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Passive acoustic monitoring (PAM) is commonly used to generate information on the distribution,

abundance, and behavior of cetacean species. In African waters, the utilization of PAM lags behind

most other continents. This study examines whether the whistles of three coastal delphinid species

(Delphinus delphis, Tursiops truncatus, and Tursiops aduncus) commonly encountered in the

southern African subregion can be readily distinguished using both statistical analysis of standard

whistle parameters and the automated detection and classification software PAMGuard. A first

account of whistles recorded from D. delphis from South Africa is included. Using PAMGuard,

classification to species was high with an overall mean correct classification rate of 87.3%.

Although lower, high rates of correct classification were also found (78.4%) when the two T. adun-
cus populations were included separately. Classification outcomes reflected patterns observed in

standard whistle parameters. Such acoustic discrimination may be useful for confirmation of mor-

phologically similar species in the field. Classification success was influenced by training and test-

ing the classifier with data from different populations, highlighting the importance of locally

collected acoustic data to inform classifiers. The small number of sampling populations may have

inflated the classification success, therefore, classification trials using a greater number of species

are recommended. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4978000]

[WWA] Pages: 2489–2500

I. INTRODUCTION

Passive acoustic monitoring (PAM), i.e., the recording

of sound within a habitat (Merchant et al., 2015), has been

widely applied to generate information on the distribution,

density, and abundance of numerous cetacean species

(Zimmer, 2011). PAM is fast becoming the tool of choice in

many areas of applied research to monitor anthropogenic

activities in the marine environment and, more specifically,

the effects of such activities on cetaceans (Weilgart, 2007;

Andr�e et al., 2011; Zimmer, 2011). The equipment and

methodology used in PAM of cetaceans has developed rap-

idly over recent decades. Although the initial set up costs

can be high, PAM can be cost effective in the medium to

long term, generating detailed information over time, from

inaccessible regions and across a range of spatial scales

(e.g., Mellinger et al., 2007; Van Parijs et al., 2009).

Therefore, PAM has wide ranging applications in Africa

where there are large data gaps in our understanding of ceta-

cean occurrence and finances are often limited.

There are several benefits of PAM beyond visual survey

techniques for generating information on cetaceans. Notably,

PAM enables data collection on species presence throughout

the night and in poor weather conditions when visual data col-

lection would not be possible. Archival marine acoustic

recording units (ARUs) can be deployed in extreme or remote

locations (Sousa-Lima et al., 2013) where regular boat sur-

veys would not be feasible. If deployed in arrays containing

multiple devices, acoustic localization can be used to track the

movements of individuals (Dunn and Hernandez, 2009).

Distance sampling (Marques et al., 2009) and mark-recapture

approaches (Stevenson et al., 2015) can be used to estimate

animal density or abundance using acoustic data, and this field

is growing rapidly (Marques et al., 2013). Furthermore, com-

bined visual and acoustic line transect surveys can be applied

to better understand the distribution of cetacean species, for

example, sperm whales (Barlow and Taylor, 2005), vaquita

(Gerrodette et al., 2011; Swift et al., 2011), and Yangtze

River dolphins (Turvey et al., 2007; Richman et al., 2014). If

vocalizations are species specific and visual identification

problematic (e.g., due to poor sightings conditions, brief or

distant observations, or morphological similarity), acoustic

identification can clarify the species (Oswald et al., 2003;

Oswald et al., 2007; Gillespie et al., 2013). Real-time species

confirmation can assist in survey decisions, saving time and

resources (Oswald et al., 2007).

Although clearly advantageous, the application of PAM

for research and monitoring of cetacean species in African
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waters has lagged behind other more affluent regions. There

have been some recent advances in this field (Hofmeyr-

Juritz and Best, 2011; Gridley et al., 2012; Gridley et al.,
2014; Gridley et al., 2015), however, basic data on the call

repertoire and vocal characteristics of most cetacean species

encountered in southern Africa are still missing (Best, 2007;

Elwen et al., 2011). Such data are necessary for the imple-

mentation of successful PAM programs. A growing number

of research groups operating in southern Africa are utilizing

ARUs to monitor cetacean occurrence together with ambient

noise conditions. In the absence of visual species confirma-

tion, the success of such acoustic monitoring depends largely

on how confidently species can be identified through their

vocalizations. Although this has been demonstrated in other

areas (e.g., Rendell et al., 1999; Oswald et al., 2003), no study

has investigated species specific call characteristics of delphi-

nids in southern Africa or the success of acoustic species dis-

crimination using automatic classifiers. Intra-specific

geographic variation in vocalization characteristics may also

act to compromise discrimination, if classifiers are not trained

using data from the region of interest (Gillespie et al., 2013).

For dolphins, acoustic classification to species can be

achieved using commonly produced vocalizations such as

echolocation clicks (Soldevilla et al., 2008; Roch et al.,
2011) or whistles (Rendell et al., 1999; Oswald et al., 2003;

Oswald et al., 2007; Gannier et al., 2010), or a combination

of these commonly emitted sounds types (Roch et al., 2007).

Whistles are narrow-band frequency modulated communica-

tion signals often used in social contexts (Herzing, 2000;

Quick and Janik, 2008). Most often classification is based on

discriminant function analysis (DFA; Rendell et al., 1999),

classification and regression trees (CART; Gannier et al.,
2010) or both methods (Oswald et al., 2007) using standard

parameters extracted from the whistle contour, although

spectral analysis has also been employed (Roch et al., 2007).

Several whistle detection and classification programs have

been developed (Oswald et al., 2007; Gillespie et al., 2013;

Lin et al., 2012; Lin and Chou, 2015). Some, such as

ROCCA (Oswald et al., 2007), require a human user to man-

ually select high quality whistles suitable for classification,

the fundamental frequency of which is then extracted and

classified. Others, such as PAMGuard (Gillespie et al.,
2013), use an automated contour detection algorithm to iden-

tify contours for subsequent classification.

PAMGuard is an open-source software for the auto-

mated detection, localization, and classification of cetacean

sounds (Gillespie et al., 2009; Gillespie et al., 2013). The

program PAMGuard (version 1.13.04) differs from other

whistle classification software by offering fully automated

whistle detection through the integrated whistle and moan

detector (WMD) and subsequent classification of whistle

contour data (Gillespie et al., 2013). As a whistle detector

may only partially detect a whistle or break a whistle into

several segments, the whistle classification method devel-

oped by Gillespie et al. (2013) has been carefully designed

to be robust to the fragmentation taking place during the

whistle detection process. This method therefore overcomes

some of the commonly encountered issues with automated

whistle classification, and correct classification rates exceed-

ing 94% have been reported (Gillespie et al., 2013).

This study focuses on three commonly encountered

whistling species found in the near-shore waters of the

southern African subregion: common and Indo-Pacific bot-

tlenose dolphins (Tursiops truncatus and Tursiops aduncus)

and common dolphins, which were previously considered

Delphinus capensis (Best, 2007) but now are considered

Delphinus delphis (Cunha et al., 2015). We describe the

whistles of these species, including a novel description of D.
delphis whistles, and test whether these species can be read-

ily discriminated using standard whistle parameters. We

investigate the performance of PAMGuard for automated

classification of the same datasets. Of particular interest was

how well PAMGuard could correctly distinguish between T.
aduncus and T. truncatus—two closely related species that

occur in sympatry or parapatry within the Indo-Pacific

region and are notoriously difficult to identify from field

observations. We examine whether classifiers are sensitive

to macro- and micro-geographical variation in whistle char-

acteristics using data from T. aduncus inhabiting the South

West Indian Ocean and identify possible sources of error in

the whistle classification process.

II. METHODS

A. Data collection

Acoustic recordings of free ranging dolphins were made

from three widely separated sites within the southern

African subregion: T. truncatus from Walvis Bay (Namibia),

T. aduncus and D. delphis from Plettenberg Bay (South

Africa), and T. aduncus from North and South of Unguja

Island, Zanzibar Archipelago (Tanzania). The latter will be

referred to as Zanzibar (Fig. 1).

The acoustic recording information and periods when

data were collected are summarized in Table I. In all cases,

the HTI-96-MIN hydrophone (High Tech, Inc., Long Beach,

MS, sampling frequency 96 kHz, flat frequency response

between 2 Hz and 30 kHz 6 1 dB) was weighted with a 1 cm

diameter steel chain and lowered between 1 and 6 m below the

water surface from a small motorized research vessel, while

the vessel was stationary, in idle, or moving slowly. During

2008–2009, acoustic recordings were digitized using an Edirol

UA-25 sound card (Roland Corp., Shizuoka, Japan) and saved

to a personal computer. Thereafter, a Zoom H4n digital

recorder (Zoom Corp., Tokyo, Japan) was used to sample the

data. Recordings were made over a range of behavioral states

and group compositions typical for each species.

B. Descriptive statistics of whistles parameters

Acoustic files were visually and aurally inspected for

the occurrence of whistles. Standard parameters were mea-

sured from whole whistle contours to determine the underly-

ing differences between the four delphinid populations and

two regions of Zanzibar. For this we defined a whistle con-

tour as a continuous narrow-band sound >100 ms in duration

and with at least part of the fundamental frequency exceed-

ing 3 kHz (Gridley et al., 2012; Gridley et al., 2014).
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Whistle selection and measurement were conducted from the

two T. aduncus populations as described in Gridley et al.
(2012). Measurements of whistle contours from T. truncatus
and D. delphis were derived as follows. Whistles were iden-

tified in the spectrogram display of Adobe Audition (Ver.

4.0 and Ver. 5.0, Adobe Systems Inc., San Jose, CA) and

Raven Pro 1.4 (Cornell Bioacoustic Research Program,

2011) software using a Hanning window with a fast Fourier

transform (FFT) length of 512 samples (time resolution

5.33 ms). Each whistle identified was visually assessed and

graded based on the signal-to-noise ratio (SNR) as follows:

(1) signal is faint but visible on the spectrogram, (2) signal is

clear and unambiguous, (3) signal is prominent and domi-

nates. High quality sounds were assessed as SNR 2 or 3, had

a clear start/end, and were not masked by simultaneous

sound. The number of inflection points, i.e., change in slope

from positive to negative or vice versa was visually assessed

and the duration was measured in Adobe Audition. Whistle

characteristics, including the start, end, minimum, maxi-

mum, and frequency range, were measured in Raven using

the selection function.

In most cases, the parameter data were non-normally

distributed (Wilk-Shapiro test: p< 0.05) and the within-

population variance was non-homogenous (Fligner-Killeen

test of homogeneity of variances: p< 0.05). Statistical differ-

ences between the whistle parameters for the populations

and species were therefore investigated using non-

parametric Kruskal-Wallis tests conducted in the R statistical

software (R Core Team, 2015). Post hoc Dunn’s tests were

applied to determine where significant differences lay fol-

lowing Zar (2010). The results were adjusted with the Holm

multiple pair-wise correction method (Holm, 1979; Aickin

and Gensler, 1996). The Holm procedure is a multistage test

that adjusts the level of significance (a0) according to the

number of null hypotheses remaining to be tested (c) with

a0 ¼ a/c, in order to control the familywise error rate inherent

FIG. 1. (Color online) Map of the

study area, the southern African subre-

gion, showing the different locations

where acoustic data were collected.

TABLE I. Summary details of acoustic data collection and dataset used in the PAMGuard Whistle and Moan Detector (WMD) from four populations of delphinids

recorded in Namibia (NAM), South Africa (SA), and Tanzania (TZ). Values in parentheses for Zanzibar North are the subsampled dataset used in analysis III.

Species names Location

Latitude and

Longitude Period

Number of

encounters

Number of

files

Duration analyzed

(hh:mm:ss.000)

Number of segment

contours identified

by PAMGuard WMD

Plettenberg Bay, 34� 1’ S March 2009 2 11 00:53:21.750 14 777

Delphinus delphis SA 23� 25’ E April 2014

Walvis Bay, 22� 57’ S 2009 46 46 09:38:17.392 38 230

Tursiops truncatus
NAM 14� 30’ E 2011–2013

Plettenberg Bay, 34� 1’ S March 2009 8 47 05:30:40.797 28 767

Tursiops aduncus

SA 23� 25’ E April 2014

Zanzibar North 6� 9’ S February–March 2008 14 85 08:36:08.182 10 316

39� 12’E (14) (40) (04:13:43.022) (4952)

Tursiops aduncus Zanzibar South,

TZ

17 65 09:07:26.525 4743
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to multiples comparisons tests. Regional variation between

North and South Zanzibar was tested separately using non-

parametric two-way analyses of variance (ANOVAs; Mann-

Whitney U test) as the data failed the assumption necessary

for parametric testing (Wilk-Shapiro test: p< 0.05).

C. Automated whistle detection and classification

The investigation of PAMGuard whistle classification

was run as five analyses. (i) We investigated species level

discrimination in PAMGuard by comparing whistles from

the three study species. Here all data from T. aduncus were

pooled. (ii) We investigated the discriminatory ability of

PAMGuard in a classification test using data from T. adun-
cus from Zanzibar and Plettenberg Bay (�4000 km apart)

included separately. Previous studies have demonstrated

macro-geographic variation in the whistles of these popula-

tions using standard whistle parameters such as end fre-

quency (Gridley et al., 2012). (iii) We investigated the

discriminatory ability of PAMGuard in a classification test

using data from T. aduncus from two sites around Zanzibar

Island, which may potentially differ at a micro-geographic

scale, North and South Zanzibar (�80 km apart). In their

study based on the analysis of mitochondrial deoxyribose

nucleic acid (mtDNA), S€arnblad et al. (2011) have demon-

strated significant genetic differences between T. aduncus
from the North and South of Zanzibar, indicative of popula-

tion structuring. However, photo-identification data have

demonstrated a degree of individual movement between

these two areas (Gridley, 2011). (iv) We tested for bias asso-

ciated with training the classifier with a dataset from a differ-

ent geographical region to that where the test data were

collected by running the training and classification analysis

as in analysis II but only using one T. aduncus population

(i.e., data from either Plettenberg Bay or Zanzibar). The

classification outcomes under this scenario were then com-

pared to a classification test using the alternate population,

which had not been used in training. We hypothesized that

the correct classification scores for T. aduncus would fall

under this scenario compared to if the classifier was trained

and tested with data collected from the same region. (v) We

investigated the potential for false detections of burst pulse

(BP) sounds to influence classification success.

Automated whistle detection and classification in

PAMGuard is described in detail in Gillespie et al. (2013)

and briefly outlined below. PAMGuard is designed for flexi-

bility with core functionalities and a range of additional plu-

gins that can be integrated within a single interface. In this

study, we used two plugins tailored to tonal sounds: the

WMD and the whistle classifier. The WMD automatically

detects and extracts whistle contours by searching for spec-

tral peaks within a user-specified frequency band. We ran

the WMD on click and noise free FFT data (summarized in

Table I), between 3 and 24 kHz with the amplitude threshold

set to 8 dB (spectrogram settings FFT length 512 samples,

FFT hop size 256 samples, Hanning window, time resolution

5.33, time step size 2.67 ms). The 3 kHz threshold was cho-

sen after trials of the WMD demonstrated a high false

detection rate due to low frequency engine and water noise

in the recordings in the 0–3 kHz bandwidth.

When conducting this analysis there exists a trade-off in

the choice of fragment and section length. Short fragment

(e.g., <50 ms) and section (e.g., 20 fragments) lengths can

lead to unstable measurement of parameters and suboptimal

classification success rate, whereas long section lengths requir-

ing many fragments may need more whistles before classifica-

tion can occur (Gillespie et al., 2013). Choice of fragment

length and section length was made by running a subset of

data through the classifier for varying fragment length (from 5

to 70 bins, i.e., 16.1–191.6 ms) and section length (from 10 to

70 fragments). After following the advice set out in Gillespie

et al. (2013), Caillat (2013), and a comprehensive testing

period, we selected the following settings to conduct the analy-

sis: the whistle classifier was run using a fragment length of 40

bins (equivalent to 110.6 ms) and section length of 60 frag-

ments, over 100 bootstraps for the different datasets. The boot-

strapping process allows the classification output to be

presented with a standard deviation (SD) for each classification

score. These parameters were similar to those used in Gillespie

et al. (2013) in terms of the number of bins generated from the

spectrogram with a FFT length of 512 (Gillespie et al., 2013,

used a fragment length of 30 bins and section length of 60

fragments). However, the time resolution of the spectrograms

used in the two studies differs due to the different sampling

rates: in this study a 96 kHz sampling rate was used resulting

in a time resolution of 5.33 ms; in Gillespie et al. (2013) a

48 kHz sampling rate was used, resulting in a time resolution

of 10.67 ms. Classification in this study is therefore based on

shorter whistle fragments compared to Gillespie et al. (2013).

Files containing at least one whistle were considered suit-

able for analysis in PAMGuard. We sub-sampled the data

from some regions to minimize differences in sample sizes

and prevent over sampling of individuals or behavioral con-

texts. The small population of T. truncatus in Walvis Bay

(�100 individuals) was substantially recorded, therefore, we

sub-sampled this dataset to one recording per encounter.

Although the number of encounters were fewer in Plettenberg

Bay, the group sizes were large (mean 129 individuals;

Gridley, 2011) and whistle rates were very high compared to

the other populations. Several short recordings were usually

made per encounter. Therefore we sub-sampled these data so

that 60%–80% of the recordings from each encounter were

analyzed. Except for analysis III, we included all recordings

with whistles of T. aduncus from Zanzibar, as recording effort

was distributed over many encounters and individuals. In

analysis III, only data from Zanzibar North and South were

included and we randomly sub-sampled the acoustic data

from Zanzibar North to run the analysis with similar sample

sizes between the two locations. We included all available

acoustic data from D. delphis, which was the smallest dataset

in terms of recording occasions. However, group sizes and

whistle rates were high.

In undertaking this analysis, we identified that the detec-

tion of BP sounds could possibly be a source of error affect-

ing classification accuracy. BP sounds are broadband click-

based sounds that appear as tonal sounds when displayed in

the frequency domain on a spectrogram (Watkins, 1968),
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and could be detected by the WMD as whistle-like frequency-

modulated contours with sidebands and overtones (Fig. 2). To

investigate the influence of false positive BP detection on the

whistle classification, we conducted an analysis regarding BP

sound detection by the WMD. For the Tursiops populations, a

30 s sub-sample of acoustic recording was taken from each

file, representing a total of 15% of the duration of the combined

dataset. As fewer recordings were available for D. delphis, we

took additional 30 s sub-samples from within the available files

(n¼ 19 sections from 11 files). All sub-sampled file sections

were visually reviewed in Adobe Audition (FFT 512, 50%

overlap, Hanning window) to manually count BP events, and

files were run in the WMD. Detection output was manually

reviewed in the PAMGuard “Viewer” mode to identify the rate

of false detections attributed to BP sound detection.

III. RESULTS

Acoustic recordings of three species of delphinid from

four populations were analyzed during this study. The num-

ber of encounters varied from 2 (D. delphis) to 46 (T. trunca-
tus) with the most comprehensive sampling conducted in

Walvis Bay, Namibia. However, due to variations in whis-

tling rate between these populations, differences in the over-

all number of segments included in the analysis were not

great. Between 14 777 (D. delphis) and 38 230 (T. truncatus)

segments were included from each population (Table I).

A. Descriptive statistics and pair-wise comparison of
whistle parameters

There were clear differences in the whistle characteris-

tics of the four dolphin populations (three species) when

analyzed individually with a non-parametric Kruskal-Wallis

one-way ANOVA. For every acoustic parameter tested, there

was at least one population significantly different from the

others (X2
3 ranges from 124.45 to 1200.50, p< 0.0001).

The frequency parameters (start, end, minimum, and maxi-

mum) of D. delphis were higher than both the Tursiops spe-

cies, ranging from mean minimum values of 8.81 kHz (6SD

2.00) to mean maximum values of 15.68 kHz (6SD 4.02).

Within Tursiops, the whistles of T. truncatus were consis-

tently higher than for T. aduncus for all frequency parameters

apart from end frequency. Tursiops truncatus had the longest

duration whistles of those measured (1.08 s 6 SD 0.65). The

relatively low frequency whistles of T. aduncus ranged from

4.37 kHz (6 SD 1.35) to 11.44 kHz (6 SD 4.30) in Zanzibar

and from 3.92 kHz (6 SD 1.64) to 9.62 kHz (6 SD 3.21) in

Plettenberg Bay. The whistles from these populations were

short in duration (0.37 s 6 SD 0.22 and 0.44 s 6 SD 0.28,

respectively) and contained fewer inflection points (0.42

6 SD 0.77 and 0.66 6 SD 0.88, respectively) compared to T.
truncatus or D. delphis. Overall, the Zanzibar population had

higher frequencies than the Plettenberg Bay population for

each of the four frequency parameters (minimum, maximum,

start, and end frequency; Table II).

Dunn’s multiple pair-wise comparison showed that the

whistles from each of the four populations were statistically

different (p< 0.0001) from the others for all apart from two

acoustic parameters measured—no significant difference

was identified between the end frequency of T. truncatus and

T. aduncus from Plettenberg Bay (p¼ 0.0510) or between T.
truncatus and T. aduncus from Zanzibar for frequency range

(p¼ 0.0826; Table III). Although statistical differences in

the whistle parameters between T. aduncus from North and

South Zanzibar were identified, these differences were slight

and reflected in four tested parameters: start frequency, end

frequency, maximum frequency, and frequency range

(Mann-Whitney U test, p< 0.05).

As this is the first description of whistles recorded

from D. delphis in southern Africa, we compared the fre-

quency parameters of whistle contours from this study with

those from other Delphinus populations (Table IV).

Comparisons demonstrate variability mainly in start and

end frequency parameters, whereas minimum and maxi-

mum frequency and the number of inflections points are

generally similar. The parameters of D. delphis from South

Africa (this study) most closely match those reported in D.
delphis from the Celtic Sea and English Channel (Ansmann

et al., 2007).

B. Analysis I: Automated classification to species

Species classification in PAMGuard using contours

detected with the integrated WMD was highly accurate with

an overall mean correct classification score of 87.3% for the

three species (Table V). Classification scores were signifi-

cantly different from that expected by chance (t-test p< 0.001

in all cases) and SDs around the classification scores were rela-

tively low (range of SD 0.7–7.7). The whistles of T. aduncus
were classified with the greatest success with 96.3% (6 SD

2.6) correct classification. Misclassification between T.

FIG. 2. (Color online) A spectrogram of 2 s of common dolphin recording

showing the detected whistles segments and two detected BP segments

using the PAMGuard WMD (FFT 512, 50% overlap, Hanning window).

(Spectrogram segment is from recordings of Delphinus delphis from

Plettenberg Bay on 12 April 2014.)
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aduncus and T. truncatus was rare (3.3%) and virtually absent

between T. aduncus and D. delphis (0.04%). Delphinus delphis
was correctly classified in 87.6% (6 SD 7.7) of cases,

although whistles were occasionally misclassified as T. trunca-
tus (12.9%). While still well classified, the whistles of T. trun-
catus had the lowest correct classification score 79% (6 SD

6.7). Misclassification with D. delphis was relatively common

(19.4%), but the whistles of T. truncatus were rarely confused

with those of T. aduncus (1.6%). In summary, most error in

classification could be attributed to confusion between T. trun-
catus and D. delphis, whereas the whistles of T. aduncus were

unlikely to be confused with either of these two species.

C. Analysis II: Investigating the impact of macro-
geographical variation within species

We tested the PAMGuard whistle detection and species

classification as in analysis I but with data from the two T.
aduncus populations from Plettenberg Bay and Zanzibar

Island included separately. The overall correct classification

rate in this analysis was high (78.4%) and above that

expected by chance (t-test p< 0.001, Table VI). Within this

analysis, correct classification to species remained almost

unchanged: 86.7% (6 SD 7.6) for D. delphis and 79.3%

(6SD 5.9) for T. truncatus. High classification scores for

T. aduncus from Plettenberg Bay and Zanzibar populations

(70.7% 6 SD 8.6 and 77.1% 6 SD 10.2, respectively) showed

it was possible to discriminate between these two

geographically separate populations of the same species.

However, the correct classification rate fell by 25.6% and

19.2% for Plettenberg Bay and Zanzibar Island, respectively,

compared to the combined T. aduncus rate found in analysis I

and the level of uncertainty in this classification test increased

from a coefficient of variation [CV¼ (SD/mean) � 100] of

7% for the three-species classifier to 10.2% for the four-

population classifier. These results demonstrate that although

correct classification rates may fall, classification to popula-

tion is possible in PAMGuard and can take place without

affecting the classification scores of other species simulta-

neously tested.

D. Analysis III: Investigating micro-geographic
differences

In analysis III, we tested the PAMGuard whistle detec-

tion and classifier on only T. aduncus whistles from North

and South Zanzibar (respectively, 4952 and 4743 segments

contours detected) to investigate whether PAMGuard could

discriminate between the whistles from these two areas.

Although some statistical differences did exist in the stan-

dard whistle parameters such as start frequency, end fre-

quency, maximum frequency, and frequency range,

demonstrating micro-geographic variation between these

areas, the PAMGuard classification results were poor. The

overall correct classification score for this analysis did not

differ from chance (mean correct classification of 52.7%

TABLE II. Summary of key acoustic characteristics of whistles produced by 3 species of delphinid from populations in the southern African subregion, includ-

ing Mean, Standard Deviation (SD), and Coefficient of Variation (CV) values. Species names abbreviated to first letters of genus and species only: Dephinus
delphis (Dd), Tursiops truncatus (Tt), Tursiops aduncus (Ta). Populations abbreviated as follows: Plettenberg Bay, South Africa (PB, SA), Walvis Bay,

Namibia (WB, NAM) and Zanzibar, Tanzania (ZB, TZ). The values presented for Delphinus delphis and Tursiops truncatus are from this study, the values for

Tursiops aduncus are from Gridley et al. (2012) and this study.

Species (Population) N Statistics

Start

frequency (kHz)

End

frequency (kHz)

Min

frequency (kHz)

Max

frequency (kHz)

Frequency

range (kHz)

Inflection

points (n)

Duration

(s)

Dd 409 Mean (6 SD) 12.6 (4.6) 12.5 (4.7) 8.8 (2.0) 15.7 (4.0) 6.9 (3.6) 1.2 (1.3) 0.7 (0.4)

(PB,SA) CV 37 37 23 26 53 113 65

Tt 801 Mean (6 SD) 8.7 (3.5) 7.4 (3.1) 5.8 (1.9) 13.2 (3.0) 7.4 (3.4) 2.00 (2.2) 1.1 (0.6)

(WB, NAM) CV 40 42 33 23 46 109 60

Ta 1677 Mean (6 SD) 5.8 (3.0) 10.1 (4.7) 4.2 (1.5) 11.3 (3.9) 7.1 (4.0) 0.5 (0.8) 0.40 (0.2)

(All) CV 52 47 34 34 56 165 61

Ta 1166 Mean (6 SD) 5.9 (3.1) 11.4 (4.3) 4.4 (1.3) 12.1 (3.9) 7.7 (4.0) 0.4 (0.8) 0.4 (0.2)

(ZB, TZ) CV 52 38 31 35 52 183 59

Ta 511 Mean (6 SD) 5.53 (2.9) 6.98 (4.3) 3.92 (1.6) 9.62 (3.2) 5.70 (3.4) 0.66 (0.9) 0.44 (0.3)

(PB,SA) CV 52 61 42 33 60 134 62

TABLE III. Results of multiple pair-wise comparisons using the Dunn test with Holm correction on acoustic characteristics between populations. Significant

differences are noted by “*.” Species names abbreviated to first letters of genus and species only: Dephinus delphis (Dd), Tursiops truncatus (Tt), Tursiops

aduncus (Ta). Populations abbreviated as follows: Plettenberg Bay (PB) and Zanzibar (ZB).

Pair-wise

comparisons Statistics

Start

frequency

End

frequency

Minimum

frequency

Maximum

frequency

Frequency

range

Inflection

points Duration

Dd Tt P (adjust) <0.0001* <0.0001* <0.0001* <0.0001* 0.0024* <0.0001* <0.0001*

Ta (ZB) P (adjust) <0.0001* 0.0105* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001*

Ta (PB) P (adjust) <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001*

Tt Ta (ZB) P (adjust) <0.0001* <0.0001* <0.0001* <0.0001* 0.0826 <0.0001* <0.0001*

Ta (PB) P (adjust) <0.0001* 0.0510 <0.0001* <0.0001* <0.0001* <0.0001* <0.0001*

Ta (ZB) Ta (PB) P (adjust) 0.0173* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001*
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with a CV of 38%). The correct classification scores were

slightly greater for Zanzibar North (59.3% 6 SD 18.0) com-

pared to Zanzibar South (46.1% 6 SD 21.5).

E. Analysis IV: Assessing the effect of regional
differences in training and testing data

We re-ran the species classifier, observing the influence

of using training and testing data from different T. aduncus
populations. The findings from this analysis were contradic-

tory. In a species classification where the classifier was trained

to discriminate whistles of T. aduncus using data from

Zanzibar but tested with T. aduncus data from Plettenberg

Bay, the correct classification score for T. aduncus decreased

by 14.4% compared to if it was trained and tested with

Zanzibar data. This confirmed our hypothesis that classifica-

tion success would decrease if there was geographic variation

in training and testing datasets (Table VII). However, the clas-

sifier trained with recordings from T. aduncus from

Plettenberg Bay and tested with Zanzibar data exhibited a

small increase in classification success (�3%) compared to if

the classifier was trained and tested with data from

Plettenberg Bay, resulting in a perfect correct classification

score of 100% for T. aduncus under this scenario (Table VII).

F. Analysis V: Influence of BP sounds on classification

A total of 161 BP sounds were visually detected from

the sub-sampled files. Among those visual detections, 16

were falsely detected in the PAMGuard WMD. Therefore

10% of BP sounds recorded were falsely identified as seg-

ments in the WMD (Table VIII). There were slight differ-

ences in the BP sound detection per species, with the BP

sounds from D. delphis most likely to be falsely detected by

the WMD. However, as the number of BP sounds recorded

was much lower than whistle sounds, the overall false posi-

tive detections were very low, representing just 0.3% of the

total number of detections by the WMD (range 0%–0.7%

depending on species). Consequently, false detection of BP

sounds is considered unlikely to influence whistle classifica-

tion accuracy.

IV. DISCUSSION

This study was motivated by the increasing interest in

applied acoustic research in Africa, and particularly the

growing field of PAM of cetaceans in the southern African

subregion. A key goal was to determine whether commonly

encountered near-coast delphinid species (D. delphis, T.
truncatus, and T. aduncus) from this region could be readily

discriminated based on both standard whistle parameters and

using PAMGuard, a freely available and widely utilized

automated acoustic detection and classification system

(Yack et al., 2009; Oswald et al., 2011; Bittle and Duncan,

2013; Gillespie et al., 2013; Keating et al., 2015). An

TABLE IV. Summary of key acoustic parameters (mean 6 SD) of whistle contours from short-beaked common dolphins Delphinus delphis and long-beaked

common dolphins Delphinus delphis (*previously capensis) from available published studies.

Species Location N

Start

frequency

(kHz)

End

frequency

(kHz)

Min

frequency

(kHz)

Max

frequency

(kHz)

Frequency

range (kHz)

Inflection

points (n)

Duration

(s) Source

Delphinus delphis* South Africa 409 12.60 (4.62) 12.52 (4.71) 8.81 (2.00) 15.68 (4.02) 6.87 (3.63) 0.66 (0.43) 1.16 (1.31) This study

Eastern tropical

Pacific

174 10.87 (4.89) 14.46 (5.12) 8.48 (2.70) 16.21 (4.94) - 1.59 (3.29) 0.62 (0.34) Oswald et al. (2007)

Delphinus
delphis

Eastern tropical

Pacific

314 11.63 (4.84) 12.18 (4.38) 8.30 (2.69) 15.04 (4.39) - 1.64 (1.87) 0.70 (0.39) Oswald et al. (2007)

Celtic Sea 1835 12.02 11.97 9.45 14.68 5.24 0.64 0.65 Ansmann et al. (2007)

English Channel 435 12.64 12.48 9.80 15.83 6.03 0.56 0.64 Ansmann et al. (2007)

Mediterranean Sea 120 10.91 (3.53) 11.92 (2.90) 8.53 (1.94) 13.15 (2.70) 4.62 (2.74) 1.1 (1.2) 0.47 (0.29) Gannier et al. (2010)

Atlantic Ocean 514 13.02 (4.98) 11.77 (3.98) 8.14 (1.77) 16.74 (3.55) 8.60 (3.43) 1.06 (1.24) 0.95 (0.38) Papale et al. (2014)

Mediterranean Sea 188 11.90 12.17 8.31 16.08 7.76 2.03 0.92 Azzolin et al. (2014)

TABLE V. PAMGuard classification results for three species of delphinids

found in coastal areas of the southern African subregion. Numbers in paren-

theses are the SD of the estimates of correct classification rates. The final

column shows the results of a one-tailed t-test to test the null hypothesis that

the results are due to chance. Species names abbreviated to first letters of

genus and species only: Delphinus delphis (Dd), Tursiops truncates (Tt),

Tursiops aduncus (Ta).

Percent classified as

Dd Tt Ta P

Actual species Dd 86.7 (7.7) 12.9 (7.6) 0.3 (1.0) <0.001

Tt 19.4 (7.2) 79.0 (6.7) 1.6 (2.4) <0.001

Ta 0.4 (0.7) 3.3 (2.6) 96.3 (2.6) <0.001

TABLE VI. PAMGuard classification results for four populations of delphi-

nids with Tursiops aduncus from Plettenberg Bay (PB) and Zanzibar (ZB)

tested separately. Numbers in parentheses are the SDs of the estimates of

correct classification rates. The final column shows the results of a one-

tailed t-test to test the null hypothesis that the results are due to chance.

Overall classification success was 78.4%. Species names abbreviated to first

letters of genus and species only: Delphinus delphis (Dd), Tursiops trunca-
tus (Tt), Tursiops aduncus (Ta).

Percent classified as

Dd Tt Ta (PB) Ta (ZB) P

Actual

species

Dd 86.7 (7.6) 12.6 (7.5) 0.1 (0.6) 0.6 (1.3) <0.001

Tt 18.3 (6.2) 79.3 (5.9) 2.4 (2.7) 0.0 (0.0) <0.001

Ta (PB) 0.5 (0.9) 3.8 (3.3) 70.7 (8.6) 25.0 (9.7) <0.001

Ta (ZB) 0.1 (0.7) 0.1 (0.5) 22.8 (10.1) 77.1 (10.2) <0.001
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additional objective was to investigate the impact of docu-

mented geographical variation in whistle parameters on the

automated classification accuracy.

There was a distinct pattern in the whistle frequency

parameters ranging from higher to lower frequency whistling

species (D. delphis, T. truncatus, T. aduncus), with the end

frequency of T. aduncus from Zanzibar the exception.

Although there was overlap in the whistle parameters,

pair-wise comparisons demonstrated statistical differences

between them. We found that the PAMGuard classification

outcomes reflected the patterns observed in standard whistle

parameters. The overall correct classification score of 87.3%

to species on a high quality and representative dataset, com-

bined with the reasonable variability (SD� 7.7) demon-

strates the potential of automated detection and classification

in acoustic species recognition for southern African species.

Although other methods and programs may have delivered

similar results, we found the automated contour detection

feature of the PAMGuard WMD particularly useful and time

efficient for large acoustic datasets. Furthermore, we found

high correct classification scores to population,

demonstrating that PAMGuard is sensitive to intra-specific

geographic variation in whistle parameters and supporting

previous work using standard whistle parameters (Gridley

et al., 2012). Our investigation of PAMGuard and the poten-

tial sources of bias in its use provide a baseline on which

future studies can be developed.

The high classification scores in our three-species (four-

population) classifier can be explained in several ways. First,

this classifier only contained three to four groups, thus, limit-

ing the probability of misclassification (Gillespie et al.,
2013). Gillespie et al. (2013) report correct classification

scores ranging from 94.5% for a 4-species classifier to

58.6% for a 12-species classifier. Likewise, our three-species

classifier outperformed the four-population classifier. A

review of correct classification scores from multiple sources

demonstrate the negative linear relationship between the

number of species or populations involved in a classification

task and classification success (Fig. 3). As the acoustic space

occupied by whistles from different groups (species or popu-

lations) overlaps, classifiers involving more groups are

expected to have greater misclassification rates and lower

classification success (Gillespie et al., 2013). In the southern

African subregion, such species could include humpback

dolphins (Sousa plumbea) or pantropical spotted dolphin

(Stenella attenuata), although acoustic data from these spe-

cies in African waters are currently lacking.

Our study found excellent discrimination scores

between T. aduncus and T. truncatus (96%) with almost no

misclassification. Differences in frequency parameters in

Tursiops species have been reported previously (Hawkins,

2010; Gridley et al., 2012, this study) with T. aduncus gener-

ally having lower frequency whistles for most parameters

considered. However, this is the first study demonstrating

that species within the Tursiops genus can be reliably distin-

guished using automated contour classification techniques.

The accurate discrimination of T. truncatus and T. aduncus
from their whistle vocalizations is of particular importance

as these species are morphologically similar and occur in

sympatry and parapatry within the Indo-Pacific region. Our

correct classification scores (near certainty) using whistle

vocalizations for T. aduncus highlight the potential of this

method to distinguish between T. aduncus and T. truncatus.

However, our dataset used recordings from coastal T. trunca-
tus from Namibia and T. aduncus from South Africa. As we

have demonstrated, geographic variation in whistle

TABLE VII. PAMGuard classification results for the three-species classi-

fiers trained with T. aduncus data from one location, respectively, Zanzibar

(normal) and Plettenberg Bay (bold). Numbers in parentheses are the SDs of

the estimates of correct classification rates. The final column shows the

results of a one-tailed t-test to test the null hypothesis that the results are due

to chance. Final lines show classification rate when the trained classifier is

tested with T. aduncus data from the other location, respectively,

Plettenberg Bay and Zanzibar. Species names abbreviated to first letters of

genus and species only: Delphinus delphis (Dd), Tursiops truncatus (Tt),

Tursiops aduncus (Ta).

Percent classified as

Dc Tt Ta P

Training

Actual species Dc 87.0 (8.1) 12.9 (8.1) 0.1 (0.6) <0.001

87.4 (6.7) 12.6 (6.6) 0.1 (0.4) <0.001

Tt 16.2 (6.2) 83.5 (6.0) 0.3 (1.0) <0.001

17.0 (6.2) 81.0 (5.1) 2.1 (2.4) <0.001

Ta 0.0 (0.0) 1.2 (2.7) 98.8 (2.7) <0.001

0.1 (0.3) 2.4 (2.5) 97.6 (2.6) <0.001

Testing

Ta (PB) 0.52 15.1 84.4

Ta (ZB) 0.0 0.0 100.0

TABLE VIII. Summary of contour detection in analysis (V), including false detection of BP sounds by the PAMGuard WMD.

Species

Number of

files

Total length

(min) of

subsampled

data

Total number

of contour detections

by WMD

Overall contour

detection rate

(number detection/ min)

Number of

BP sounds manually

detected

Number of BP

detections by WMD

Proportion of

BP detections

Delphinus delphis 11 9.5 1687 178 50 12 0.007

Tursiops truncatus 46 23 405 18 47 2 0.005

Tursiops aduncus

Zanzibar

150 75 845 11 10 0 0.000

Tursiops aduncus
Plettenberg Bay

47 23.5 2318 99 54 2 0.001

Total 254 131 5255 — 161 16 0.003
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characteristics can interfere with classification success and

future classification trials should be conducted with record-

ings from offshore T. truncatus from South Africa to better

understand how accurately these can be distinguished from

the adjacent coastal South African populations of T. adun-
cus. Our results agreed with other studies demonstrating that

the whistles of Delphinus and T. truncatus can be misclassi-

fied at relatively high rates (e.g., 22% in Oswald et al.,
2007). However, these are species that due to morphological

and coloration differences are unlikely to be confused when

observed in the field.

Geographic variation in delphinid whistle characteristics

is well documented (e.g., Wang et al., 1995; Baron et al.,
2008; Hawkins, 2010) and may result from ecological differ-

ences, morphological or cultural variability between popula-

tions, as well as differences in ambient noise levels

(Morisaka et al., 2005; May-Collado and Wartzok, 2008).

We tested the influence of intra-specific differences in whis-

tle characteristics on classification success. The overall cor-

rect classification score in the four-population test fell

relative to the three-species classifier (and the level of classi-

fication uncertainty increased), as misclassification resulted

from confusion between the two populations of T. aduncus.

However, the species level classification remained largely

unchanged. Intra-specific variations in whistles characteris-

tics of T. aduncus between Zanzibar and South Africa have

been previously reported for all key frequency characteris-

tics, however, such differences are less than those observed

between species (Gridley et al., 2012) and the PAMGuard

output largely reflects this. Our results confirm that the whis-

tle classification method embedded in PAMGuard may be

useful in population discrimination and can take place with-

out affecting classification at the species level for the other

groups included in the classification trial. This could assist in

the PAM of both species and population units in areas where

the range of ecologically distinct units overlap, such as

where transient and resident killer whale ecotypes are found

in sympatry (Foote and Nystuen, 2008; Riesch and Deecke,

2011; Oswald et al., 2015).

Previous studies reported significant population structur-

ing in T. aduncus inhabiting Zanzibar North and Zanzibar

South based on mtDNA molecular analysis (S€arnblad et al.,
2011), however, there is movement of individuals between

these two localities (Gridley, 2011). The two-region classi-

fier performed poorly when tested using whistles from T.
aduncus recorded from North and South Zanzibar. Subtle dif-

ferences in several standard whistle parameters were observed

between these two regions and the results therefore indicate

that the PAMGuard whistle classification method is not as sen-

sitive as some traditional statistical methods for discriminating

between acoustically similar datasets. Oswald et al. (2007)

experienced a similar problem when trying to differentiate

between common dolphin species (D. delphinus and D. capen-
sis), and pooled their data in subsequent analyses.

Our study represents a rare attempt to quantify the

impact of intra-specific geographic variation in whistle char-

acteristics on species classification results. The correct clas-

sification score of T. aduncus varied when the classifiers

were trained with one population of T. aduncus and tested

with the other population (trained with Zanzibar population

and tested with South Africa population and vice versa). As

predicted, the classifier trained with Zanzibar data and tested

with South Africa data performed worse than if trained and

tested with Zanzibar data, and the resulting drop in classifi-

cation success was relatively large (14%). However, an

unexpected slight increase (3%) in classification success was

found for the classifier trained with Plettenberg Bay data and

tested with Zanzibar data. Examination of the misclassifica-

tion rates in the four-population classifier provides some

insight into this result. Whereas the Zanzibar population

exhibits almost no misclassification for T. truncatus or D.
delphis, the South Africa T. aduncus population exhibits a

3.8% misclassification rate with T. truncatus. Following on,

it seems logical to expect that when trained with data from

Zanzibar (a population so acoustically distinct from the two

other species that it displays almost no misclassification in

the classifier), and tested with South Africa (a population

showing more misclassification), the confusion rates increase

and correct identification scores reduce. Conversely, classifi-

cation rates increase when trained with data less distinct

from other species in the classifier and tested with data from

a more distinct population—driving the results to zero mis-

classification for this population. The results support the rec-

ommendation by Gillespie et al. (2013) to train and test the

species classifier with data from the region of interest in

order to obtain the most reliable results.

FIG. 3. (Color online) The success rates

from published whistle classification tests

run with different numbers of species

(red and blue squares show, respectively,

the results of this study for the three

species-classifier and the four-population

classifier; Steiner, 1981; Wang et al.,
1995; Matthews et al., 1999; Rendell

et al., 1999; Oswald et al., 2003; Oswald

et al., 2007; Roch et al., 2007; Gannier

et al., 2010; Caillat, 2013; Gillespie

et al., 2013; Azzolin et al., 2014; Parada

and Cardenal-L�opez, 2014; Lin and

Chou, 2015).
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The field of PAM is becoming increasingly important in

conservation management (Laiolo, 2010) and accurate spe-

cies classification is fundamental to this. Many terrestrial

and marine species can be recognized from the acoustic fea-

tures of their commonly produced call types (Parsons and

Jones, 2000; Fagerlund, 2007; Acevedo et al., 2009;

Heinicke et al., 2015; Noda et al., 2016). Geographic varia-

tion in the characteristics of species-specific sounds is

widely reported (Krebs and Kroodsma, 1980; Mitani et al.,
1999; McDonald et al., 2006; Delarue et al., 2009).

Therefore our results, demonstrating and measuring the

impact of geographical variation on acoustic classification

success and confirming the importance of using data from

the region of interest, may be applicable to other scientists

aiming to optimize classification accuracy using acoustic

data.

Most delphinids produce BP vocalizations (Popper,

1980; Herzing, 2000) and during analysis we observed the

harmonic structure of BP vocalizations being detected by the

WMD. On-axis energy content and off-axis distortion of

pulsed signals may lead to spectrogram detection of BP har-

monic content in the mid-frequency range, i.e., that which

overlaps with whistles. However, compared to whistles,

pulsed vocalizations are highly directional (Au, 1993) and

when recorded off axis can have lower received levels

(Branstetter et al., 2012). Therefore, although BP harmonics

can be detected by the WMD, our investigation demon-

strated a very low BP detection rate of 0.3%, unlikely to add

notable confusion to classification success at the species-

group level. However, as there is species-specific informa-

tion in the clicks of several dolphin species (e.g., Soldevilla

et al., 2008; Roch et al., 2011), whether BP sounds contain

species specific information that could increase classification

success warrants further investigation (Rankin et al., 2016).

This is the first study in Africa to describe the acoustic

features of whistles from Delphinus. The frequency of whis-

tles from South African Delphinus fell into the range of other

populations, although the duration of whistles reported in

our study is the longest (1.16 s). The taxonomy of Delphinus
is not well resolved globally and a recent study invalidated

D. capensis from southern Africa (Cunha et al., 2015). If

whistle frequency is correlated to genetic similarity, our find-

ings corroborate the lack of genetic differentiation in

Delphinus as we found little difference in the key frequency

parameters (such as minimum and maximum frequency) of

South African D. delphis and other populations of D. delphis
from the North Atlantic Ocean, Mediterranean Sea, and east-

ern Pacific Ocean.

This study represents a first step toward acoustic moni-

toring of coastal delphinids in southern Africa using auto-

mated acoustic techniques and will be particularly useful in

future PAM studies on the distribution and habitat use of del-

phinids in this region. Other commonly encountered species

are non-whistling (Heaviside’s dolphin, Cephalorhynchus
heavisidii, Morisaka et al., 2011), functionally non-whistling

(dusky dolphin, Lagenorhynchus obscurus, Vaughn-

Hirshorn et al., 2012, authors’ unpublished data) or are

known to whistle but there are no or very few recordings

available from southern African waters (e.g., killer whales,

Orcinus orca, Indian Ocean humpback dolphins, Sousa
plumbea). Future data collection should focus on collecting

data from those understudied species encountered in

southern African waters. In addition, to fully realize the

potential of PAM for cetaceans, careful data collection and

analysis is necessary to obtain critical values required for

acoustic density or abundance estimation such as whistle

rates, detection ranges, and detection probability (Marques

et al., 2013).

V. CONCLUSIONS

Achieving a high correct classification rate with a low

level of uncertainty is of crucial importance when monitor-

ing species acoustically for studies of habitat use or abun-

dance estimation (Caillat, 2013; Zimmer, 2011). PAMGuard

was able to correctly classify three commonly encountered

near shore species of delphinid with high classification rates

and reasonable levels of uncertainty. High species classifica-

tion scores and discrimination of macro-geographically sepa-

rated populations of T. aduncus was a key outcome,

especially as this species is regularly encountered in coastal

southern Africa and categorized as “data deficient” by the

International Union for Conservation of Nature (Hammond

et al., 2012). As geographic variation in whistle features

reduces classification reliability, further dedicated acoustic

data collection is required from delphinid populations within

the southern African subregion. Such work will facilitate the

monitoring of the species assemblage in near shore regions

of the southern African subregion using passive acoustic

methods.
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