Proposition for many decades**: The conflict between individaal and common interest will lead to resource degradation (Hardin, 1968)
- But Ostrom (Nobel prize 2009) has demonstrated that sustainable management of CPR is possible
 - Depending on (evolved) norms of cooperation shared by the resource users
 - ,informal' rules (often unobserved by politicians)
- CBNRM initiatives partly base on these ideas

Research Questions

- Are norms of cooperation present in the study areas?
- Is there a cross-cultural difference between the Nama in Namibia and South Africa, as results from earlier experiments suggest?
- Are there rules (institutions) which can increase economic and ecological performance?
- What rules do resource users implement, and why?
- What makes people follow rules (not presented here)?

Subjects' economic background

Communal areas

- Both study areas mainly populated by the Nama people
- Small stock herding on subsistence level
- Livestock is kept on commonly used pastures
- High unemployment
- High pressure on resource base (risk of degradation)

Ecological Motivation: State and transition model

 Strong evidence that many parts of our study areas switched into a different ecological state

Experimental design of the Grazing Game

- 5 Players per session
- Each session lasts for **20** rounds (round = grazing season)
- Players choose one of two grazing areas [A or B] ...
- ... and chose the farming intensity [0, 1, or 2] in each round

• The grazing condition depends on the group intensity in the previous round: If group intensity >4 unit \rightarrow Degradation!

Co-operation problem: Every player has an incentive to choose highest intensity which will lead to degradation and thus lower earnings

No rules (Rounds 1-10)

- Substantial difference between Namibia and RSA
- In RSA the groups got stuck into a situation where both grazing areas were bad
- In RSA, none of the groups could manage to recover back to HH
- In Namibia a higher share of the land is maintained in a good condition (42% vs 4% for RSA)
- RSA same results as in Thailand and Colombia

Philipps

- Analysis of behaviour under different resource scenarios reveals that Namibians have a much higher propensity to cooperate
- Namibians apply significantly lower grazing intensities in all scenarios
- Namibians are significantly less frequently faced with resource degradation
- The country difference remains highly significant if we consider socio-demographic variables in a multivariate regression analysis (not shown)

	Resource abundance		Spatial resource availability		Resource scarcity	
	Mean Intensity	Obs	Mean Intensity	Obs	Mean Intensity	Obs
RSA	1.64	80	1.49	145	1.28	375
NAM	1.30	175	0.86	310	0.70	115
Difference	0.34		0.63		0.58	
p-value	>.000		>.000		>.000	

Historical differences as explanation

Different historical developments in both areas

Namaqualand (RSA):

- Colonization in 16th century
- Dispossession of land
- Abandonment of traditional lifestyle
- Strong western influence:
 - circulation of money
 - adoption of Afrikaans
- Maladministration and corruption
- -, Economic units' (Privatization)

Namaland (NAM):

- Colonization in 1884
- Nama Uprising
- Appropriation of their ancestral lands
- Only the Nama tribe in our study area could preserve its territory
- Could retain local institutions largely intact
- Managed by captaincy until independence

The relative strong western influence, corruption and the attempt to privatize the commons may have eroded norms of co-operation in RSA

The Rules tested

After round 10 a ,community meeting' was held, players could choose one from 3 different rules which had to be implemented for the last 10 rounds

•Rotation rule: Each round one location is banned from grazing: A in rounds 11 and 12, B in rounds 13 and 14 etc. If a participant is caught grazing illegally the points need to be returned.

• **Regulation rule**: The individual grazing intensity is limited to 1 unit per round. In case a participant is caught putting an intensity of two, the participant need to pay back the points.

•Lottery rule: Random determination of the location where each player has to graze in each round. When a participant graze in a location illegally, a throw of a six of the dice leads to paying back the points.

Voting Results (rule choice)

- Rotation is the preferred rule among all players.
- No difference whether farmer or not or being from Namibia or South Africa.
- Rotation is perceived as the 'fairest' and most 'efficient' rule.
- Rotation is seen as the rule which advances 'self interest' best by the players

Rule Efficiency

• Compared to Lottery, Rotation and Regulation significantly increase the number of good grazing areas available to the group

Number good grazing	Pooled	South Africa	Namibia
Lottery	-0.486	-0.018	-0.943**
-	(0.340)	(0.331)	(0.442)
Rotation	-0.343	0.629**	-0.965**
	(0.328)	(0.311)	(0.377)
Regulation	0.427	1.429***	-0.147
-	(0.358)	(0.287)	(0.363)
Cumulated until last round			
lag_group_mean_earn_cum	-0.013*	-0.017	-0.019*
	(0.007)	(0.013)	(0.010)
lag_stddev_earn_cum	-0.013	0.003	-0.009
	(0.009)	(0.014)	(0.009)
Last round			
lag_ord_graz_cat_h	0.524***	-0.250***	0.894***
	(0.127)	(0.086)	(0.113)
lag_ord_graz_cat_l	0.481***	0.358***	0.457***
	(0.097)	(0.107)	(0.135)
Round	0.093**	0.042	0.168***
	(0.039)	(0.061)	(0.050)
round_20	-0.427***	-0.136*	-0.620***
	(0.122)	(0.082)	(0.191)
Constant	0.048	0.205	-0.644***
	(0.288)	(0.237)	(0.239)
Observations	192	96	96
r2_0	0.489	0.705	0.462
r2_w	0.361	0.697	0.428
r2_b	0.663	0.726	0.523

Comparison to the first 10 rounds:

- Strong country difference!
- In South Africa Rotation and Regulation increase number of good grazing
- In contrast to Namibia, where non of the rules increased grazing availability
- Crowding out effect of intrinsic motivation to cooperate in Namibia

Summary

- Namibians reveal a much higher propensity to cooperate than their relatives from South Africa (due to historical differences)
- Our results provide evidence that social norms of cooperation are relatively strong in Namibia (but challenges)
- The majority of participants from both countries prefer the Rotation rule which is also recommended by extension officers
- Rotation is perceived as the rule which is most efficient, fairest and most likely to advance self-interest
- The implementation of rules, especially of Rotation and Regulation increases earnings and the grazing conditions in South Africa significantly (but negative effect in Namibia)
- Rule breaking can be substantially reduced if people are monitored regularly

Thank you very much for your attention!

Ecological differences as explanation

- Leliefontain in Namaqualand (RSA):
- SUCCULENT KAROO
- Biodiversity hotspot
- Av. rainfall 150-400 mm
- Rains relatively predictable
- Droughts occur only seldomly

Namaland (NAM)

NAMA KAROO

- Av. rainfall 50-200mm
- Rainfall unpredictable, spatially variable and highly erratic
- More responisve to grazing
- Severe droughts are common

Namibians may have a good ecological knowledge and know that heavy overgrazing can make pastures useless for many years

Overview of the talk

- Cultural and ecological background
- Experimental design
- Experimental Results
 - Cross-cultural comparison
 - Rule choice, efficiency and rule following behaviour
 - **Summary and Conclusion**

• **HH-survey 2004:** 65 % agree, that *"I would get more money from* farming if I and everybody else would reduce the amount of animals.

 More than 50% of communal farmers believe it is possible to practice rotational grazing in communal areas. Almost 40% see co-operation between farmers as main problem

