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Abstract
1.	 Conserving and managing large portions of land to connect wildlife reserves is 

an increasingly used strategy to maintain and restore connectivity among wildlife 
populations. Boundaries of such conservation areas are often determined based 
on expert opinion and socio-political constraints, yet the extent to which they 
match species' movement corridors is rarely examined. This is mainly due to a 
lack of data, particularly on wide-ranging movement behaviour such as dispersal. 
Nevertheless, empirically assessing the adequacy of protected areas is key for 
the implementation of targeted management actions and efficient use of limited 
conservation funds.

2.	 Between 2011 and 2019, we collected high-resolution GPS data on 16 dispersing 
African wild dog Lycaon pictus coalitions from a free-ranging population in the 
Kavango–Zambezi Transfrontier Conservation Area (KAZA-TFCA). Spanning five 
countries and 520,000 km2, the KAZA-TFCA is the world's largest transboundary 
conservation area and a prime example for international conservation efforts. We 
used integrated step selection analysis to estimate habitat selection of dispersers 
and to create a permeability surface for the KAZA-TFCA. We compared landscape 
permeability across different regions within the KAZA-TFCA as well as outside 
its boundaries. Lastly, we calculated least-cost paths and corridors to verify that 
major movement routes were adequately encompassed within the KAZA-TFCA.

3.	 Permeability within the boundaries of the KAZA-TFCA was more than double 
compared to areas outside it. Furthermore, we observed a fivefold permeabil-
ity difference among the five KAZA-TFCA countries. We also showed that major 
movement corridors of wild dogs ran within the KAZA-TFCA, although some 
minor routes remained formally unprotected.

4.	 Differences in permeability were mainly related to different degrees of human 
activities across regions, and to the presence or absence of rivers, swamps and 
open water. The relationship between permeability and other landscape features 
was less pronounced.

5.	 Synthesis and applications. In this study, we showed how pertinent dispersal data 
of a highly mobile species can be used to empirically evaluate the adequacy of 
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1  | INTRODUC TION

Connectivity among subpopulations is a crucial prerequisite for 
many species to thrive and persist (Fahrig, 2003). Accordingly, pre-
serving and protecting movement corridors between wildlife re-
serves has become a task of utmost importance (Doerr et al., 2011; 
Rudnick et al., 2012), resulting in an ever-growing number of large 
and often transboundary protected areas. While boundaries of 
such areas are often drawn according to expert opinion and socio-
political needs, subjective assessments have revealed deficiencies in 
the past (Clevenger et al., 2002; Pullinger & Johnson, 2010). Thus, an 
empirical evaluation of the adequacy of already existing or planned 
protected areas using pertinent animal movement data is paramount 
for targeted use of valuable and scarce conservation funds (Pullinger 
& Johnson, 2010).

In recent years, a growing body of research has used animal re-
location data to identify movement corridors and assess connectiv-
ity at large scales (e.g. Chetkiewicz et al., 2006; Elliot et al., 2014; 
Squires et al., 2013). Identification of potential movement corridors 
typically relies on the estimation of permeability surfaces, which 
return the ease or willingness at which the focal species traverses a 
specific landscape (Sawyer et al., 2011). Such surfaces are created 
based on species' relative selection strengths (Avgar et al., 2017), 
which can be quantified using a suite of selection functions (Zeller 
et al., 2012). Specifically, selection strengths are estimated by com-
paring spatial covariates (e.g. environmental and anthropogenic) 
at locations visited by the animal to the same spatial covariates at 
locations available to the animal (Zeller et al., 2012). Importantly, 
selection functions require adequate landscape and relocation 
data that are representative of the process being studied (Diniz 
et  al.,  2019). Although selection during residence and dispersal 
may coincide (Fattebert et al., 2015), it appears that relocation data 
collected on dispersing individuals outperform data collected on 
resident individuals in the detection of large-scale movement cor-
ridors (Abrahms et al., 2017; Diniz et al., 2019; Elliot et al., 2014). 
Nevertheless, dispersal data are inherently difficult to collect and 
remain scarce in the connectivity literature (Vasudev et al., 2015). 
As such, most permeability surfaces upon which movement corri-
dors are identified are created using relocation data collected on 
resident individuals. This has likely limited our ability to meaning-
fully assess the effectiveness of protected areas in securing con-
nectivity for their protected species.

One initiative that aims at restoring and enhancing connec-
tivity across large scales is the Kavango–Zambezi Transfrontier 
Conservation Area (KAZA-TFCA), which constitutes the 
world's largest transfrontier conservation area, spanning over 
520,000  km2 and five countries (www.kavan​gozam​bezi.org). 
While the KAZA-TFCA was originally set to facilitate movements 
of African elephants Loxodonta africana (Tshipa,  2017), it is also 
key to the conservation of other wide-ranging species such as 
African wild dogs Lycaon pictus (Cozzi et al., 2020; Woodroffe & 
Sillero-Zubiri, 2012), lions Panthera leo (Cushman et al., 2018; Elliot 
et al., 2014) and cheetahs Acinonyx jubatus (Weise et al., 2017). To 
date, however, few studies have attempted to assess the adequacy 
of the KAZA-TFCA using global positioning system (GPS) reloca-
tion data of its protected species at large spatial scales (Brennan 
et al., 2020; Elliot et al., 2014; Tshipa, 2017). Thus, how well the 
boundaries of the KAZA-TFCA reflect natural movement patterns 
and dispersal corridors of its most mobile protected species is vir-
tually unknown.

Across the KAZA-TFCA, the African wild dog Lycaon pictus rep-
resents a highly mobile and endangered flagship species for con-
servation efforts. Once widespread across the entire Sub-Saharan 
continent, wild dogs have been widely extirpated through human 
persecution, habitat destruction and disease outbreaks (Woodroffe 
& Sillero-Zubiri, 2012). For these reasons, viable populations mainly 
occur in spatially scattered subpopulations within protected areas 
(Van der Meer et al., 2014; Woodroffe & Ginsberg, 1999; Woodroffe 
& Sillero-Zubiri,  2012). Within these subpopulations, wild dogs 
form cooperative breeding packs of up to 30 individuals (Creel & 
Creel,  2002), whose social structure is strongly governed by the 
process of dispersal (Behr et al., 2020; McNutt, 1996). Both males 
and females disperse from their natal pack, either alone or in same-
sex dispersing coalitions, and search for unrelated mates and a 
suitable territory to settle (Behr et  al.,  2020; Cozzi et  al.,  2020; 
McNutt, 1996). During dispersal, wild dogs can cover several hun-
dred kilometres and cross international borders (Cozzi et al., 2020; 
Masenga et  al., 2016; Woodroffe et  al., 2019). Despite the impor-
tance of dispersal for the long-term viability of this species, little 
empirical information is available on habitat selection and poten-
tial movement barriers during dispersal. The few studies that have 
collected dispersal data have shown that dispersers quickly move 
over large distances, avoid human-dominated landscapes and areas 
densely covered by trees, but prefer proximity to water (Cozzi 

already existing or planned protected areas. Furthermore, we observed regional 
differences in landscape permeability that highlight the need for a coordinated ef-
fort towards maintaining or restoring connectivity, especially where transbound-
ary dispersal occurs.
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et al., 2020; Masenga et al., 2016; O'Neill et al., 2020; Woodroffe 
et al., 2019).

Here, we collected and analysed GPS relocation data on 16 
dispersing wild dogs in as many dispersing coalitions from a free-
ranging population in northern Botswana to assess the adequacy 
of the KAZA-TFCA in securing connectivity. We estimated rela-
tive selection strengths towards environmental and anthropogenic 
landscape features, and used the obtained coefficients to predict 
a permeability surface spanning the entire KAZA-TFCA. We then 
investigated how landscape permeability varied regionally and in-
ternationally, and we compared permeability within and outside the 
KAZA-TFCA boundaries. Finally, we calculated least-cost paths and 
corridors to identify major movement routes and to verify that these 
were successfully covered by the KAZA-TFCA.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study area (centred at 17°13′9″S, 23°56′4″E; Figure  1a) was 
outlined by a rectangular bounding box stretching over 1.3 Mio km2 
and encompassing the entire KAZA-TFCA (Figure 1b). The KAZA-
TFCA lies in the basins of the Okavango and Zambezi rivers and in-
cludes parts of Angola, Botswana, Namibia, Zimbabwe and Zambia. 

With a total area of over 520,000 km2, it constitutes the earth's larg-
est transboundary conservation area and is characterized by diverse 
landscapes, including savanna, grassland and dry or moist wood-
land habitats. Rainfall in the study area is seasonal and lasts from 
November to March. The KAZA-TFCA also comprises the Okavango 
Delta, which represents a highly dynamic hydrological flood-pulsing 
system (McNutt, 1996; Wolski et al., 2017). The extent of the flood 
in the delta greatly changes within and between years, depending 
on the amount of rain that descends from the catchment areas in 
Angola and reaches the distal ends of the delta between July and 
August (Figure S4). The flood drastically affects surrounding land-
scapes, so that during maximum extent (c. 12,000  km2), the delta 
becomes a patchy conglomerate of swamps, open water and islands, 
whereas these structures run dry when the flood retracts to its mini-
mum extent (c. 5,000 km2; Wolski et al., 2017). Despite 36 national 
parks (NPs) and other protected areas, there is considerable human 
influence in some regions of the KAZA-TFCA, mainly originating 
from farms, human density and road traffic.

2.2 | GPS relocation data

We used a population of free-ranging African wild dogs inhabiting 
the Okavango Delta in northern Botswana as a source population for 
dispersing individuals. This population has been extensively studied 

F I G U R E  1   Overview of our study area. (a) The red dotted rectangle depicts the study area, which was confined by a bounding box 
encompassing the entire KAZA-TFCA. Grey areas indicate remaining wild dog populations according to the IUCN (Woodroffe & Sillero-
Zubiri, 2012). (b) The white rectangle illustrates the area within which dispersing coalitions were collared. Since Game Reserves in Botswana 
virtually serve the same purpose as National Parks, we use the terms interchangeably for this region
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since 1989 (Behr et al., 2020; Cozzi et al., 2013, 2020; McNutt, 1996). 
Between 2011 and 2019, we systematically collected GPS relocation 
data on 16 coalitions of dispersing African wild dogs (seven female 
and nine male coalitions). Candidate dispersing individuals were iden-
tified based on age, number of same-sex siblings, pack size and pres-
ence of unrelated individuals of the opposite sex in their pack (Behr 
et al., 2020; McNutt, 1996). Selected individuals were immobilized 
according to protocols described in Osofsky et al. (1996), and fitted 
with GPS/satellite radio collars (Vertex Lite; Vectronic Aerospace 
GmbH) while still with their natal pack. Collars weighed 330 g, ac-
counting for about 1.5% of a wild dog's body weight. A 5-cm long de-
composable cotton piece was added to the collar belt to guarantee 
collar drop-off after about 12–18 months. All required procedures 
were undertaken and supervised by a Botswana-registered wildlife 
veterinarian. During dispersal, GPS collars were programmed to re-
cord a GPS relocation every 4 hr and to regularly transmit data via 
iridium satellite system to a base station.

Because we were interested in dispersal behaviour only, we 
discarded any GPS data collected while individuals were still with 
their natal packs and after settlement in a new territory (Cozzi 
et al., 2020). We identified the exact time of emigration and settle-
ment based on direct field observations and through visual inspec-
tion of the net squared displacement (NSD) metric. NSD quantifies 
the squared Euclidean distance of a relocation to a reference point 

(Börger & Fryxell, 2012), which in our case was the centre of the dis-
persing coalition's natal home range. Thus, dispersal was deemed to 
have started when a coalition had left its natal home range and con-
tinued until the NSD metric remained stationary, indicating that the 
coalition had successfully settled (Figure S1). In our analysis, we did 
not differentiate between male- and female-dispersing coalitions, 
for previous research found little differences between sexes during 
dispersal (Cozzi et al., 2020; Woodroffe et al., 2019).

2.3 | Spatial covariates

To investigate relative selection strengths of dispersing wild dogs, 
we used a set of georeferenced covariates (Figure  2) that we ag-
gregated in the categories land cover, protection status and anthro-
pogenic. Land cover comprised the covariates water cover (binary), 
distance to water (continuous), percentage cover by shrubs/grass-
land (continuous) and percentage cover by trees (continuous). To 
capture the pulsing behaviour of the Okavango Delta, we classified 
satellite imagery and frequently updated layers for water cover and 
corresponding layers depicting distance to water. Protection sta-
tus contained a binary covariate, indicating whether an area was 
protected or not. Anthropogenic included covariates rendering the 
presence of roads (binary), the distance to roads (continuous) and 

F I G U R E  2   Overview of spatial covariates that we included in our models. We prepared all covariates for the entire study area, but for 
better visibility, we only plot them for the surroundings of the Okavango Delta. The white rectangle in each plot depicts the area within 
which dispersing coalitions were collared. (a) Averaged layer of all dynamic (binary) water maps. (b) Percentage cover of trees. (c) Percentage 
cover of shrubs/grassland. Anything that was not covered by trees or shrubs/grassland was deemed to be bare land. (d) Protection status 
of the area. (e) Human influence proxy composed of human density, farms and roads. (f) Distance to nearest road (white lines depict actual 
roads)

(a) (b) (c)

(d) (e) (f)



     |  5Journal of Applied EcologyHOFMANN et al.

a proxy for human influence (continuous) that took into account 
human density, farming and roads. We prepared all covariates as 
spatial raster layers from freely available online services and from 
remotely sensed satellite imagery. To ensure a consistent resolution 
(i.e. cell size or grain) across covariates, we coarsened or interpo-
lated all layers to a resolution of 250 m × 250 m. For further de-
tails on the preparation and source of each covariate, see Appendix 
A.3. We performed processing and manipulation of data as well 
as all spatial and statistical analyses using R, version 3.6.1 (R Core 
Team, 2019).

2.4 | Habitat selection model

We used an integrated step selection function (iSSF; Avgar 
et  al.,  2016) to investigate dispersers' relative selection strengths 
towards the above-mentioned spatial covariates. That is, we paired 
each realized step (i.e. the connecting line between two consecu-
tive GPS relocations; Turchin, 1998) with 24 random steps that were 
generated by sampling turning angles from a uniform distribution 
U(−�, +�) and step lengths from a gamma distribution fitted to real-
ized steps (Avgar et al., 2016). A realized step and its 24 associated 
random steps formed a stratum and received a unique identifier. 
Along each step, we extracted the above-mentioned covariates 
(Table  S3), standardized extracted values using a z-score transfor-
mation and checked for correlation using Pearson's correlation co-
efficient r. None of the covariates were overly correlated (|r| > 0.6; 
Latham et al., 2011) and we retained all of them for modelling. Our 
habitat selection model then assumed that dispersing wild dogs as-
signed a selection score w(x) of the following exponential form to 
each realized and random step (Fortin et al., 2005):

The selection score w(x) of a step depended on its associated co-
variates (x1, x2, . . . , xn), as well as on the animal's relative selection 
strengths towards these covariates (�1, �2, . . . , �n). To estimate relative 
selection strengths for each covariate, we used mixed effects condi-
tional logistic regression analysis as suggested by Muff et al.  (2020). 
We implemented their method using the R-package glmmTMB (Brooks 
et al., 2017) and used dispersing coalition ID to model random slopes. 
We also modelled random intercepts with an arbitrary high variance 
of 106 to make use of the Poisson trick (see Muff et al., 2020). We de-
fined three movement metrics, namely the cosine of the turning angle 
(cos(ta)), the step length (sl) and the logarithm of the step length (log(sl)), 
as core covariates and ran stepwise forward model selection based on 
Akaike's information criterion (AIC; Burnham & Anderson, 2002) for all 
other covariates. The inclusion of movement metrics served to reduce 
biases in estimated habitat selection coefficients that may have arisen 
due to movement behaviour (Avgar et al., 2016). To validate the predic-
tive power of the most parsimonious habitat selection model, we ran 
k-fold cross-validation for case–control studies as described in Fortin 
et al. (2009) (details in Appendix A.5).

2.5 | Permeability surface

Using the most parsimonious habitat selection model, we predicted a 
permeability surface spanning the entire extent of the KAZA-TFCA. 
That is, we applied equation (1) to our spatial covariates and calculated 
the selection score w(x) for each raster cell. Because our representa-
tion of water was dynamic, we collapsed all dynamic water maps into 
a single map using areas that were covered by water in at least 10% of 
the cases. We used the resulting map to also calculate a layer return-
ing the distance to water. Because the delta only covers 5% of the 
KAZA-TFCA, we considered the use of a single water map to be ap-
propriate. To reduce the influence of outliers in predicted permeabil-
ity scores, we followed Squires et al.  (2013) and curtailed predicted 
scores between the 1st and 99th percentile of their original values. 
To compare permeability across different regions, we normalized the 
permeability surface to a range between 0 (most impermeable) and 1 
(most permeable), and we determined median permeability within and 
outside the KAZA-TFCA, within and outside formally protected areas 
and within each of the five KAZA-TFCA countries.

2.6 | Least-cost paths and corridors

To identify potential movement corridors of dispersing wild dogs, 
we specified source points and calculated factorial least-cost paths 
(LCPs) as well as factorial least-cost corridors (LCCs) among them 
(Elliot et  al.,  2014). To select source points, we followed the omni-
directional go-through approach proposed by Koen et al.  (2014) and 
placed 68 regularly spaced source points along the map border (Koen 
et al., 2014; Pitman et al., 2017). While this approach tends to identify 
high connectivity towards the map boundaries, it reduces potential 
biases caused by the selection of unreasonable source points (Koen 
et al., 2014). To assess the sensitivity of our results with respect to the 
location of source points, we reran the same analysis using 68 source 
points located within protected areas that are large enough to sustain 
viable wild dog populations (further details and corresponding results 
in Appendix A.9). In either case, the 68 source points resulted in 2,278 
unique pairwise combinations and therefore 2,278 unique LCPs and 
LCCs. We computed factorial LCPs and LCCs between source points 
using the R-package gdistance (details in Appendix A.6). After compu-
tation, we tallied overlapping LCPs and LCCs, respectively, into single 
connectivity maps. Because LCPs return discrete paths, whereas LCCs 
return continuous corridors, we present both methods. R-codes show-
casing the main steps for Sections 2.5–2.6 can be downloaded from 
GitHub (https://github.com/David​DHofm​ann/Least​CostA​nalysis).

3  | RESULTS

3.1 | Dispersal events

In total, we collected 4,169 GPS relocations during dispersal 
(Figure  S2; Table  S1), resulting in an average of 261 (SD  =  207) 

(1)w(x) = exp(�1x1 + �2x2+ . . . +�nxn),

https://github.com/DavidDHofmann/LeastCostAnalysis
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locations per dispersing coalition. Coalitions on average dispersed 
for 48 days (SD = 44), covered a mean Euclidean distance of 54 km 
(SD = 71) and a cumulative distance of 597 km (SD = 508).

3.2 | Habitat selection model

Our most parsimonious habitat selection model (ΔAIC > 2 than any 
alternative model; Table S4) retained the covariates water, distance 
to water, trees, shrubs/grassland and human influence, beside the 
fixed covariates cos(ta), sl and log(sl) (Figure 3a). Dispersers avoided 
moving through water (β = −0.53, 95% CI = −0.79 to −0.27) but se-
lected for locations in its vicinity, although the latter effect was not 
significant (β = −0.33, 95% CI = −0.73 to 0.08). Dispersers avoided 
areas that were densely covered by trees (β = −0.31, CI = −0.47 to 
−0.15) and preferred areas covered by shrubs/grassland (β = 0.25, 
95% CI = 0.07 to 0.42). Finally, dispersers avoided areas that were 
influenced by humans (β = −0.45, 95% CI = −0.82 to −0.08). Except 
for distance to water (SDRandomEffect = 0.57), we observed little vari-
ation between dispersal coalitions' relative selection strengths 
(SDRandomEffect < 0.22 for all other covariates, see also Figure S8).

Results from the k-fold cross-validation suggested that our pre-
diction was significant and robust, as highlighted by the fact that the 
95% CIs of rs,realized and rs,random did not overlap (Figure 3b). Likewise, 
the significant correlation between ranks and corresponding fre-
quencies for realized steps suggested a good fit between predictions 
and observations (Figure 3b).

3.3 | Permeability surface

Our prediction of landscape permeability revealed substantial dif-
ferences across regions in the study area (Figure 4). Comparisons of 

median permeability values (Table 1) showed that permeability inside 
the KAZA-TFCA was more than two times as high as permeability 
outside it. Permeability varied by country, with a fivefold perme-
ability difference among them. Angola and Botswana were charac-
terized by comparably highly permeable landscapes, Zimbabwe and 
Zambia were relatively impermeable and Namibia ranged in between 
the two extremes (Table 1). Visual inspection of our covariate lay-
ers indicated that high permeability in Angola and Botswana was 
mainly related to a combination of low human influence, low tree 
cover, high shrubs/grassland cover and a close distance to water. 
Although swamps, wetlands and permanent water themselves pro-
vided little permeability, their surroundings acted as strong attract-
ants to dispersers. The low permeability that characterized Zambia 
and Zimbabwe was mainly caused by substantial human influence. 
Albeit the KAZA-TFCA covered most permeability hotspots, several 
highly permeable regions remained uncovered by its borders. Across 
all countries, protected areas provided roughly double the perme-
ability of unprotected landscapes (Table 1).

3.4 | Least-cost paths & least-cost corridors

Our least-cost analysis revealed three major movement corridors 
of which all were well contained within the KAZA-TFCA bounda-
ries (Figure  5). One major corridor ran SE-NW and connected the 
Okavango-Linyanti ecosystem in Botswana with Luengue-Luiana 
NP in Angola. A second corridor ran W-E between Chobe NP in 
Botswana and Zimbabwe's Hwange NP. A third major corridor ran 
NE-SW, completely across unprotected areas, and connected Kafue 
NP in Zambia with more central regions of the KAZA-TFCA. Several 
minor corridors branched off from these three major corridors; these 
included a southward connection between the Okavango-Linyanti 
and the Central Kalahari Game Reserve, a southwesterly corridor 

F I G U R E  3   (a) Estimated selection coefficients from the most parsimonious habitat selection model. Negative coefficients indicate 
avoidance of a covariate, positive coefficients selection of a covariate. ta = turning angle, sl = step length. Whiskers delineate the 95% CIs for 
estimated parameters. Significance codes: **p < 0.05, ***p < 0.01. (b) Results from the k-fold cross validation for case–control studies. The left 
graph shows rank frequencies of realized steps according to predictions, whereas the right graph shows rank frequencies of randomly selected 
steps according to predictions. rs indicates the mean correlation coefficient resulting from 100 repetitions of the k-fold cross validation. The 
blue smoothing line was fitted using a locally weighted polynomial regression and serves to aid the eye in detecting the trends. Correlation 
coefficients suggest that our prediction was significant and robust, evidenced by the fact that the confidence intervals of rs,realized and rs,random 
did overlap and by the fact that there was strong and significant correlation between ranks and associated frequency for realized steps

(a) (b)
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connecting Luengue-Luiana NP with Namibia's Khaudum NP and a 
north-easterly extension of the Hwange corridor into Zimbabwe's 
Matusadona NP. According to our predictions, the landscapes in the 
Okavango-Linyanti region were the highest frequented dispersal 
routes within the KAZA-TFCA (Figure 5b). Our model did not detect 

any significant direct corridors between Zimbabwe and Zambia or 
Zambia and Angola, and only a very limited W-E direct connection 
between the Okavango region and Namibia's Khaudum NP. Except 
for the corridor into the Central Kalahari National Park, our model 
did not detect any significant connectivity outside the boundaries of 

F I G U R E  4   Predicted permeability surface for the extent of the KAZA-TFCA. Permeability was predicted by calculating selection scores 
w(x) = exp(�1x1 + �2x2+ . . . +�nxn) for each raster cell based on the raster cell's underlying covariates (xi) and estimated selection strength 
(βi). Areas that dispersers find easy to traverse are depicted in bright colours. Bold white lines delineate the borders of the KAZA-TFCA, 
whereas dashed white lines show country borders

Country

KAZA-TFCA Protection status

OverallInside Outside Protected Pastoral

Angola 0.35 (0.41) 0.12 (0.32) 0.35 (0.41) 0.12 (0.32) 0.19 (0.38)

Botswana 0.24 (0.30) 0.14 (0.16) 0.27 (0.35) 0.14 (0.18) 0.18 (0.25)

Namibia 0.20 (0.30) 0.12 (0.17) 0.22 (0.30) 0.10 (0.14) 0.14 (0.24)

Zambia 0.05 (0.09) 0.02 (0.05) 0.04 (0.09) 0.03 (0.05) 0.03 (0.06)

Zimbabwe 0.06 (0.16) 0.05 (0.04) 0.07 (0.17) 0.04 (0.04) 0.05 (0.06)

Overall 0.15 (0.29) 0.06 (0.14) 0.14 (0.30) 0.06 (0.14) 0.08 (0.21)

TA B L E  1   Comparison of median 
permeability (interquantile range in 
brackets) across countries, separated into 
areas within and outside the KAZA-TFCA, 
as well as within and outside formally 
protected areas. High values indicate 
high permeability, whereas low values 
correspond to low permeability
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the KAZA-TFCA. Furthermore, we found little to no direct connec-
tivity between peripheral points; that is, most paths and corridors 
connecting two adjacent peripheral points ran through more central 
regions before heading towards their destination at the periphery 
(Figure 5).

4  | DISCUSSION

We used GPS relocation data collected on dispersing African wild 
dogs to investigate whether their main movement corridors are con-
tained within the boundaries of the world's largest transboundary 
conservation area, namely the KAZA-TFCA. Our analysis suggests 
that the KAZA-TFCA indeed encompasses all major corridors of 
African wild dogs, demonstrating the potential value of such an ini-
tiative. We thus exemplified how pertinent dispersal data of a highly 
mobile species can be used to assess the adequacy of already ex-
isting or planned protected areas. Our approach is neither limited 
to the African wild dog nor to our study area and thus applicable 
to any study system. All covariates used throughout this study are 
readily available on a global scale and many of them are likely to be 
important determinants of movement behaviour, landscape per-
meability and connectivity for other species (Thurfjell et al., 2014; 
Zeller et al., 2012). Interestingly, our predicted network of least cost-
paths and corridors for African wild dogs shows surprising similari-
ties to corridors of dispersing lions inhabiting the same ecosystem 
(Cushman et  al.,  2018; Elliot et  al.,  2014). This not only reinforces 
confidence in our own predictions but also suggests potential syner-
gies for the conservation of these two, and possibly more, species. 
Expanding our analytical framework to additional species will likely 
yield important insights on the consistency of interspecific move-
ment corridors, thus highlighting areas that are exceptionally valua-
ble for the conservation of several species (e.g. Brennan et al., 2020).

Our results emphasize that human influences constitute some 
of the main barriers to connectivity among wild dog populations. 
This conforms to findings on dispersing wild dogs from eastern 
Africa (Masenga et al., 2016; O'Neill et al., 2020) but conflicts with 
findings from South Africa by Davies-Mostert et al. (2012), who re-
ported a high willingness of dispersers to cross human-dominated 
landscapes. Such differences may arise from the fact that our 
model infers preferences by comparing used and available habitats, 
whereas Davies-Mostert et  al.  (2012) only recorded net dispersal 
distances, thereby precluding such an analysis. Thus, we believe 
that differences to Davies-Mostert et  al.  (2012) may be explained 
by the unavailability of alternative routes through natural land-
scapes, which may have forced dispersers in South Africa to cross 
human-dominated landscapes despite a strong aversion to do so. In 
this regard, our representation of dispersal corridors and the result-
ing connectivity appear conservative, as dispersers may be able to 

make the best out of a bad situation and cross landscapes charac-
terized by considerably unfavourable conditions (Elliot et al., 2014; 
Palomares et  al.,  2000). Nevertheless, successful conservation of 
this species relies on policymakers' and local authorities' willingness 
and ability to provide and conserve natural areas that remain free 
from anthropogenic pressures. This is not only paramount in light of 
increasing connectivity and facilitating dispersal but also in terms of 
reducing human-caused mortality during dispersal. In fact, previous 
studies have shown that human-caused mortality represents a major 
threat to wild dogs' ability to disperse (Cozzi et al., 2020; Woodroffe 
et al., 2019).

Besides human influence, we identified water as additional ob-
stacle to dispersal. This corroborates earlier studies showing that 
water bodies are almost impenetrable to resident packs (Abrahms 
et  al.,  2017) and only infrequently crossed by dispersing individu-
als (Cozzi et al., 2020). An accurate and dynamic representation of 
water is thus imperative and particularly relevant in seasonal or 
flood-pulsing ecosystems such as the Okavango Delta.

Although dispersers avoided moving through water, they selected 
locations in its vicinity. This behaviour may be caused by the occur-
rence of prey close to water (Bonyongo, 2005). For the same reason, 
however, competitors such as lions, spotted hyenas and resident wild 
dogs may also use areas close to water (Valeix et al., 2010), thereby 
occasionally forcing dispersing wild dogs to switch behaviour and 
move into prey-poor areas away from water (Creel & Creel, 2002; 
Mills & Gorman, 1997). This may explain the large confidence inter-
vals for the corresponding β -estimate of distance to water. Given the 
influence that resident conspecifics, competitors and prey can have 
on dispersers (Armansin et al., 2019; Cozzi et al., 2018), future stud-
ies should strive to collect and incorporate intra- and interspecific 
relationships into analyses of landscape connectivity.

Overall, our findings on habitat selection during dispersal co-
incide with findings from dispersing wild dogs in Kenya (O'Neill 
et  al.,  2020) and Tanzania (Masenga et  al.,  2016), suggesting 
that there are strong commonalities between dispersers from 
these very different ecosystems. Thus, despite wild dogs' ability 
to cope with diverse habitats and adapt to changing conditions 
(Woodroffe,  2011), the fundamental factors included in our 
study appear to influence wild dogs from other ecosystems alike. 
Nevertheless, expanding our analysis to dispersers emigrating 
from other source populations would invaluably contribute to our 
understanding of dispersal.

Locally, we identified the Okavango-Linyanti region as a poten-
tial dispersal hub through which dispersing wild dogs gain access 
to more peripheral regions of the KAZA-TFCA. It appears that the 
absence of human activities, the central position within the KAZA-
TFCA and the presence of relatively impermeable water bodies (e.g. 
Okavango Delta, Linyanti Swamp) funnel dispersal movements, 
resulting in a highly frequented corridor. Furthermore, the lack of 

F I G U R E  5   (a) Source points (black semicircles along the map border) and corresponding least-cost paths between them. Continuous 
black lines indicate the borders of the KAZA-TFCA, whereas dashed black lines delineate country borders. (b) Least-cost corridors between 
the same source points as illustrated in subfigure (a). For ease of spatial reference, we also labelled some national parks (NPs, in dark grey)
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permeable areas between peripheral source points often resulted 
in corridors stretching longer Euclidean distances, in an arc-shaped 
route via a stretch of suitable habitat through the Okavango-
Linyanty ecosystem. This is an expected outcome in case structural 
and functional connectivity coincide, that is, when dispersers fol-
low suitable habitats to disperse (Fattebert et al., 2015; Hauenstein 
et  al.,  2019). The key role of the Okavango-Linyanti region for 
overall connectivity within the KAZA-TFCA thus calls for actions 
to secure its protection status in the future. While the region is cur-
rently a Wildlife Management Area, it has neither the status of a 
National Park nor that of a Game Reserve. A similar case of non-
formally protected but key dispersal landscape is represented by 
the area south of Kafue NP in Zambia, for which a disruption of its 
main and narrow dispersal corridor or high disperser mortality due, 
for example, to human persecution or vehicle collision would result 
in considerable isolation of its subpopulations. We also revealed a 
potential southwards corridor between the Okavango-Linyanti eco-
system and the Central Kalahari National Park. Elliot et al.  (2014) 
and Cushman et al. (2018) identified a similar corridor for dispers-
ing lions, suggesting that upholding and protecting a link between 
those ecosystems is pivotal. Some areas through which the corridor 
runs are neither part of the KAZA-TFCA nor profit from any form of 
protection status. Human presence and activities along the national 
road that longitudinally traverses this corridor may limit functional 
connectivity (Cozzi et al., 2020).

Our approach of identifying movement corridors based on pre-
defined start and end points implicitly assumes that individuals 
know the end point of their dispersal journey and that they have al-
most complete knowledge of associated movement costs (Panzacchi 
et  al.,  2016). Since dispersers often move into unknown territory, 
this may not necessarily be the case (Abrahms et  al.,  2017; Cozzi 
et al., 2020). However, specification of predefined end points might 
not be necessary, as the parametrized iSSF model can be used as 
mechanistic movement model to simulate dispersal from known 
source points, yet without restricting the domain of potential end 
points (Signer et  al.,  2017). Consequently, movement corridors 
would emerge more naturally as the result of a myriad of simulated 
dispersal events (Allen et al., 2016; Zeller et al., 2020).

Besides estimating corridors, individual-based simulations may 
be used to generate permeability surfaces (Avgar et al., 2016; Signer 
et al., 2017). Such simulation-based surfaces have been shown to re-
duce the risk of overestimating permeability (w(x)) and conesquently 
connectivity, particularly in areas that lie far from suitable habitats 
(Signer et al., 2017). While a simulation-based approach is concep-
tually straightforward, computational requirements for such a large 
spatial extent as the KAZA-TFCA are very high, making the use of 
this approach challenging. We therefore urge future studies to op-
timize the simulation of movement from iSSFs to capture a more 
mechanistic model of dispersal.

Our work shows how dispersal data of a highly mobile spe-
cies can be used to identify movement corridors and to assess the 
adequacy of protected areas. In our case, the predicted move-
ment corridors of African wild dogs were well contained within 

the boundaries of the world's largest transboundary conservation 
area, namely the KAZA-TFCA, suggesting that it will significantly 
contribute to the long-term viability of this species. Moreover, our 
connectivity network allowed revealing potential dispersal hubs 
through which dispersers gain access to more remote regions of 
the study area. Finally, our investigations showed that human 
influence constitutes one of the main barriers to dispersal and 
substantially reduces landscape connectivity. Successful conser-
vation of wide-ranging species, such as exemplified by the African 
wild dog, will therefore be contingent on the willingness of local 
authorities, policymakers and land managers to preserve areas 
that remain free from human strains. Ultimately, our work contrib-
utes to the growing field of connectivity studies and provides and 
easily applicable framework for assessing the adequacy of already 
existing or planned protected areas.
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