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Abstract

The development of standardised data acquisition strategies and analytical

workflows is crucial to quantify gully changes. In this study, we explore synergies

between unoccupied aircraft vehicles (UAV) and satellite remote sensing in order to

classify gully morphodynamics. Using Time Series Forest (TSF) and the Sentinel-1

radar backscatter coefficient (σo), gully scenarios can be classified into four catego-

ries: gully topographical change, no change outside gully, no change inside gully, and

non-topographical change. In addition, a Random Forest (RF) classification is per-

formed employing individual features obtained from elevation models and temporally

aggregated datasets. Training data are generated from multitemporal UAV-borne

photogrammetric point clouds through a manual segmentation of different gullies in

Namibia. This information is transferred from point clouds (sub-m) to satellite imag-

ery (10 m) generating training data at Sentinel-1 pixel level. Results indicate that the

TSF (on the σo Vertical-Vertical polarisation) and RF (on temporally aggregated fea-

tures) perform best when training and testing areas are located within the same geo-

graphical extent. Both approaches yield similar Total Accuracy (TA ≈ 79%–80%) and

Cohen’s Kappa value (Kappa ≈ 0.7), but TSF achieves superior Producer Accuracy

(PA = 78.5%) and User Accuracy (UA = 84.6%) for the gully topographical change

class. Additionally, the utilisation of TSF in Vertical-Vertical polarisation is the most

effective method if the testing and training areas are in different geographical loca-

tions, allowing gully identification with TA > 80% and Kappa = 0.49. However, this

method presents limitations to precisely delineate the change types, as dynamics are

rain-driven and therefore are geographically related. In summary, by combining the

complementary benefits of UAV-based and satellite-based solutions, this study

opens a line of research for the study and classification of surface land dynamics and

geomorphological feature extraction in regional extents.
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1 | INTRODUCTION

Gullies are dynamic geomorphological forms that accelerate land deg-

radation and lead to morphological and environmental changes in the

landscape at the micro and macro geographical scale (Montanarella

et al., 2015). Their study has been approached from an increasing

number of scientific perspectives, spatial scales and geographic

regions (Bennett & Wells, 2019; Castillo & G�omez, 2016). Some

remarkable examples of long-term joint efforts are the studies con-

ducted in Australia to map (Shahabi et al., 2019), assess the impact

(Hancock & Evans, 2010) and remediate inland gully erosion (Wearne

et al., 2018). In China, various initiatives are mainly focused on devel-

oping gully control practices in agricultural lands (Guo et al., 2020; Liu

et al., 2019). Furthermore, extensive research focuses on the develop-

ment of empirical models to map gully heads at a global and continen-

tal scale (Omran et al., 2022; Sidorchuk, 2021; Vanmaercke

et al., 2020). Identifying and measuring gullies in large extents at a

given time in 2D has been addressed by various authors (Golosov

et al., 2018; Shahabi et al., 2019; Vallejo-Orti et al., 2021). Neverthe-

less, certain aspects remain understudied and relevant, such as the

temporal dimension of gullies and techniques to measure their evolu-

tion over long periods, that is, >5 years (Hayas et al., 2017), and at

regional scales (Vanmaercke et al., 2021), that is, >1000 ha (Kimura

et al., 2009; Morgan, 2005). These approaches would provide geo-

morphologists, regional planners, and agronomists with useful infor-

mation to better understand triggering factors, gully-human

interactions, and to plan remediation strategies (Vanmaercke

et al., 2021) as well as to calibrate and evaluate empirical methods

(Omran et al., 2022; Sidorchuk, 2021).

Previous studies show that 3D monitoring of the geomorphic

activity of gullies is typically based on pairwise change quantification

between two epochs. Terrestrial (Zhong et al., 2021) and airborne (Du

et al., 2021) laser scanning as well as UAV-borne photogrammetry-

based dense image matching (Nota et al., 2022) are well-established

close-range sensing techniques for generating these 3D datasets.

Their use is valuable due to the achieved level of detail (sub-cm); how-

ever, they are limited to relatively small geographic areas (i.e., areas

<5 ha). As gullies are complex systems where numerous types of pro-

cesses occur (i.e., detachments, laminar erosion, vegetation changes

and stable areas), it is essential to classify gully sections by their pre-

dominant type of activity. Using 3D close-range sensing techniques

enables the detection and quantification of minute surface changes,

as well as the extraction of 3D surface information. Consequently,

although their application to large geographical areas is costly and

time-consuming, they are of great value as potential training and ref-

erence data of surface dynamics for satellite-based solutions.

As scalable and transferable methods are desired to cover large

areas and longer time periods, satellite observation systems with

global coverage, all-weather performance, high-frequent re-visits need

to be considered. In addition, the selected sensors need to capture

distinguishing features of gullies, such as terrain ruggedness, soil com-

paction, water balance, and vegetation type and distribution. Syn-

thetic Aperture Radar (SAR) Sentinel-1 (S1) offers adaptability to

observe these features and fulfil the aforementioned requirements.

As one of SAR direct features, backscatter coefficient (σo) is the

normalised measure of the reflective strength of a radar target

defined as per unit area on the ground. σo provides information about

soil physical and chemical features and vegetation status. Thus, a

spatio-temporal analysis of σo reveals insights into land surface

changes for much larger geographic areas and offers short intervals

between acquisitions (Sentinel-1 SAR User Guide, 2021). The detec-

tion of earth surface changes using SAR is widespread, for example, to

monitor snow landscapes changes (Snapir et al., 2019), dune dynamics

(Rozenstein et al., 2016), land subsidence (Canova et al., 2012; Pu

et al., 2022), river (Ahmad & Kim, 2019) and soil moisture dynamics

(Ullmann et al., 2023).

Within this context, we investigate how four types of dynamics

(gully topographical change, no change outside gully, no change inside

gully and non-topographical change) identified in point clouds can be

classified in satellite datasets. The Time Series Forest (Deng

et al., 2013), and the Random Forest (Ho, 1995) algorithms are applied

on radar time series and on 11 single features, respectively. We apply

and test our approach in the Kunene Region in Namibia over the

course of one and a half years encompassing the rainy seasons of

2019–2020 and 2020–2021. During this period training data are gen-

erated, firstly from the same area, and secondly from a different gully

network located in the Krumhuk Farm, in central Namibia.

In this line, the primary objectives of this research are (i) to

develop an approach for transferring information from very high-

resolution 3D UAV data to an operational scale in space and time,

based on spaceborne Earth observation; (ii) to study whether the use

of the temporal signature of a single radar variable (σoVV or σoVH) can

replace or improve the use of multivariate analysis based on elevation

models and temporally aggregated features; (iii) to explore the geo-

graphic transferability of the methods to determine the viability of

using a training gully site distinct from the classification target one.

2 | STUDY AREA AND DATASETS

2.1 | Study areas

The first study area is in the Kunene Region in Namibia, 15 km

towards the south of Opuwo (Figure 1a,b), covering part of the

Okatjandja Kozomenje conservancy. Our second study area is in

the Krumhuk Farm, in central Namibia, located approximately 30 km

from Windhoek (national capital city) towards the south. One of the

major gullies in this farm is selected as alternative training area

(Figure 1a,c). Both study sites are representative of large active valley

bottom gullies in (semi-) arid areas, typical in Namibia (Mendelsohn

et al., 2002), South Africa (le Roux et al., 2022; Olivier et al., 2023)

and other regions (Shahabi et al., 2019).

Between November 2019 and March 2021, four UAV data collec-

tion campaigns were conducted in the Kunene Region and eight in

the Krumhuk Farm. The extents covered during these campaigns are

framed by a blue polygon in Figure 1b,c.

A summary of both study area descriptions is presented in

Table 1.

As both study sites present similarities in terms of soil and cli-

mate, the main differences are identified in the gully morphology. The

gully in Kunene is larger, with dimensions of up to 300 m wide and

15 m deep as compared to the 50 and 5 m in width and depth of the

gully in Krumhuk (Figures 1d,e and 2). Krumhuk also has denser grass

coverage during the rainy season.
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Typically, as seen in the gully site in Kunene Region (Figure 3),

the outer limits of the gully are the most active zones, where ero-

sive linear advancement driven by concentrated water flows and

local detachments in the most vertical walls are frequent ([1] gully

topographical changes). An intermediate zone with gentle slope and

sparse vegetation is characterised by a more stable erosion area

inside the gully ([3] no change inside gully). Permanent woody veg-

etation is identified as the primary non-topographic elevation

change in the area ([4] non-topographic change) in the main chan-

nel’s central gully sections. Finally, non-sloped areas in the gully

surroundings have not been affected by gully erosion ([2] no

change outside gully). These generalised types of changes are used

as the foundation to describe the four target classes in subsequent

sections.

2.2 | Datasets

The contents of Table 2 outline the characteristics, derivatives and

acquisition times of the source datasets utilised in this research.

In Sections 2.2.1–2.2.3, we elaborate on the specifics of data col-

lection, pre-processing and the various datasets preparation for the

subsequent analysis.

2.2.1 | Photogrammetric point clouds and derived

datasets

The training data for this study is generated through UAV-borne pho-

togrammetry using a DJI Mavic Pro with a model FC220 embedded

T AB L E 1 Descriptive parameters of the study areas.

Opuwo Krumhuk

Location

(WGS 1984)

Lon: 13.83� ,

Lat: �18.19�

Lon: 17.22� ,

Lat: �22.71�

Soil Type Lithic leptosols and eutric regosols Regosols, eutric leptosols and lithic leptosols (Jones et al., 2013)

Altitude (m a.s.l) 800–1400 1753–2335

Annual Rainfall (mm) 300–350 250–350

Vegetation Grasslands and scattered trees Dense shrubland (Mendelsohn et al., 2002).

F I GU R E 1 (a) General map of Namibia locating the two study areas. (b) Gully in the Kunene region with the target classification area (green

polygon), the UAV training/testing area (blue polygon), the gully outline (black line), the main road (dashed black line) and some houses (yellow

dots) (Namibia Statistical Agency, 2021). (c) Gully in Krumhuk farm displaying the UAV training area (blue polygon) and the gully outline (black

line). Terrain topographic profiles across gullies extracted from Tandem-X DEM (DLR, 2014) in the (d) Kunene region and (e) Krumhuk farm. Base

maps source is ESRI, Maxar earthstar Geographics. [Color figure can be viewed at wileyonlinelibrary.com]
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camera (DJI, 2022). Aerial imagery from two campaigns (November

2019 and March 2021) for each study area is selected on the dates

indicated in Table 2. The flights are carried out at a constant altitude

of 100 m above-ground level (AGL) with 70% front and side overlap

between images and 5-mm focal length, producing imagery with

72 dpi resolution and 2.3 cm ground sampling distance (GSD).

For November 2019 and March 2021, 3D point clouds are

reconstructed in a dense image-matching procedure using Agisoft

Metashape (Agisoft Metashape, 2021), resulting in an average point

spacing of 10 cm (std. dev.: 8 cm). Global georeferencing is applied on

the point clouds using 10 surveyed ground control points (GCP) with

Garmin GPS MAP 64, computing waypoints-averaged fixes (<0.5 m

accuracy), yielding average horizontal georeferencing residuals of

2.5 cm between the GCP and the point clouds. The multitemporal

point clouds are aligned by minimising the 3D distance between these

point clouds in stable areas outside the gully using an iterative closest

point (ICP) algorithm (Besl & McKay, 1992), detecting a mean

registration error (root-mean-square error) of 0.1 m. Subsequently,

M3C2 (linear multi-scale) distance and significant change are derived

(Lague et al., 2013). We used an ICP and M3C2 algorithm implemen-

tation in Cloud Compare (Cloud Compare, 2022). M3C2 computes

distances between point clouds based on a local normal vector along

which a cylinder is oriented. This cylinder captures points from each

point cloud, which are averaged (separately for each point cloud) and

compared to derive a linear multi-scale distance (DiFrancesco

et al., 2020; Zahs et al., 2022). The registration error (derived from the

ICP) and the local roughness of each point cloud determines the level

of detection (LoD), which is a measure of uncertainty associated to

each change, as defined in Lague et al. (2013). Although LoD is spa-

tially variable, it presents a mean = 0.70 m and std. dev = 0.19 m for

the entire point cloud, resultant of the M3C2 operation. As a final der-

ivate, the significant change (SC) parameter indicates whether the

M3C2 distance computed for a certain point corresponds to a real

change (M3C2 distance > LoD) or not (M3C2 distance ≤ LoD). Thus,

F I GU R E 2 Representative descriptive photos of both study sites. (a) General view, (b) interior perspective and (c) close-up of a gully wall in

the Kunene region. (d) Overall view, (e) interior perspective and (f) close-up of a gully wall at the Krumhuk farm. [Color figure can be viewed at

wileyonlinelibrary.com]
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F I GU R E 3 (a) 3D point cloud of the gully site in the Kunene region with the approximated gully outline (in black line) and the four generalised

identified changing scenarios ([1] gully topographical change, [2] no change outside the gully, [3] no change inside the gully and [4] non-

topographical change). (b) Aerial drone image locating the different change types, displayed in detail in subfigures (c)–(f) for each class of change

(1, 2, 3 and 4), respectively. [Color figure can be viewed at wileyonlinelibrary.com]

T AB L E 2 Description of the main data sources. The columns display, from left to right, the name of the original dataset, products derivates,

ground sampling distance (GSD) and acquisition dates (grouped by years appearing in bold, with dates in the format month.day).

Dataset Derivates GSD Acquisition dates (year: month.day)

Sentinel-1 GRD Backscatter coefficients

(σo VV, σo VH)

10 m 2019: 07.07, 07.19, 07.31, 08.08, 09.05, 09.17, 09.29,

10.10, 10.23, 11.04, 11.16, 11.28, 12.10.12.22

2020: 01.03, 01.15, 01.27, 02.08, 02.20, 03.03, 03.15,

03.27, 04.08, 04.20, 05.02, 05.15, 05.26, 06.07,

06.19, 07.01, 07.13, 08.06, 08.18, 09.11, 09.23,

10.05, 10.17, 10.29, 11.10, 11.22, 12.04, 12.16,

12.28

2021: 01.21, 02.14, 02.26, 03.10, 03.22, 04.03, 04.15,

04.27

Sentinel-1 SLC Backscatter mechanism (SM) 10 m 2019.11.04, 2021.04.03

Sentinel-2 MSIL2A Normalized Difference Vegetation Index

(NDVI)

10 m 2019.11.09, 2021.03.03

TanDEM-X HRTI-3 Global

DEM

Terrain Ruggedness Index (TRI), Slope (S) 12 m 2015

UAV-borne photogrammetry M3C2 distance (M3C2)

Significant change (SC)

Slope (S)

Terrain Ruggedness Index (TRI)

Green leaf Index (GLI)

0.1 m 2019.11, 2021.03
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the present configuration differentiates statistically significant

changes (SC = 1), for example, produced by gullying activity, from less

significant (SC = 0) smaller-scale processes, like laminar and rill ero-

sion (smaller than 0.7 m).

As a derivate of the point clouds, RGB (Red, Green, Blue) ortho-

images and DEMs are also generated and processed in R (R, 2021)

‘raster’ package to create Terrain Ruggedness Index (TRI), Slope (S)

and Green Leaf Index (GLI) (Louhaichi et al., 2001). TRI is the resultant

square root of the squared and averaged elevation difference

between the centre pixel and its eight adjacent pixels of a moving ker-

nel (Riley et al., 1999). It represents local surface spatial variability.

The GLI uses the RGB channels of an optical image to extract informa-

tion of the vegetation status, ranging from non-living (negative GLI) to

green vegetation (positive GLI), according to Expression (1).

GLI¼
2G�R�B

2GþRþB
ð1Þ

2.2.2 | Radar backscatter time series

S1-GRD (Ground Range Detected) products (ESA, 2021a) are used to

derive σoVV and σoVH for the full time series between July 2019 and

April 2021. To generate σo from S1-GRD imagery, pre-processing

operations are carried out in ESA SNAP software (ESA, 2021c), includ-

ing orbit correction, radiometric and geometric calibration. Global

TanDEM-X DEM (DLR, 2014) is used to apply geometric corrections

to S1-GRD. These operations are repeated for each epoch (relative

orbit 29, frame 1106 ascending) generating time series of σoVV and

σoVH images. These images time series (σoVV and σoVH) are cropped to

the extent of our study area and projected to UTM Zone 33 South,

WGS 1984 ellipsoid (EPSG:32733).

Recent studies on the geolocation accuracy of SAR mission prod-

ucts (Gisinger et al., 2020; Small & Schubert, 2022) indicate that S1

registers absolute location errors (ALE) ranging from sub-m to approx-

imately 3 m, which fits the requirements for our analysis.

2.2.3 | Single and temporally aggregated features

Utilising the σoVV and σoVH time series, the rate between the first and

last values of the series (ΔσoVV and ΔσoVH), and the standard deviation

for the entire series (SD [σoVV] and SD [σoVH]) are computed as tempo-

rally aggregated values for each pixel.

Three classes reflecting dominant backscatter mechanism (vol-

ume, double-bounce and surface backscatter) are derived from

S1-SLC (Single Look Complex) products (ESA, 2021a) conducting a

H-Alpha Wishart dual polarisation unsupervised classification (Lee

et al., 1999) in ESA SNAP software. This results in the dominant scat-

tering mechanism for Nov 2019 (SM2019) and March 2021 (SM2021), as

well as the computed pixel-based binary change jΔSMj.

TRI and S are also computed from Tandem-X DEM in R (R, 2021)

‘raster’ package.

Sentinel-2 (S2) (ESA, 2021b) datasets for November 2019 and

March 2021 are used to produce the Normalized Difference

Vegetation Index (NDVI) (Rouse et al., 1973), to derive vegetation

change (ΔNDVI) and average status μ (NDVI).

The characteristic of each dataset is presented in Table 3:

3 | METHODS

The proposed approach aims to classify types of activity at satellite

spatial resolution in a gully zone using point clouds as training data

(Figure 4). Aligned with the dynamics depicted in Figure 3, the four

target classes are: Class 1 (gully topographical change; C1), Class

2 (no change outside gully; C2), Class 3 (no change inside gully; C3)

and Class 4 (non-topographical change; C4).

These classes are manually segmented as polygons in the point

clouds by experts in gully erosion. They are subsequently interpolated

to the whole point cloud using a Random Forest (Ho, 1995) and

upscaled to S1 as training pixels. To classify gully change at satellite

pixel level, a time series classifier, Time Series Forest (TSF) is evalu-

ated and compared to a Random Forest (RF) approach using tempo-

rally aggregated features (see Table 3) as a proxy of type of change.

The developed workflow is presented in detail in Figure 5, and the dif-

ferent procedures are explained in Sections 3.1–3.4.

3.1 | Generation of UAV reference data

The process of manually identifying the four classes involves the

expert-based observation of differences between two distinct RGB

point clouds. This identification is facilitated by the M3C2 distance

(M3C2) (Lague et al., 2013) and associated significant change (SC)

between November 2019 and March 2021. Polygons for each class

are manually segmented. SC = 1 determines changing areas, which

are separated into gully topographical change (C1) or non-

topographical change (C4) with support of RGB information. No

changing sites (SC = 0) can be separated between those inside (C3) or

outside the gully (C2). In Figure 6a–d we show framed areas enclosing

examples of points of each class. Figure 6e presents a profile line

showing the typical respective topographic changes, with neutral

change in C2 and C3, negative change in C1 and positive in C4.

To derive a wall-to-wall reference data, the manually labelled

UAV training data is used to conduct the RF classification applied to

the whole point cloud resulting from the M3C2 distance operation.

The same number of sampled points is selected for each segmented

class, split 80% for training and 20% for testing. Five explanatory vari-

ables are used and extracted from the UAV-derived data point clouds:

(1) M3C2, (2) SC, (3) S, (4) TRI and (5) GLI. The RF classification gener-

ates a point cloud (UAV-predicted reference data) where each point is

assigned to a class with a prediction probability.

3.2 | Generation of satellite pixel training data

To solve the resolution mismatch between UAV derived point cloud

and satellite (S1) product, we transferred the information from the

point clouds (0.1 m) to the spatial pixel resolution and extent of S1

(10 m). Figure 7 depicts the component of the methodology dealing

with the information resampling from point clouds to satellite pixels.
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For this purpose, zonal statistics are implemented for each S1

pixel coverage through the calculation of a purity weighted index (qc).

qc ranges from 0 to 1 and indicates the degree of dominance (high

qc = 1 or low qc = 0 dominance) of each class c. As presented in

Expression (2), pc is the number of points of a certain class within a

pixel, pc is the average probability of these points of belonging to this

class c resultant of the RF classification, pT is the total number of

points inside the same pixel and pT is the average probability of all

points of belonging to their assigned class. Therefore, the following

expression is calculated four times for each pixel, generating q1, q2, q3

and q4 indices.

qc ¼
pc �pc
pT �pT

ð2Þ

Thus, a pixel that hypothetically contains only points of C1, will obtain

q1 = 1, regardless of the individual probability associated to each

point.

Lastly, to ensure sufficient point coverage within each pixel for

further analysis, a pixel must encompass a quantity of points surpass-

ing half of the median number of points found in all pixels. Conse-

quently, pixels failing to meet this criterion are excluded, leading to

gaps in the dataset, as illustrated in Figure 8e.

T AB L E 3 Summary of the characteristics of the 11 features utilised for random Forest classification at the pixel level. The columns present,

from left to right, the variable name, the variable unit, brief description, source product and an indication of whether they are temporally

aggregated or one-time features.

Variable Units Description

Source

product

Temporally

aggregated

(12) ΔσoVV

(13) ΔσoVH

dB Rate of σo between November 2019 and March

2021 for VV and VH polarizations

Sentinel-1

GRD

YES

(14) SD (σoVV)

(15) SD (σoVH)

dB The standard deviation for the time series of VV

and VH polarizations

Sentinel-1

GRD

YES

(16) SM2019

(17) SM2021

3 nominal classes: volume, double-bounce

and surface.

The dominant scattering mechanism for Nov

2019 and March 2021

Sentinel-1 SLC NO

(18) jΔSMj 0- No Class Change

1- Class Change

A binary dataset representing change or no

change in the dominant scattering mechanism

between Nov 2019 and March 2021.

Sentinel-1 SLC YES

(19) TRI Metres (m) Topographic Roughness Index in 2015 TanDEM-X

HRTI-3

NO

(20) Slope Sexagesimal

degrees (�)

Terrain Slope (�) in 2015 TanDEM-X

HRTI-3

NO

(21) ΔNDVI No units

(�1 to 1)

Vegetation change expressed in Rate of NDVI

index between November 2019 and March

2021.

Sentinel-2

MSIL2A

YES

(22) μ (NDVI) No units

(�1 to 1)

The mean for NDVI for the time series between

November 2019 and March 2021.

Sentinel-2

MSIL2A

YES

F I GU R E 4 Conceptual explanation

for the proposed approach. Types of

changes ([1] gully topographical change,

[2] no change outside the gully, [3] no

change inside the gully and [4] non-

topographical change) are identified by

humans (human interpretation) on the

original and on the already analysed

multitemporal point clouds (multitemporal

3D data) and transferred to Sentinel-1

pixel scale to apply pixel-based

classifications (satellite pixel-based

analysis). The source of the icons used in

this figure is stock.adobe.com. [Color

figure can be viewed at wileyonlinelibrary.

com]
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3.3 | Satellite pixel-based classifications

We conduct a new classification extrapolated to the entire study area

based on S1-σo time series and TSF algorithm. Features such as the

mean, standard deviation, and slope of σo time series are extracted in

different moving windows. These features are used to configure the

TSF classifier, with the total number of features resultant from

the product of the number of simple features multiplied by the

predefined number of windows (Deng et al., 2013).

The number of training samples is set to the least represented

class, selecting those pixels with highest qcin the rest of the classes. σo

time series (50-time epochs) for the Vertical-Vertical (VV) and

Vertical-Horizontal (VH) polarisations are utilised as explanatory

features. This leads to two independent classifications of the TSF

algorithm (Figure 9b,c) where, as per standard procedure, 80% of

the samples are used for training the classifier and 20% are

reserved for testing the results. Additionally, different training/

testing proportions are computed to observe the performance of

the algorithms with different training datasets sizes (Figure 9e).

The TSF is defined with 100 trees and 200 moving windows, as

results become optimal and stable beyond this threshold

(Figure 9f).

The same training data is used to fit a model based on RF (con-

structed with 100 trees) with 11 features (listed in the Table 3)

F I GU R E 5 Description of the methodology. Each frame corresponds to the methodological block, beginning with the pre-processing of the

time series and temporally aggregated features, and followed by the (3.1) generation of UAV reference data, (3.2) generation of pixel training,

(3.3) satellite-based classifications generating independent results for time series Forest (σvv, and σvh) and random Forest and (3.4) evaluation of

classification accuracy. [Color figure can be viewed at wileyonlinelibrary.com]
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derived from variables that can represent change in the terrain and/or

distinguish different types of terrain (Figure 9d).

3.4 | Evaluation of classification accuracy

As previously mentioned, we assess the accuracy of the classifications

conducted at the point cloud and satellite pixel levels by splitting our

reference data into training and testing datasets at an 80% to 20%

proportion. For point clouds, the reference data includes manually

tagged points as described in Section 3.1. On the other hand, for

pixel-based classification, we utilise the resultant pixels outlined in

Section 3.2 for training and validation.

The performance of classifications is assessed using overall met-

rics such as Total Accuracy (TA) and Cohen’s Kappa (Kappa), along

with specific metrics for individual classes like Producer Accuracy

(PA) and User Accuracy (UA). These metrics are calculated based on

the counts of true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN).

The TA expresses the percentage of well-classified pixels among all

classified pixels. Kappa coefficient is a statistic that is used to measure

inter-rate reliability for qualitative (categorical) items (Cohen, 1960).

The PA represents the probability of a reference pixel (on the gro-

und) being accurately classified. It is calculated by dividing the number

of correctly classified pixels of a specific class by the total number of

reference pixels belonging to that class (Congalton, 1991).

The UA is the probability that a classified pixel on the map accu-

rately represents its corresponding category on the ground. It is calcu-

lated by dividing the number of correctly classified pixels of a specific

class by the total number of classified pixels for that class on the map

(Story & Congalton, 1986).

Additionally, possible sources of errors are also investigated

aiming at evaluating the limitations of the methodology through the

application of a statistical MANOVA test (Stahle, 1990) for comparing

multivariate sample means.

4 | RESULTS

4.1 | UAV training data generation

The RF classification applied on the UAV point cloud (Figure 8d)

achieves a TA = 99% and Kappa = 0.98, with UA and PA for each class

above 98% (Table 4). As the objective is to create exhaustive continu-

ous data in the point cloud using the RF classifier as an

interpolator, external testing datasets are not used to validate the accu-

racy. The most outstanding features for this classification are TRI and

GLI, both presenting RF feature importance of approximately 25%.

F I GU R E 6 Azimuthal view of point

clouds of a gully changing site captured in

(a) November 2019 and (b) March 2021.

Computed (c) M3C2 distance and

(d) significant change between (a) and

(b) with frames pointing out to each type

of change class. (e) Elevation profiles for

November 2019 (grey) and March 2021

(black) along a line crossing each

predefined class. [Color figure can be

viewed at wileyonlinelibrary.com]
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Transferring this information from point cloud level to S1 satellite

level (Figure 8d,e) generates 1321 pixels (88, 413, 740 and 80 pixels

for C1, C2, C3 and C4 respectively), together with their corresponding

purity weighted index (qc).

4.2 | Satellite remote sensing-based classifications

Results for the pixel classifications and their corresponding accuracy

reports are presented in Figure 9b–d and Table 5.

The resulting accuracy values are similar for TSF (σoVV), TSF (σoVH)

and RF when the proportion between training and testing data is

80/20, with TA close to 80% and Cohen’s Kappa values around 0.7.

They all classify changing scenarios with UA and PA always > 50%.

It is noteworthy that for TSF, C1 is classified with UA > 80% and

PA > 78% in both polarisations, but the σoVV dataset poses superior

capacity to classify C2, C3 and C4 than σoVH. In terms of feature impor-

tance, mean (35%), standard deviation (33%) and slope (32%) of the dif-

ferent changing windows are well balanced in both polarisations.

In the RF classifier utilising 11 individual features as shown in

Figure 9d, the performance is slightly superior to the best results

obtained using the entire time series discussed earlier. This yields

TA = 80% and Kappa = 0.73. This procedure successfully separates

C2 from the others (UA and PA > 90%), and it also possesses the

capacity to separate the C1 with PA = 56% and UA = 81%. Sorted

list of each feature importance (TRI [15.8%], μ (NDVI) [14.5%], ΔNDVI

[14.4%], S [11.7%], SM2019 [9.43%], SM2021 [8.25%], SD (σoVV) [6.5%],

ΔσoVH [6.4%], ΔσoVV [6.3%], SD (σoVH) [5.6%] and ΔSM [0.9%]) shows

that most contributing features are topographic features (TRI and S)

and the features reflecting modifications in the photosynthetic activ-

ity (μ [NDVI] and ΔNDVI).

Moreover, the experiment comparing the TSF and RF perfor-

mances evaluating different portions of training data from 0.1/0.9 to

0.9/0.1 reveals that the TA ranges from 60% to 80% for RF, whereas

the TSF-based solutions present a significant decrease in performance

(TA) when training data is below 50%.

4.3 | Geographic transferability

Here we present classification outcomes for the same testing area in

the Kunene Region as in Section 4.2. However, the training process is

conducted in a different gully situated within the Krumhuk Farm

(Figure 10 and Table 6).

As observed in Figure 10c–e and Table 6, classes denoting change

(C1 and C4) are not geographically transferred in an efficient manner

due to the high level of false positives and true negative errors in the

classification, with values of UA and PA below 50%, both for TSF and

RF (excluding PA for C4). Grouping C1, C3 and C4 into a ‘Gully area’

class to work on a binary classification approach (with C2 as non-gully)

demonstrates that our approach can be used to identify the presence

of gullies even when training the classifier in remote and different

gully areas. In this case, TSF (σoVV) presents the best accuracy results,

with a TA = 80% and Kappa value close to 0.5.

4.4 | Type of change class description

In order to investigate error sources, the origin of False Positives

(FP) and True Negatives (TN) conducted in the TSF (σoVV) classification

for the Kunene Region (Figure 9b), we examine the points-

F I GU R E 7 Graphical representation of the resampling process of the four classes ([1] gully topographical change, [2] no change outside the

gully, [3] no change inside the gully and [4] non-topographical change) denoting gully change types from point clouds to sentinel pixel resolutions.
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inside-pixels statistics generated during the data generalisation and

classification process. To this end, a comparative analysis is performed

at point cloud level to quantify the degree of mixture of each class

and the basic statistics of each explanatory variable. Table 7 presents

each class statistics for the initial training classes defined manually in

the 3D point clouds (UAV Training), the RF results at the point cloud

level (UAV Pred), the training classes generated at the S1 pixel level

(SAR Train), the final prediction derived from TSF (σoVV) dataset (TSF

SAR Pred), and these results once pixels with > 50% probability of the

resultant class are selected (TSF SAR Pred > 50%).

C1 (gully topographical change) is characterised by a negative

M3C2 and high significant change (SC > 0.9), TRI and S above average,

and with the absence of vegetation as indicated by low GLI. It is also

understood that the first two parameters (SC and M3C2) serve to dif-

ferentiate C1 (gully topographical change) from C3 (no change inside

gully).

F I GU R E 8 (a) Original point clouds for November 2019 and March 2021 in the Kunene region. (b) UAV features generated for the original

point clouds. (c) Training classes segmented manually from the point clouds. (d) Result of the random Forest classification on the whole point

cloud generating continuous type of gully change information. (e) Training data at satellite pixels resolution. [Color figure can be viewed at

wileyonlinelibrary.com]
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C2 (no change outside gully), located outside the gully zone, is

essentially characterised by the absence of any physical change (with

M3C2 close to 0), and low S, GLI and TRI values.

Lastly, C4 (non-topographical change) presents positive change

(M3C2 > 2 m), but relatively insignificant (SC ≈ 0.5) and highly spa-

tially variable (σM3C2 ≈ 3.8). These changes in C4 are derived from

vegetation growth, as evidenced by a GLI value that exceeds that of

those registered for other classes, as well as high TRI and S values

resulting from the great elevation heterogeneity caused by dense

woody vegetation.

Analysing the central and dispersion values change for each class

following each data transfer can reveal how points-inside-pixels statis-

tics evolve. To examine these variations, a MANOVA test is computed

for each data transformation:

1. UAV Trainingà UAV Pred;

2. UAV Predà SAR Train;

3. SAR Trainà TSF SAR Pred;

4. TSF SAR Predà TSF SAR Pred > 0.5.

This involves comparing the feature values of points (derived

from the point clouds) categorised under each class after each trans-

formation to the original manually segmented classes (UAV Training).

These feature value points serve as the reference for MANOVA Null

Hypothesis. The higher the FMANOVA value, the larger the change in

the multivariate dataset.

In Figure 11b, FMANOVA test statistic presents a peak in the transi-

tion between SAR Train to TSF SAR Pred (i.e., SAR Train à TSF SAR

Pred) for C1 and C4, showing that the largest data modification occurs

in this stage, but with the FMANOVA value stable in the two the previ-

ous transformations (i.e., UAV Trainingà UAV Pred and UAV Predà

SAR Train). With simple filtering of the prediction value (TSFpred > 0.5)

of the dominant class, however, the FMANOVA test statistic returns to

values similar to the initial transformation (UAV Training à UAV

Pred), or even lower, as observed in C1 (Figure 11b). Observing the

density functions in Figure 11a, it is evident that the GLI, TRI and SC

variables exhibit minimal evolution in C2 and C3. This is indicated by

the density curves of these variables, which remain very similar for

the different data stages (UAV Training, UAV Pred, SAR Train, TSF

SAR Pred, TSF SAR Pred > 0.5). In contrast, the C1 experiments large

transformations in M3C2 and SC variables, and to a lesser extent TRI

and S. The C4 is the most affected as all features present statistical

changes, as confirmed by the MANOVA test.

Table 8 compares the C1’s True Positives (TP) with False Nega-

tives (FN) and True Negatives (TN), as the C1 is of particular interest

to us. First, while the well-classified pixels (TP) contain 84.2% points

of C1 from the point clouds, this percentage decreases to 54.3% in

the TN, and only 5.3% in the FP pixels, with C3 points contaminating

C1 predominantly (with 85%). This is explained by the small propor-

tion of topographically changing zones (C1 in the point cloud) in rela-

tion to the stable gully zones (C3 in the point cloud). Hence, the

changing erosive processes occur at a very localised scale, mostly sur-

rounded by non-changing points, but still inside the gully

(C3 points) area.

This fact can be extrapolated for the other classes, as illustrated and

confirmed by the histograms and photos included in Figure 12.

As presented in Figure 12a–d, most errors in the classification

(FP + TN) are derived from pixels with a high degree of mixture

among multiple classes (at point level) in their composition, whereas

the purest pixels are generally well classified (TP), except for C3.

These types of errors are frequent and somehow expected, since

the study area is heterogeneous and the natural forms that repre-

sent the four predefined classes are spatially very mixed, coexisting

on the spatial scale of a S1 pixel. This is especially evident for C1,

C3 and C4 inside the gully borders. This fact can be clearly

observed in the photos of Figure 12. Figure 12e represents the

transition zone between C2 and C3. Figure 12f is an active gully

zone (C1) with sparse vegetation (C4). Figure 12g shows active gully

site (C1) close to zones without change outside the gully (C2), and

Figure 12h presents the main channel with erosive activity (C1), sur-

rounded by slopes with little change and vegetation (C4). Hence,

when the level of mixture is reduced and a specific change domi-

nates, the likelihood of accurately predicting this type of change

increases.

T AB L E 4 Accuracy results of the random Forest classification at point cloud level, as presented graphically in Figure 8d. User accuracy (UA%)

and producer accuracy (PA%) are reported for each class (C1, C2, C3 and C4), and Total accuracy (TA%) and Cohen’s kappa values are included as

overall accuracy measures.

C1 C2 C3 C4

TA KAPPAUA PA UA PA UA PA UA PA

UAV Pred 99.4 98.7 99.9 99.6 98.3 99.3 99.2 99.2 99.2 0.98

T AB L E 5 Accuracy results for the classifications conducted using time series Forest (σoVV and σoVH) and random Forest on temporally

aggregated features. User accuracy (UA%) and producer accuracy (PA%) are reported for each class (C1 [gully topographical change], C2 [no

change outside gully], C3 [no change inside gully] and C4 [non-topographical change]). Total accuracy (TA%) and Cohen’s kappa values are

included as overall accuracy measures.

C1 C2 C3 C4

UA PA UA PA UA PA UA PA TA KAPPA

TSF (σoVV) 84.6 78.5 81.6 92.8 84.2 72.7 66.6 76.9 79.3 0.72

TSF (σoVH) 81.2 81.2 93.7 78.9 72.2 76.4 58.3 70.0 77.4 0.69

RF 81.0 56.3 100.0 90.1 69.3 91.0 68.2 81.0 80.1 0.73
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5 | DISCUSSION AND LIMITATIONS

5.1 | Discussion

In order to explore the potential of machine learning coupled with

time series to characterise gully dynamics, we compared satellite

pixel-based classifications of TSF on S1-σo time series with RF on

11 temporally aggregated and one-time features (derived from S1, S2

and TX).

5.1.1 | Radar time series versus aggregated features

Classification accuracy shows TA and Kappa around 80% and 0.7,

respectively, for both the TSF classification (σoVV and σoVH) and

RF. UA and PA to classify gully topographic changes (C1) are observed

to be more accurate working with TSF than RF. However, the latter is

less sensitive to modifications in the proportion of training to testing

data. These results represent an advance in the zonal characterisation

and monitoring of gullies (Vanmaercke et al., 2021), surpassing the

F I GU R E 1 0 (a) Gully site in the Kunene region used for testing (red polygon) when the training was conducted in Krumhuk farm. (b) Gully

site in the Krumhuk used for training (blue polygon). Maps of classification results of four classes separating training and testing areas for (c) time

series Forest-TSF (σoVV), (d) TSF (σoVH) and (e) random Forest-RF. Maps of binary classification results (gully affected and no gully affected)

separating training and testing areas for (f) TSF (σoVV), (g) TSF (σoVH) and (h) RF. The aggregation of classes 1, 3 and 4 is displayed with dark grey

colour. Base maps source is ESRI, Maxar earthstar Geographics. [Color figure can be viewed at wileyonlinelibrary.com]
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mapping of gullies at a specific time using RF (Vallejo-Orti et al., 2021)

and adding value to the quantification of changes to the gully perime-

ter in large periods (Shruthi et al., 2015).

Additionally, our method allows the estimation of terrain change

volume by utilising the average vertical topographic deviation per

pixel (derived from the M3C2 distance in their enclosed points), as

reported in Table 7. This facilitates extrapolations to large areas. For

instance, in Figure 9a, there are 2084 pixels classified as C1 in the

entire target classification area (approximately 140 ha), with an aver-

age topographic change of �0.2 m per pixel. This results in a volume

of 21.6 m3 per pixel and a total of 45,014 m3 for the entire

study area.

Our method, based on remote measurements, applied annually

can also be used to evaluate and calibrate empirical gully evolution

(Sidorchuk, 2021) and simulation models (Omran et al., 2022) involv-

ing water streams. Thus, erosion rates predicted by these models can

be assessed at the catchment and sub-catchment scale, facilitating the

calibration of coefficients and sensitive parameters such as rainfall,

stream velocity and discharge.

5.1.2 | Geographical transferability

As observed, σo time series provide a more accurate representation of

the dynamics inside and outside the gully, compared to temporally

aggregated features. This is particularly relevant when the gullies used

for training and validation differ in their location, vegetation structure

and rainfall distribution. To separate gully and non-gully zones, even

when training and classification are conducted in geographically dis-

tinct areas, the use of time series proves to be an effective method. In

this instance, TSF applied on σoVV overperforms TSF applied to σoVH

and RF.

These results are in line with previous research on storm-derived

change detection, whith σoVV identified as the most sensitive

polarisation for monitoring land degradation in sparsely vegetated

zones (Cerbelaud et al., 2021). Additionally, working on time series,

there is room for improvement in exploring the combination of both

polarisation signatures (σoVV, σoVH) applying multivariable time series

algorithm (Ruiz et al., 2021) or generating cross-polarised time

series for soil moisture studies (Ouellette et al., 2017).

5.1.3 | Spatial resampling from point clouds to

satellite

As expected, pixels with less mixture tend to be more accurately clas-

sified. This is due to the large coexistence of different dynamics pri-

marily within the gully borders (i.e., topographic changes, vegetation

changes and stable sites), which is the primary source of classification

error. This fact indicates that we arrived at the limit of the spatial res-

olution of S1 remote sensing for small gully change patterns,

suggesting the applicability of this study to large gully changes.

Our results also indicate that in our target classification areas,

topographic changes (Class 1) are closely linked to the presence of

green vegetation (Class 4). This is because ephemeral water flows

are associated with soil wetness that favours permanent

vegetation, while simultaneously acting as the agent of gully

erosion.

The availability and usage of SAR multitemporal imagery with

higher spatial resolution (i.e., 1 m) would lead to significant uncer-

tainty reduction in the classes’ generalisation and resampling. To

ensure better results, working with those areas where dynamics are in

their purest states is critical to discriminate pixels where dynamics

coexist. In this regard, filtering the result in the classification pixels

with >50% probability leads to significant improvement in the classifi-

cations. Due to the correlation between pixel class probability, MAN-

OVA test statistic (FMANOVA) and accuracy, the MANOVA test applied

at pixel level can also reduce error propagation.

5.2 | Limitations

Main limitations of this study arise from the utilisation of diverse

datasets with differing spatial resolutions and horizontal alignment.

Consequently, a certain level of uncertainty must be acknowledged

due to the geolocation accuracy of the generated point clouds and S1.

The absolute horizontal geolocation error is approximately 0.5 m for

the computed point clouds and 1 m to 3 for S1 (Small &

Schubert, 2022). Thus, sufficient spatial overlap for the given spatial

pixel resolution of 10 � 10 m is guaranteed for our spatial analysis

and it is also sufficient for time series analysis (Small &

Schubert, 2022).

T AB L E 6 Accuracy results (UA, PA and TA in %) for the classifications conducted using TSF (σoVV and σoVH), and RF on temporally aggregated

features with training data generated in Krumhuk farm, and the testing in the Kunene region. The above block of the table presents the results for

the four classes (C1 [gully topographical change], C2 [no change outside gully], C3 [no change inside gully] and C4 [non-topographical change]),

while the below block presents the results aggregating classes 1,3, and 4 (C1 + C3 + C4) to work in a binary (gully and non-gully) classification.

C1 C2 C3 C4

TA KAPPAUA PA UA PA UA PA UA PA

TSF (σoVV) 33.5 10.7 48.8 82 30.5 63.3 26.6 4.4 36 0.15

TSF (σoVH) 22.2 10.7 33.8 79.2 47.2 54.8 48.5 10.7 40.7 0.11

RF 27.2 27.2 74.5 48.4 56 69.6 1.2 100 56.6 0.26

C2 C1 + C3 + C4

TA KAPPAUA PA UA PA

TSF (σoVV) 48.8 82.0 95.3 81.1 81.3 0.49

TSF (σoVH) 33.8 79.2 96.0 76.4 76.8 0.35

RF 74.5 48.4 63.8 84.6 67.2 0.31
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As for the point clouds LoD, which is approximately 0.7 m in aver-

age, it enables the possibility to detect changes larger than 70 cm,

while statistically differentiating them from smaller topographical

changes below this threshold. Therefore, the type of topographic

changes targeted in this study are mainly those derived from large

detachments and linear concentrated flows, while laminar erosion and

other micro topography modifications produced by animals’ paths are

neglected.

Additionally, expert-based manual labelling of the point cloud

change types is challenging and time-consuming. Therefore, one of

the main limitations of this study is the availability of continuous wall-

to-wall training data at point cloud level. The adopted solution using

RF to apply classes to the whole point cloud achieved extremely high

accuracy values, which should be interpreted with caution, as the geo-

graphical transfer of the classifier cannot be guaranteed. For future

applications, locally trained classifiers may be replaced by more

T AB L E 7 Summary statistics for each dataset at the different stages of the methodology (UAV training, UAV Pred, SAR train, TSF SAR Pred,

TSF SAR Pred >50%). The labels P1–P4 indicate the number of points (from point clouds) of each class (C1–C4). The last five columns present the

mean (μ) and the standard deviation (σ) of each point cloud original feature M3C2, SC, TRI, S and GLI.

P1 P2 P3 P4 M3C2 SC TRI S GLI

UAV Training C1 3287 μ �0.913 0.921 0.314 17.902 �0.014

σ 1.460 0.268 0.320 14.371 0.027

C2 7347 μ 0.276 0.001 0.032 2.032 �0.014

σ 0.158 0.016 0.024 1.513 0.008

C3 7855 μ �0.050 0.008 0.350 21.35 �0.004

σ 0.430 0.089 0.212 10.976 0.013

C4 6290 μ 2.008 0.537 1.683 49.593 0.126

σ 3.792 0.498 1.239 20.641 0.102

UAV Pred C1 48,345 μ �0.920 0.807 0.346 21.239 �0.014

σ 0.848 0.394 0.209 11.699 0.022

C2 204,503 μ 0.212 0.000 0.034 2.174 �0.012

σ 0.172 0.000 0.016 1.140 0.009

C3 372,727 μ �0.052 0.000 0.370 22.857 �0.005

σ 0.155 0.002 0.193 10.747 0.008

C4 50,324 μ 0.966 0.326 2.011 56.442 0.066

σ 2.652 0.468 1.301 18.219 0.089

SAR

Train

C1 31,592 10 4026 3451 μ �0.728 0.747 0.455 24.045 �0.003

σ 1.008 0.434 0.523 14.880 0.037

C2 1296 178,468 11,314 1764 μ 0.196 0.007 0.076 3.620 �0.011

σ 0.311 0.082 0.345 7.956 0.011

C3 6793 13,363 329,307 11,451 μ �0.039 0.020 0.410 23.305 �0.004

σ 0.433 0.140 0.419 12.808 0.017

C4 4340 499 6064 26,597 μ 0.831 0.377 1.523 47.197 0.055

σ 2.799 0.484 1.186 22.156 0.095

TSF SAR

Pred

C1 33,159 13,179 91,658 8337 μ �0.216 0.210 0.431 23.147 �0.004

σ 0.745 0.407 0.508 14.973 0.026

C2 2846 156,009 45,688 3961 μ 0.188 0.009 0.144 7.194 �0.011

σ 0.319 0.097 0.408 12.447 0.012

C3 5482 29,802 156,943 6888 μ �0.011 0.026 0.379 20.690 �0.004

σ 0.500 0.160 0.514 14.286 0.020

C4 8168 18,043 87,986 32,123 μ 0.186 0.119 0.667 27.336 0.012

σ 1.510 0.324 0.889 20.247 0.057

TSF SAR

Pred

>50%

C1 29,718 1366 20,159 3281 μ �0.525 0.495 0.431 23.754 �0.004

σ 0.820 0.499 0.471 14.158 0.029

C2 1270 126,678 25,289 2263 μ 0.206 0.009 0.125 6.300 �0.012

σ 0.325 0.098 0.378 11.552 0.012

C3 2952 7914 79,184 2593 μ �0.045 0.026 0.378 21.178 �0.003

σ 0.434 0.161 0.487 13.209 0.015

C4 480 2493 23,100 24,345 μ 0.473 0.235 1.074 37.203 0.033

σ 2.197 0.424 1.112 22.549 0.080
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flexible and generalised methods reducing local overfitting (Yu

et al., 2021). Additionally, these methods can address potential under-

fitting problems derived from classical machine learning when they

are used for generalisation. This would save time and enable scaling

of our approach, such as potentially for global applications

(Vanmaercke et al., 2021). Micro-mapping collaborative approaches

(Herfort et al., 2018) can help to create reliable segmented classes

and reduce uncertainties and issues related to class generalisation.

As previously outlined, our approach can classify gullies when the

training and testing datasets are geographically distant. However, it

F I GU R E 1 1 (a) Density curves of explanatory variables separated by stage of the dataset organised per class. Each subplot includes multiple

density curves for UAV training (black line), UAV Pred (dark grey line), SAR train (grey line), TSF SAR Pred (light grey line) and TSF SAR Pred > 0.5

(red line) of each point cloud explanatory feature (GLI, M3C2, S, TRI and SC) organised per columns. (b) Values of MANOVA F test statistic to

quantify the similarity between each transformed dataset (UAV Pred, SAR train, TSF SAR Pred and TSF SAR Pred > 0.5) and the originally

segmented classes (UAV training). [Color figure can be viewed at wileyonlinelibrary.com]

T AB L E 8 Summary of the points-inside-pixels statistics for the different classification results for the Class 1, comparing the true positive (TP)

with true negative (TN) pixels and the confusion between classes 1 and 3 (C1-C3). The columns points and points % present the count and the

percentage of points from the interpolated UAV Pred contained by each Class 1 training pixel (px.).

TP (74 px.) FP (47 px.) TN (1 px.)

Confusion

C1–C3 (45 px.)

Points Points % Points Points % Points Points % Points Points %

C1 28,200 84.2 998 5.3 209 54.3 995 5.5

C2 0 0.0 1,206 6.4 0 0.0 400 2.2

C3 2840 8.5 16,085 85.3 77 20.0 16,019 89.1

C4 2444 7.3 567 3.0 99 25.7 566 3.1
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encounters challenges in accurately classifying gully topographic

changes, possibly due to the different temporal rainfall distributions,

which serve as the main driver of terrain changes. To ensure similar

accuracies (i.e., TA = 80%) for the classification of change types, it is

recommended to restrict the classification to the same region where

the training is conducted, thus erosive rain events would be more

aligned in time. This issue could also be resolved by generating TSF

features based only on changing periods and correlating them to rain

events.

Regarding the geographical transferability of the methodology, it

is assumed that similar classification results can be achieved when the

training and classification is conducted on permanent large valley bot-

tom gullies in (semi-) arid areas. In contrast, urban gullies, or ephem-

eral agricultural gullies would fall outside the scope of this work.

6 | CONCLUSION

This research explores the combination between close-range UAV and

spaceborne remote sensing as a novel application for classifying gully

activity types. This study contributes to addressing the existing research

gap in gully monitoring and characterisation over large areas. To date,

few approaches have attempted to monitor gully changes with

spaceborne sensors. This is primarily due to the significant amount of

manual labour required to generate ground reference data for temporal

changes, particularly on large scales (Vanmaercke et al., 2021). In order

to characterise the dynamics of gullies, we collected and processed 3D

multitemporal point clouds to generate training data. The data was

transferred from point clouds to spaceborne remote sensing images

pixels entailing a necessary generalisation resampling from a sub-m to

10-m spatial resolution. As an innovation in gully research, erosion pro-

cesses and geomorphological features are studied by means of time

series of radar data, introducing the use of a time series classifier, Time

Series Forest (TSF), to separate types of changes.

Employing this method, TA > 80% are achieved to classify types

of gully changes when the training is conducted within the geographic

region of the target classification. This method also serves to differen-

tiate between gully and no gully zones when the training data is con-

ducted in a different geographical setting.

However, it is observed that the resolution mismatch between

the very high-resolution point clouds with Sentinel-1, and temporal

misalignment of gully erosion events in different areas are two issues

limiting the accuracy of the results and the geographic transferability

of the training data.

In general, our approach represents an improvement in terms of the

type of information that can be extracted from gullies, complementing

the line of separating affected from unaffected areas in a binary mapping

task. In this regard, annual systematic application of our method in large

gully affected catchment areas can serve as a decision-making tool for

the planning and assessment of gully restoration campaigns at a large

scale (regional level). For instance, to quantify the effectiveness of soil-

fixing plantations, or temporary zonal restrictions on cattle.

Finally, this paper suggests three directions for extending our

approach to characterise large gully networks in sparsely populated

areas in the future: (i) expanding the UAV data collection campaigns

to other areas in order to investigate the relation between gully char-

acteristics, local settings and geographic transferability of the training

data, (ii) applying additional tests to optimise the aggregation from

UAV points to satellite pixels and (iii) explore multivariate time series

analysis to combine different radar polarisation and optical derivates

as proxies for gully dynamics.
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