BREEDING TO INCREASE PRODUCTIVITY AND GRAIN YIELD IN PEARL MILLET

S.A.IPINGE

Okashana Research and Training Centre. Ministry of Agriculture, Water and Rural Development, P.O.Box 217, Tsumeb, Namibia

ABSTRACT

Eleven new test entries of pearl millet of diverse genetic background were evaluated at three test locations against eight of their recurrent parents.

Six improved varieties, four of which were developed from the Namibian Germplasm. Accessions were added to make a 5 x 5 lattice design.

This field experiment was conducted during the main season of 1995\96 to find out which of the new test entries will be most suitable and adopted to our growing conditions.

The trial was conducted at three different ecological test sites in three political regions namely Mashare Agricultural Development Institute, Okashana Research and Training Centre and Ogongo Agricultural College.

NPMV 94001, NPMV 94002, NPMV 94003, NPMV 94004, NPMV 94005 and NPMV 95001 appeared among the top ten entries at all test locations.

NPMV 94004 and NPMV 95001 appeared to have some yield stability across all test environments (see Tables 1-3).

INTRODUCTION

Pearl Millet (*Pennisetum glaucum* (L) Br.) is the sixth most important cereal crop in the world.

It is the number one crop in much of rural Namibia. To provide more food and to increase household food security increased pearl millet yields are a necessity. Such increases can be attained through the development of high yielding cultivars that are adopted, suitable and accepted by the end-users. By providing the best field conditions and natural methods which maximize grain production, one can also increase grain yield. Burton (1951), Shanker et al (1963), Gupta and Atwal (1966) reported that plant traits such as maturity, tillering ability, height, panicle length, as well as panicle thickness have been found to affect yield in pearl millet.

Most of these traits are quantitatively controlled and thus are affected by environmental factors.

After studying a group of germplasm collection Gupta and Nanda (1971) found panicle weight, number of tillers, earliness, grain size and density to be important components of grain yield.

Early maturity is a desirable plant characteristic in crops that are used for grain production, because it helps the plant to escape drought. Planting early and using early maturing cultivars could reduce the losses in grain yield attributable to terminal droughts and other environmental factors. Increasing grain yield through recurrent selection is feasible due to Pearl millet's tremendous genetic variability (Burton and Powell, 1968, Rattunde et al., 1989). Attention must also be given to the yield stability of improved pearl millet populations due to the threats of severe moisture deficits (Bidinger et al., 1982)

The major objectives of the National Pearl millet Improvement Programme is therefore to increase grain yield and yield stability through development and testing of new cultivars. Genetic and breeding improvements are long term ways of improving grain yield.

MATERIALS AND METHODS

Eleven new test entries developed by the Pearl millet Improvement section of the Directorate of Research and Training through our Backcrossing programme, were evaluated against eight of the recurrent parents. Five Improved varieties plus a local control were added to constitute a 5x5 lattice. These varieties were tested at three different sites. The design was lattice with three replications. The plots consisted of four rows of four metres long each and 0.75 m apart. The two central rows were used for data collection.

Plant height (cm) and panicle length (cm) were measured from base of the plant to the tip of the panicle (head) and the base of the panicle (ear) to the tip of the ear (panicle). Days to 50% bloom was estimated as days from emergence to 50% anthesis. Data on grain yield per plot and head weight per plot (kg) were obtained by weighing bulked grains after threshing and bulked heads after drying from each plot. Yield were converted to yield ton/ha. For each plot harvested heads were counted. Threshing percentage was obtained as a ratio between grain weight and head weight. MSTATC package was used to analyse the experimental data. Data were separately analysed and presented.

RESULTS AND DISCUSSION

Results of this experiment showed that NPMV 95002 flowered earlier than all test entries tested at Okashana Research and Training Centre. This variety was 7.666 days earlier than Okashana -1 and 21.333 days earlier than Farmers' Local. At this test location NPMV 94004 was the highest yielding test entry to yield 1.006 tonnes per hectare (see Table 1, pg. 71).

At Ogongo NPMV 95001,NPMV 94004 and NPMV 94005 were the top three varieties. All outyield the controls. There

is no significant difference between all the entries tested in days to 50% bloom (see Table 2, pg. 72).

At Mashare NPMV 94001,NPMV 94002 and NPMV 94004 were the best test varieties.

These varieties outyielded Okashana-1 and the yield difference were 1.407,1.187 and 0.814 ton/hectares respectively. The yield differences between these varieties and the farmers local were 1.866,1.646 and 1.273 tonnes per hectare respectively.

CONCLUSION.

NPMV 94001,NPMV 94002,NPMV 94003,NPMV 94004 and NPMV 95001 appeared among the top yielding test entries across location. NPMV 94004 and NPMV 95001 seemed to have some yield stability across all test environments (see Tables 1-3, pages 71, 72 and 73).

In pearl millet traits such as large seed, long panicles, tillering ability, pests and disease resistance and earliness favour high yield. Improvement of crops through breeding procedures is dependent upon the presence of genetic variability among plants within the species. Selection for high yield and stability of yield has resulted in improved resistance to specific environmental stress. Landraces are a good example of the effect of repeated long-term selection for stable production under stress conditions. Landraces are recognised as valuable genetic resource for important agronomic triats.

REFERENCE

- BLUM, ABRAHAM, 1983. Plant Breeding for stress environments. Division of field crops. The Volcanic Centre Agricultural Research Organization. Bet Dagan Israel. Crop Breeding, American society of Agronomy Crop Science, Madison, Wisconsin, USA pp. 21-66
- FREY, K.J. Plant population management and Breeding. Jowa state University, Ames, Jowa
- HASH, C.T., 1986. Breeding for large Grain size in Pearl millet Ph. D Thesis pp. 204-205
- NWASIKE, C.C., 1992. Heterosis and Combining ability in dialled crosses of Africa Pearl millet. In Samaru Journal of Agricultural Research vol 9. Instute of Agricultural Research. Ahmadu Bello University, PMB 1044, Zaria, Nigeria.
- RACHIE, K.O. and MAJMUDAR, J.V., 1980. Pearl millet Pennyslvania state University. University Park, U.S.A.
- RATTUNDE, H.F., 1988. Mass selection strategies for Pearl millet Improvement Ph. D Thesis pp. 108-110.
- RATTUNDE, H.F., and WITCOMBE, J.R., 1981. Recurrent selection for Increased Grain Yield and Resistance to Downy Mildew in Pearl millet in plant breeding pg.110. 1993, Paul Parey Scientific Publishers Berlin and Hamburg pp. 63-72. Samaru Journal of Agricultural Research, Volume 1, April 1981. Institute of Agricultural Research, Faculty Agriculture, Samaru Ahmadu Bello University, P.MB 1044, Zaria, Nigeria.

TABLE 1:	PERFORMANCE DATA OF NAMIBIA PEARL MILLET EVALUATION TRIAL 1995/96 SEASON CONDUCTED AT OKASHANA
	RESEARCH AND TRAINING CENTRE.

No	Variety Name	Bloom		РНТ		EL	:	НС		THRESH%	Yield T/Ha
1.	BBC4F1(LRx Ok-1	55.333		146.667	1	27.000		45.000		70.667	1.055
2.	NPMV 94004	51.000		129.333	1	24.667	i	35.667		69.333	1.006
3.	SDMV 93032	49.667		117.333		17.333		52.667		68.667	0.800
4.	IP 17531	52.924		119.512		20.028		39.708		64.680	0.632
5.	NPMV 95001	53.000		122.000	1	23.000		26.333		61.333	0.594
6.	NPMV 94002	51.667		145.333		25.667		35.333		63.667	0.594
7.	NPMV 94005	54.667		131.667		23.333	1	28.000		56.667	0.583
8.	HHVBC	52.000		114.000		21.000		40.333	i i	65.000	0.578
9.	SDMV 92038	54.667		143.333		33.333		25.000		57.000	0.567
10.	WGC	54.000		140.667		24.333		35.333		60.667	0.556
11.	NPMV 95002	44.667		148.000		27.333		23.667	1	58.333	0.500
12.	NPMV 94001	52.000		120.667		23.667		36.667		57.333	0.483
13.	NPMV 94007	57.000		153.333		26.000		23.333		56.333	0.461
14.	Maria Kaherero	56.667		124.667		23.000		30.667		65.667	0.458
15.	NC-90	56.000		147.333	-	29.333	i	27.000		60.667	0.450
16.	Okashana-1	52.333		111.333	1	17.333		20.667	1	66.667	0.394
17.	NPMV 94009	52.833	i	106.000		19.000		28.500	i	62.667	0.383
18.	SDMV 92034	53.000		132.667		28.000		18.333		58.667	0.353
19.	NPMV 94003	56.000		112.667		20.667		24.667		58.667	0.339
20.	SDMV 92036	59.333		116.667	ĺ	23.000	1	19.333		59.667	0.333
21.	NPMV 94006	57.000		136.000		25.333		17.333		51.333	0.311
22.	BBC4F1(LRxWGC)	52.667		118.667		22.000		16.333		57.667	0.306
23.	NPMV 94008	61.667	1	124.333		19.000		17.000		53.333	0.222
24.	F.Local	66.000		130.667		27.667		10.333		57.667	0.144
25.	SDMV 92035	62.000		128.000		25.667		14.000		55.667	0.142
Mea	in	54.693		128.627		23.840		27.587		60.653	0.487
S.E	<u>+</u>	0.692		2.411		0.647		1.841		0.927	0.041
C.V	%	8.060		13.320		19.710		52.150		12.550	61.480
LSD	0(5%)	7.244		28.187		7.726		23.684	1	12.517	0.495

No Variety Name	Bloom	PHT	EL	HC	THRESH	Yield T/Ha
1. NPMV 95001	59.000	152.333	26.000	34.000	59.667	0.979
2. NPMV 94004	58.667	146.000	24.333	37.333	59.333	0.935
3. NPMV 94005	59.333	157.333	34.000	34.667	61.667	0.918
4. SDMV 93032	58.667	135.000	21.333	35.333	61.667	0.855
5. NPMV 94002	59.667	140.000	27.010	39.000	59.667	0.834
6. Okashana-1	57.667	139.333	32.000	33.667	67.333	0.824
7. WGC	59.600	148.800	23.695	32.163	53.808	0.822
8. NPMV 94003	59.000	155.000	26.667	28.333	61.000	0.822
9. NPMV 94001	59.000	145.667	28.667	36.667	59.00	0.759
10. Maria Kaherero	59.000	157.000	34.333	31.000	57.667	0.731
11. NPMV 94007	59.000	159.000	37.000	29.667	60.333	0.713
12. NPMV 94008	59.667	151.000	32.667	32.000	51.333	0.690
13 BB4F1(LRxOk-1)	59.636	149.399	28.481	32.264	52.534	0.672
14 F.Local	61.333	151.667	31.000	26.667	56.667	0.655
15. IP 17531	58.886	154.899	20.982	28.764	50.534	0.641
16. NPMV 94006	62.000	145.000	30.000	23.333	61.333	0.631
17. NPMV 94009	58.667	147.667	25.167	27.167	54.167	0.628
18. NPMV 95002	61.333	139.000	29.000	25.333	54.333	0.624
19. SDMV 92035	60.667	167.000	36.333	25.000	60.333	0.600
20. SDMV 92034	60.333	164.667	36.333	22.333	61.000	0.587
21. SDMV 92036	60.667	184.000	43.000	22.333	53.667	0.573
22. HHVBC	59.000	162.000	31.667	23.000	54.333	0.543
23. NC90	59.667	151.000	29.333	28.667	55.000	0.543
24. BB4F1(LRxWGC)	60.000	149.667	30.333	27.000	53.667	0.497
25. SDMV 92038	61.333	152.000	37.000	15.667	69.000	0.483
Mean:	59.667	152.253	30.373	29.187	58.093	0.702
CV%	2.420	10.780	18.130	36.900	9.900	41.340
S.E±	0.210	2.229	0.783	1.462	0.744	0.038
LSD(5%)	2.375	26.984	9.018	17.753	9.433	0.477

TABLE 2:PERFORMANCE DATA OF NAMIBIA PEARL MILLET EVALUATIONTRIAL 1995/96 SEASON CONDUCTED AT OGONGO AGRIC. COLLEGE.

TABLE 3:PERFORMANCE DATA OF NAMIBIA PEARL MILLET EVALUATIONTRIAL 1995/96 SEASON CONDUCTED AT MASHARE AGRICULTURAL DEVELOPMENT INSTITUTE.

No	Variety Name	Bloom	PHT	EL	HC	Thresh%	Yield T/Ha
1	NPMV 94001	49.978	218,105	30,802	71 392	62 956	2 404
2	NPMV 94002	47.667	223.333	27.333	54.667	61 667	2 184
3.	NPMV 94004	46.333	193.333	27.000	45.333	66.667	1 811
4.	IP 17531	46.228	165.605	20.052	49.142	65.706	1.490
5.	NPMV 94003	46.667	203.333	22.000	46.000	61.667	1.404
6.	NC-90	52.333	210.000	27.333	41.667	61.333	1.251
7.	BBC4F1(LRxOk)	52.000	180.000	23.000	54.333	58.000	1.231
8.	SDMV 92036	56.667	256.667	30.333	33.667	57.333	1,183
9.	BBC4F1(LRxWC)	49.478	238.105	29.552	47.892	56.956	1.171
10.	Okashana-1	48.333	176.667	21.667	46.333	57.333	0.997
11.	NPMV 94009	47.500	191.667	22.500	31,500	58.333	0.953
12.	Maria Kaherero	50.000	216.667	25.000	35.333	58.667	0.907
13.	NPMV 95001	51.000	206.667	25.000	44.667	58.333	0.897
14.	NPMV 94005	51.122	213.871	22.532	38.409	63.420	0.882
15.	HHVBC	48.000	166.667	25.000	46.000	55.000	0.798
16.	SDMV 92035	54.000	236.667	33.333	38.667	51.667	0.747
17	NPMV 95002	52.622	193.871	25.282	34.40	61.170	0.745
18	NPMV 94006	52.667	230.000	27.667	29.333	58.000	0.705
19.	WGC	50.000	200.000	25.333	39.667	57.333	0.701
20.	SDMV 93032	49.622	176.371	24.282	33.659	52.170	0.643
21.	NPMV 94008	55.333	220.000	25.333	27.333	63.000	0.611
22.	NPMV 94007	53.728	195.605	30.052	26.642	56.456	0.605
23.	SDMV92034	59.000	223.333	30.667	30.000	54.333	0.558
24.	F.Local	63.728	250.605	28.802	17.142	58.956	0.538
25.	SDMV 92038	64.000	226.667	30.333	9.333	58.333	0.302
Mea	an :	51.947	208.400	26.467	38.973	59.200	1.021
CV	%	6.350	8.770	18.160	35.040	10.000	54.040
SE	:	0.643	3.277	0.576	1.914	0.776	0.076
LSE	D(5%)	5.426	30.181	7.913	22.494	9.739	0.917