APPENDIX 2 - FISHERIES AND BIODIVERSITY

2.2 Cruise Report Biodiversity Survey FV Zeearend

NAMIBIAN MARINE PHOSPHATE

NMP BIODIVERSITY VERIFICATION SURVEY

CRUISE: NMP Biodiversity Verification Survey
SAILING: Walvis Bay - 06:00 Wednesday 18th June 2014
RETURN: Walvis Bay - 09:00 Friday 27th June 2014

Prepared for:

Namibian Marine Phosphate (Pty) Ltd.

Prepared by:

Capricorn Fisheries Monitoring cc

August 2014

CAPFISH (Pty) LTD
Unit 15, Foregate Square. Table Bay Boulevard, 8002, South Africa
Directors: Japp, Wissema, Heinecken, Wilkinson, Ncongo
Co Reg. No. 2004 / 004844 / 07

CONDITIONS OF USE OF THIS REPORT COPYRIGHT © NAMIBIAN MARINE PHOSPHATE (PTY) LTD 2014 ALL RIGHTS RESERVED

© NMP 2014. All rights to the intellectual property and/or contents of this document remain vested in Namibian Marine Phosphate (Pty) Ltd. (NMP). This document is issued for the sole purpose for which it is supplied. All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of Namibian Marine Phosphate (Pty) Ltd, except in the case of brief quotations embodied in critical reviews and certain other non-commercial uses permitted by copyright law. For permission requests, write to Namibian Marine Phosphate (Pty) Ltd, addressed "Attention: Administration Manager," at the address below.

Email: info@namphos.com
127 Theo-Ben Gurirab Street
Walvis Bay
Namibia

contents

1	SUMM	ARY	1
2	PERSO	NNEL	1
3	OBJECT	TIVES	2
4	SURVE	/ DESIGN	3
5	TRAWL	ING GEAR AND SAMPLING EQUIPMENT	6
6	METHO	DDS	6
7	RESULT	rs	7
8	CRUISE	NARRATIVE	10
9	REFERE	NCES	13
Anr Anr	nexure 2. nexure 3.	Coordinates for the original and actual trawl stations. trawl duration (decimal hours) and depth are also shown. Summary of weight per species per station. Summary of numbers per species per station. Length frequency graphs for the main commercial species	14 15 17 19
f	ig	ures	
Figu	ure 1. ure 2. ure 3.	Location of the proposed target dredging sites SP-1 (20-year mine plan established), SP-2 and SP-3 within the Sandpiper phosphate licence area (ML 170). Location of the 24 stations (trawl lanes) within and surrounding SP-1. Total catch weight (kg) per 30 minute trawl and per swept area.	4 5 8
†	ak	oles	

Number (and where applicable weight) for all the species identified and recorded during the

biodiversity survey

Table 1.

9

1 SUMMARY

The FV *Zeearend* sailed from Walvis Bay, Namibia on 18th June 2014 to conduct a Biodiversity Verification Survey in the proposed marine phosphate target dredge area, Sandpiper - 1 (SP-1), which is located in the Mining Licence Area (MLA), ML 170. The survey was successfully completed on 27th June 2014. The primary objective of the cruise was to conduct a bottom trawl survey to assess the abundance, biodiversity and distribution of commercial and other demersal fish species, epifauna, seabirds and marine mammals. The duration of the survey was eight days, during which 24 stations were completed. Each station was sampled using a double codend monk trawl net with a 20 mm codend liner net (so that the smaller epifauna organisms were retained).

A total of 28 tonnes was caught in the trawl net with an average of 1.2 tonnes per station. A total of 48 species (fish, epifauna, seabirds and mammals) was identified during the survey, of which 31 comprised fish and epifauna species, 15 seabirds and 2 marine mammals. In terms of total numbers, the fish comprised 38 421 specimens, the epifauna 131 423, seabirds 2196 and marine mammals 323. These figures excluded red jellyfish (*Chrysaora fulgida*), which were not counted. Water column characteristics were found to be consistent with those expected in the region. South Atlantic Central Water was present throughout the survey and relatively low oxygen conditions were experienced near the bottom. In general throughout the survey the bottom water layers averaged 10.68 °C, which was 2.5-4 °C cooler than the surface water.

Objectives met during the survey included:

- Estimation of the abundance (density) of the main commercial species such as hake, monk, sole and horse mackerel;
- Collection of biological information (length, weight, sex, maturity stage, stomach content) on the commercial species;
- Collection, identification, weighing and photographing of epi-benthic species;
- Collection of environmental and hydrological data using visual observations and a CTD;
- Identification and recording of marine mammals and seabirds in the area; and
- Collection of baseline data (establishment of site information base) for future monitoring;

2 PERSONNEL

There was a team of six scientists and professional staff and support from the vessels crew. Professional samplers included specialists on epifauna (benthic), fish, environmental (CTD) and mammals and birds. In addition the team included two Namibian NatMIRC scientists who provided local knowledge and experience relating to Namibian species and conditions.

PERSONNEL	ROLE	NATIONALITY
Melanie Smith	Chief scientist	SA
Victor Ngcongo	Chief technician	SA
Dr Robert Williamson	Data manager	SA
Tim McClurg	Epifauna specialist	SA
Kate Munnik	CTD scientist	SA
Ester Nangolo	Scientist	NAM
Malakia Shimhanda	Technician	NAM

3 OBJECTIVES

To address the numerous questions and issues raised by the reviewers and other responses to the Namibian Marine Phosphate (NMP) Environmental Impact Assessment (EIA, 2012) (Japp, 2012: Appendix 1a. Namibian Marine Phosphate – Environmental Impact Assessment of Fish, mammals and seabirds: Proposed monitoring and verification of Impacts in the proposed Mining Area), a Biodiversity Verification Survey of the proposed area to be dredged (SP-1) was carried out. The survey design was aligned with standard scientific biomass surveys with randomly selected stations. The biodiversity survey, which investigated a very small part of the broader Namibian EEZ, responded to the concerns expressed by NMP specialist consultants (detailed in the EIA, Midgley 2012) and independent reviewers of the EIA, including MFMR. A primary concern raised being that the data provided by NatMIRC for the EIA had few historical data points inside the primary target dredge area of SP-1. The biodiversity survey served to augment the limited original baseline information significantly, allowing for improved confidence in the assessments of the impacts. The survey has provided comparative data to address the following issues:

- The biodiversity indicated in the EIA;
- Size structure of the main commercial fish species of the target dredge site and MLA compared with areas outside;
- Biological information on the main commercial species to verify if there are any notable deviations from the information and assumptions made in the EIA;
- To verify the spatial distribution and possible differences in the fauna in, and adjacent to, SP-1;
- Determine a recruitment index based on size and sex structure of the main species caught
 using a bottom trawl in, and adjacent to, SP-1 and to test whether the results deviated
 significantly from those determined by the EIA.

Essentially, the survey and verification report, (*CapFish 2014, Impact Assessment - Verification Phase: Fish , Mammals and Seabirds*) were designed primarily to quantify the biodiversity of the area and to compare this with the known information for the region. The survey also obtained commercial data on the target catch (monk), hake and bycatch species. This allowed for a rough estimate of spawner biomass and recruitment, creating a baseline for future surveys in the area if dredging proceeded. Specific objectives were to:

- Estimate the abundance (density) of the main commercial species such as hake, monk and horse mackerel;
- Collect biological information (length, sex, maturity stage, stomach content) from the commercially important/exploited species;
- Collect, identify and photograph epifauna species identify, collect and photograph epifauna species and at the same time determine the nature of the substrate and bottom profile;
- Collect environmental data using visual observations and a CTD;
- Record/identify the occurrence of surface species such as marine mammals and seabirds in the area;
- Collect baseline data for future monitoring.

4 SURVEY DESIGN

Mining Licence Area (MLA), ML 170 lies approximately 60 km offshore from Conception Bay in water depths of 190 to 300 m and covers an area of 2233 km². The phosphate deposits will be extracted by dredging up to 3 km² annually for the duration of the mining licence (20 years) in the target mine area described as Sandpiper-1 (SP-1). Subsequently with further approvals, mining could take place in the future in SP-2 and SP-3 (Figure 1).

The monkfish bottom trawler, FV Zeearend was used to sample 24 stations within, and in close proximity to, the target dredge area SP-1 (Figure 1). Stations were randomly selected by dividing the survey area into grid blocks (2.5 nm x 3 nm). In each grid block two stations were randomly selected using Microsoft Excel. Where possible, the first random position was selected and if there was a limitation then the next position on the list was selected. This process was continued until two stations were selected per grid block¹. Stations that were not suitable for trawling included those in water shallower² than 200 m, those inside the environmental reference site areas, and within 500 m of the oceanographic instrument mooring anchor.

The original locations of the stations were randomly selected such that a broad distribution of the entire SP-1, and just outside SP-1, would be sampled. However, given that trawling is limited to waters deeper than the 200 m isobath, most of the stations on the eastern side of SP-1 had to be relocated westward to deeper water. The survey coordinates in decimal degrees of the original and actual start and end trawl positions is given in Annexure 1.

-

 $^{^{1}}$ Note that two stations per grid block were selected to allow for one day and one night trawl per grid block

² Related to the survey permit conditions as issued by MFMR – Letter MFMR to NMP 060614

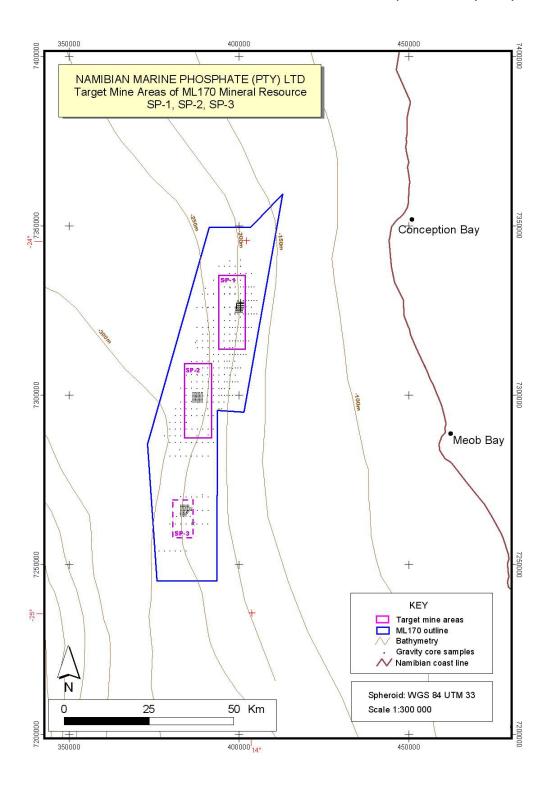


Figure 1. Location of the proposed target dredging sites SP-1 (20-year mine plan established), SP-2 and SP-3 within the Sandpiper phosphate licence area (ML 170).

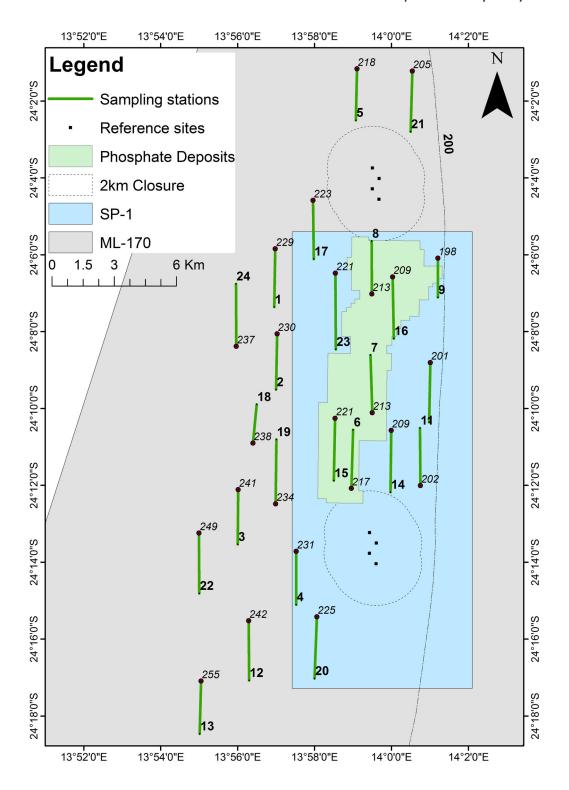


Figure 2. Location of the 24 stations (trawl lanes) within and surrounding SP-1.

Benthic sites refer to the environmental sample sites, which was closed (2 km around the sites) to survey trawling. Note all the stations were in water deeper than 200 m.

Trawl speed averaged three knots with trawl duration of 30 minutes, this being the time the net was in contact with the seabed. The trawls were orientated in a north/south direction and the distance covered at each station was approximately 1.5 nm. The length of the trawl wire was also recorded.

On average four stations were sampled per 24 hour period for the eight day survey period. Adverse weather conditions prevented sampling on one day. Twelve stations were sampled during the day between 07h00 - 17h30 and the remaining twelve during the night between 20h00 - 07h00. For daytime trawls the net was not deployed before sunrise and was raised approximately 30 minutes before sunset. In foggy or overcast conditions, these time restrictions were increased to 60 minutes after sunrise and 60 minutes before sunset. For night trawls the net was not deployed before sunset and was raised 30 minutes before sunrise. Time, location and depth were recorded per station.

5 TRAWLING GEAR AND SAMPLING EQUIPMENT

A commercial type Viking double-belly monkfish bottom trawl with a head length 86 m, footrope 108 m and vertical net opening 45 m was used. The distance between the wings during towing was approximately 40 - 50 m. The trawl was rigged with tickler chains along the footrope. The "Thyborun" trawl doors were 4.2 m square in size, weighing around 800 kg each. The codend mesh size was 120 mm but in order to retain small fish and epifauna fauna, a 20 mm inner-liner was integrated into the codend.

A Multi-probe internal logging conductivity, temperature and depth (CTD) recorder was encased inside a stainless steel protective housing and specially-designed net bag, which was attached to the head rope of the trawl net using shackles and cable ties. The CTD was lowered at every station with the trawl net through the water column to within 1 m of the seafloor. The CTD was fitted with temperature, conductivity and dissolved oxygen sensors. The CTD was removed after each trawl to download the data and check the unit.

Two digital scales tested and calibrated, were used in the onboard factory for measuring the quantities of the catch (fish and epifauna) and were calibrated to measure catch weight from 1 g to 50 kg.

6 METHODS

Processing of the catches was achieved through team work by all scientists and crew. Key components (principally fishes and jellyfish) were extracted first and the remaining material was then transferred to a sorting table where it was rigorously screened for epifauna.

The entire catch (or a subsample in the case of large catches) was sorted into species. Monk, hake, and sole were further sorted by sex. The total catch weights (kg) and number of each species (and sex where applicable) were recorded (Annexure 2 and 3). Length frequency (total length) data were collected for all commercial species (Annexure 4). For non-commercial species such as rat tails, only the weight and number of fish were recorded. If the catch was > 1.5 tonnes, the main fish species (hake, monk, sole and horse mackerel) were removed from the catch and the rest was sub-sampled by randomly selecting and measuring approximately 100 kg. Biological sampling of 15 fish per species

(individual weight and length measurements, sex, maturity stage, stomach contents) was done for hake and monk per station.

All invertebrate species retained by the net and landed as part of the catch were identified to the lowest possible taxon, counted and weighed. All large, whole epifauna species retained in the wings of the net were also included in the data counts. Photographs of invertebrates were taken for each trawl to provide an overview and a snapshot image of invertebrates occurring at each station

Density was calculated for each species per station using the swept area method. The swept area per hour at station, *SA*, was calculated by:

A total of 48 species (fish, epifauna, seabirds and mammals) was identified during the survey, of which 31 were fish and epifauna species, 15 were seabirds and 2 were marine mammals. In terms of total numbers the fish comprised 38 421 specimens, the epifauna 131 423, seabirds 2196 and marine mammals 323. These figures excluded red jellyfish (*Chrysaora fulgida*,) which were not counted.

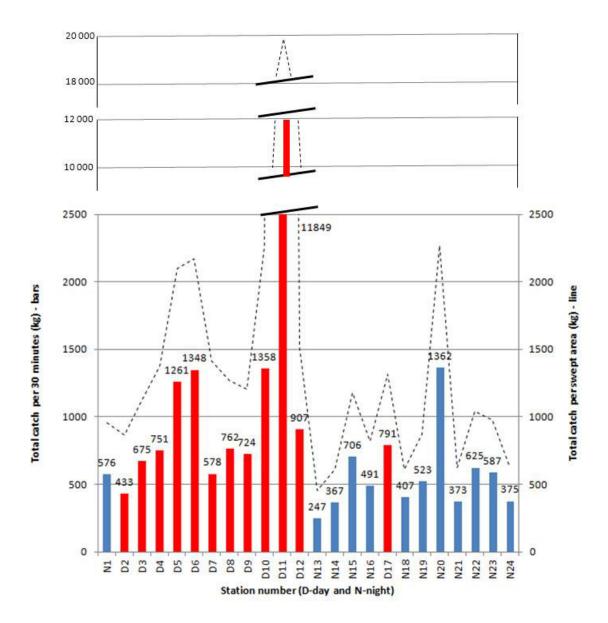


Figure 3. Total catch weight (kg) per 30 minute trawl and per swept area.

Note: Average catch per station is 1.2 tonnes per half hour and the average catch per swept area is 0.7 tonnes.

Station 11 was dominated by jellyfish and thus the maximum extent is not shown.

Table 1. Number (and where applicable weight) for all the species identified and recorded during the biodiversity survey

No	Common name	Scientific name	Weight (kg)	Number
Fish and	Pelagic Component			
1	Angelfish	Brama brama	3.06	2
2	Bonefish (long fin)	Pterothrissus belloci	3.23	17
3	Shallow water hake	Merluccius capensis	1920.89	13791.95
4	Goby (pelagic)	Sufflogobius bibarbatus	56.20	6564
5	Gurnard Capensis	Chelidonichthys capensis	0.60	2
6	Jacopever	Helicolenus dactylopterus	54.42	928
7	Jellyfish (purple)	Chrysaora africana	0.05	1
8	Jellyfish (red)	Chrysaora fulgida	17722.98	0
9	Jellyfish (white)	Aequorea forskalea	405.24	1959
10	Maasbanker	Trachurus trachurus	21.42	143
11	Mackerel	Scomber japonicus	8.38	4
12	Monk	Lophius vomerinus	1703.56	3565.76
13	Rat Tail Short Nose Rough	Coelorinchus simorhynchus	672.48	9530
14	Shark (bluntnose sixgill)	Hexanchus griseus	2.79	2
15	Squid (Angola flying)	Todarodes angolensis	174.29	1058
16	Squid (flying)	Toderopsis sagittatus	0.05	1
17	West Coast sole	Austroglossus microlepis	157.26	316.85
	Component	nustrogressus imerotepis	137.20	310.03
18	Hermit crab	Parapaguridae sp.	4.81	7
19	Mantis shrimp	Squilla sp.	19.64	853
20	Prawn	Funchalia woodwardi	0.06	6
21	Prawn (Solenocera)	Solenocera africana	0.00	70
22		Pseudocnus thandari	0.20	43
	Sea cucumber (white)		28.37	76612
23 24	Sea pen Ascidians	Verellidae sp.	4616.91	108813
		Molgula sp.		
25	Sponge (brown)	Porifera sp.	376.63	1334
26	Starfish (long armed)	Astropecten sp.	0.03	5
27	Starfish (short armed)	Odontaster australis	0.05	15 2612
28	Swimming crab	Bathynectus piperitus	113.36	2613 7
29 30	Whelk (dog)	Nassarius wolfii	0.01	/ 25
	Whelk (sponge)	Faciolariidae (plus sponge) sp.	2.82	
31	Whelk (tulip)	Fasciolariidae <i>lugubra</i>	7.23	188
	Component			
32	Sub Antarctic skua	Catharacta antarctica		436
33	Kelp gull	Larus dominicanus		1
34	Tern	Sternidae		1
35	Cape Gannet	Morus capensis		13
36	Cape cormorant	Phalacrocorax capensis		1
37	Storm petrel	Hydrobatidae		75
38	Albatross	Diomedeidae		33
39	Shy albatross	Thalassarche cauta		160
40	Black browed albatross	Thalassarche melanophrys		253
41	Yellow nosed albatross	Thalassarche chlororhynchos/carteri		9
42	Pintado petrel	Daption capense		19
43	Petrel	Procellaridae		10
44	White chinned petrel	Procellaria aequinoctialis		999
45	Shearwater	Puffinus		8
46	Sooty shearwater	Puffinus griseus		104
Marine	mammal Component			
47	Cape fur seal	Arctocephalus pusillus pusillus		73
48	Dusky Dolphin	Lagenorhynchus obscurus		250

The CTD with the attached temperature, salinity and oxygen sensors was attached to the trawl net to allow recordings to be collected simultaneously with trawling. The complete CTD report (CTD deployment report FV *Zeearend*. Lwandle 2013) can be found in Appendix 2: 2.3. In summary 22 of the 24 trawls undertaken during the biomass verification survey provided acceptable results for temperature and 19 trawls yielded reasonable salinity results (with exceptions being: Trawls 13, 14, 17, 20 and 21). The trawls where successful temperature and/or salinity data were recorded can be compared to the fisheries and biomass data from the respective trawls. Temperature profiles showed a well-mixed upper water column in most cases, with slight stratification occurring from Trawl 10 onwards. This is to be expected as the survey took place just after an extended period of rough seas and considerable wave action in the survey area. The weather conditions calmed significantly from Trawl 5 onwards and this may have allowed slight stratification of the upper layers of the water column. In general the upper water column was approximately 2.5 - 4 °C warmer than the near seafloor temperatures (>200 m). Temperature on or near the sea floor throughout the survey averaged 10.68°C. This is within the range of expected winter values for the region (Shannon and Nelson 1996).

Salinity and temperature data indicated the presence of South Atlantic Central Water (SACW) for the majority of the survey. SACW upwells from approximately 200 m below the surface with a salinity of 34.7-35.65 PSU and temperatures between 8 and 16°C (Shannon and Nelson 1996, Mohrholz *et al.* 2001, Duncombe Rae 2005). The dissolved oxygen levels near the seafloor for most of the trawls were low (approx. 3-10 %) as can be expected in the continental shelf zone offshore of Namibia (Monteiro and van der Plas, 1996).

8 CRUISE NARRATIVE

Wednesday 18 June 2014

All scientific personnel were on board FV *Zeearend* by 07h00 on Wednesday 18 June 2014. Emergency drills were conducted at 10h00. The vessel set sail at 07h40 rounding Pelican Point and heading southwards to the survey area. Winds were in a southerly direction (19+ knots) and sea conditions were moderate (1.8 m). It took seven hours to sail to the survey area - **Station 1**. The net was deployed at 17h50 and the entire operation including sampling took five hours to complete. Initially the CTD and frame were attached to the head rope of the trawl net above its mouth. In theory this was the safest place for the CTD to be positioned as it was clear from most of the metal tickler chains, bobbins and steel cabling. However, due to the configuration of the net setting gear and associated stern rollers, attaching the CTD to this position proved problematic. During the first deployment the CTD frame was rolled back onto one of the stern rollers as the net was being set. This caused damage to the steel frame but did not damage the CTD itself. For subsequent trawls the CTD was place higher up the top rope.

Station 1: Night trawl, depth 229 m.

Thursday 19th June 2014

No stations were conducted today due to unfavourable weather and sea conditions. Southerly winds reached 35 knots and waves were moderately high at 5.5 m. The CTD frame was bent back into shape and reinforced with steel rods.

Friday 20th June 2014

Favourable weather conditions - wind direction south, light breeze (11 knots) and small wavelets (0.2 m) therefore sampling resumed at **Station 2.** Operations were delayed for about 30 minutes to resolve problems with the calibration of the oxygen sensor on the CTD. In the end the CTD was deployed but the oxygen sensor was not working. Sampling was slow but thorough. The entire catch was weighed, counted and, for the commercial fish length frequency was measured. Hake and monk were staged and stomach content data collected. For **Station 3** the oxygen sensor on the CTD was repaired and calibrated. For subsequent trawls the CTD successfully collected temperature, salinity, oxygen and depth. Bag weight was relatively small (650 kg) and sampling was completed in 1.5 hours. A small six gilled cow shark *Hexanchus griseus* weighing 1.15 kg was caught. **Station 4** was dominated by ascidians (350 kg) thus hake, monk, sole, rat tails, squid and jellyfish were removed from the stocker pond first before the rest of the catch was subsampled i.e. 5 out of 19 bins⁴ were sorted and sampled.

Station 2: Day trawl, depth 230 m. Station 3: Day trawl, depth 241 m. Station 4: Day trawl, depth 231 m.

Saturday 21st June 2014

Very calm sea conditions with a light breeze from the west. It was decided that Station 5 would be conducted near the end of the survey if time permitted since we had already lost a sample day due to unfavourable weather conditions. All the stations sampled today therefore fell inside the phosphate deposit area within SP-1 (Figure 1). **Station 6** was a large catch >1.3 tonnes thus monk, hake, sole and jellyfish were removed first before the rest of the catch was subsampled i.e. 7/22 bins were sorted and sampled. White sea cucumbers (*Pseudocnus thandari*) were recorded at this station. For **Station 7** hake, monk, jellyfish, squid and sole were removed before 4/9 baskets were subsampled. This station had the highest abundance of gobies (*Sufflogobius bibarbatus*) and a single cape gurnard (*Chelidonichthys capensis*) was caught and measured. A large pod (about 150 individuals) of dusky dolphins (*Lagenorhynchus obscurus*) was sighted while the observer was keeping a continuous watch for marine mammals. They were leaping and swimming next to the bow of the vessel. **Station 8** was completed successfully; hake, monk and jellyfish were removed before the rest of the catch was subsampled.

Station 6: Day trawl, depth 217 m. Station 7: Day trawl, depth 213 m. Station 8: Day trawl, depth 13 m.

_

⁴ Note a full bin was approximately 30 kg.

Sunday 22nd June 2014

Sea conditions were glassy and very calm with no wind. The entire catch at **Station 9** was sorted and sampled (i.e. no subsamples were taken). Adult horse mackerel (*Trachurus capensis*) were caught at this station as well as several small starfish (*Odontaster australis*). During the mammal observations 100 dusky dolphins were sighted about 1700 m from the vessel. For **Station 10** the entire catch was also sorted and sampled. A decomposed dead seal was caught in the net and a large whale vertebra bone. **Station 11** was completely dominated by the red jellyfish (*Chrysaora fulgida*) with 11.8 tonnes caught while the net descended to the seafloor and therefore does not show a true reflection of the catch composition for that station. Nevertheless, the rest of the catch (50 kg) was sampled entirely and included two angel fish (*Brama brama*). **Station 12** was subsampled after removing hake, monk, rat tails, gobies, squid and jacopever from the catch.

Station 9: Day trawl, depth 217 m. Station 10: Day trawl, depth 198 m. Station 11: Day trawl, depth 202 m. Station 12: Day trawl, depth 242 m.

Monday 23rd June 2014

Sea conditions were very calm and water surface was like a mirror. No wind and no swell. For **Station 17** the hake, monk, jellyfish, squid and sole were removed and 4/12 bins were sorted and sampled. Two bonefish (*Pterothrissus belloci*) were found at this station. **Station 15 was** also subsampled after monk, hake, jellyfish and sole were removed and 4/16 bins sorted and sampled. For **Station 16** sea temperatures were warm with a CTD reading of 10 °C at the sea floor. To reduce the time spent removing the CTD from the net bag and frame a small hole was made for ease of access to the data port of the unit. 4/10 bins were subsampled for this station.

Station 17: Day trawl, depth - 223 m. Station 15: Night trawl, depth - 221 m. Station 16: Night trawl, depth - 209 m.

Tuesday 24th June 2014

Sea conditions were calm and glassy with a light breeze from the south-west. **Station 23** was subsampled and 4/13 bins were sorted. One prawn species (*Solenocera africana*) was found at this station. **Station 5** was a relatively large catch (>1.2 tonnes) dominated by ascidians and hake. Three adult chub mackerel (*Scomber japonicus*) greater than 50 cm were also found at this station. The entire catch was sorted at **Station 21**. A single lantern fish (*Lampanyctodes hectoris*) was found at this station but was not recorded given that it belonged to the unsorted sample. For **Station 14** the entire catch was sampled since night trawls appear to be smaller than day trawls. A different but not unique purple coloured jellyfish (*Chrysaora africana*) was found at this station.

Station 23: Night trawl, depth - 221 m. Station 5: Day trawl, depth - 218 m. Station 21: Night trawl, depth - 205 m. Station 14: Night trawl, depth - 209 m.

Wednesday 25th June 2014

Weather conditions picked up slightly with a gentle south-westerly wind (7 knots) and larger wavelets (0.7 m). **Station 13** was a particularly small catch (270 kg) thus the entire catch was sampled. The substrate was dominated by dead clam shells. 19/30 bins were subsampled for **Station 20** due to the

© NMP 2014 November 2014

Page 12

large amount of ascidians. **Station 19** was similar in biodiversity and abundance but 4/11 bins were sampled.

Station 13: Night trawl, depth - 255 m. Station 20: Day trawl, depth - 225 m. Station 19: Night trawl, depth - 234 m.

Thursday 26th June 2014

There was a switch in the wind direction from a gentle north-west breeze (7 knots) to a strong southerly wind (22+ knots) with 3 m waves. **Station 18** catch was fairly small and therefore the entire catch was sampled. During **Station 22** the oxygen readings on the CTD were recording unusual values, which could have been a result of being bumped slightly during deployments. Jacopever (*Helicolenus dactylopterus*) dominated this station. For **Station 24** the oxygen sensor was recalibrated and working well for the last station of the survey. Catch was fairly small but a subsample was taken.

Station 18: Night trawl, depth - 238 m. Station 22: Day trawl, depth - 249 m. Station 24: Night trawl, depth - 237 m.

9 REFERENCES

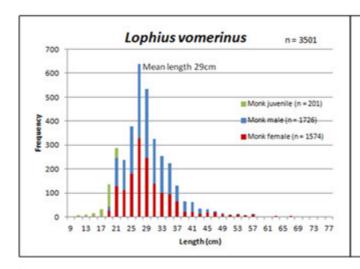
- Duncombe Rae 2005 Duncombe Rae CM. 2005. A demonstration of the hydrographic partition of the Benguela upwelling ecosystem at 26°40′S. *African Journal of Marine Science* **27**(3):617–628.
- JNCC (2010) Marine mammal recording forms (Detailed sighting records). Joint Nature Conservation Committee.
- Mohrholz *et al.* 2001 Mohrholz V, Schmidt M, Lutjeharms JRE. 2001. The hydrography and dynamics of the Angola Benguela Frontal Zone and environment in April 1999. *South African Journal of Science* **97**:199–210.
- Monteiro PMS, van der Plas AK. 1996. Low Oxygen Water (LOW) variability in the Benguela System: Key processes and forcing scales relevant to forecasting. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) *The south Atlantic: Present and past circulation.* Spinger-Verlag Berlin, Germany, pp 163–210.
- Shannon and Nelson 1996 Shannon LV, Nelson G. 1996. The Benguela: Large scale features and processes and system variability. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) *The south Atlantic: Present and past circulation.* Spinger-Verlag Berlin, Germany, pp 163–210.

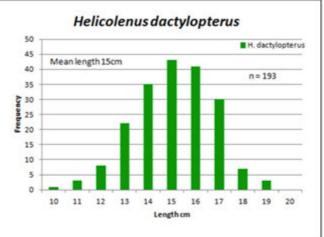
Annexure 1. Coordinates for the original and actual trawl stations. trawl duration (decimal hours) and depth are also shown.

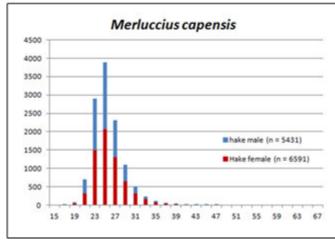
Station Number	Date Start	Time Start	Day or Night	Start Bottom Depth	End Bottom Depth	Trawl time (hr)	Original start latitude	Original start longitude	Original end latitude	Original end longitude	Actual start latitude	Actual start longitude	Actual end latitude	Actual end longitude
1	18-Jun-14	18:05	N	229	231	0.5	-24.09	13.95	-24.12	13.95	-24.10	13.95	-24.12	13.95
2	20-Jun-14	07:35	D	230	235	0.5	-24.13	13.95	-24.16	13.95	-24.13	13.95	-24.16	13.95
3	20-Jun-14	12:35	D	241	244	0.5	-24.19	13.93	-24.22	13.93	-24.20	13.93	-24.23	13.93
4	20-Jun-14	16:12	D	231	232	0.5	-24.23	13.96	-24.25	13.96	-24.23	13.96	-24.25	13.96
5	24-Jun-14	15:05	D	218	216	0.5	-24.30	13.98	-24.28	13.98	-24.02	13.99	-24.04	13.98
6	21-Jun-14	07:13	D	217	219	0.5	-24.20	13.98	-24.18	13.98	-24.20	13.98	-24.18	13.98
7	21-Jun-14	11:56	D	213	214	0.7	-24.18	13.99	-24.15	13.99	-24.17	13.99	-24.14	13.99
8	21-Jun-14	16:00	D	213	213	0.5	-24.13	13.99	-24.10	13.99	-24.12	13.99	-24.09	13.99
9	22-Jun-14	07:05	D	198	198	0.5	-24.10	14.03	-24.13	14.03	-24.10	14.02	-24.12	14.02
10	22-Jun-14	10:22	D	201	202	0.5	-24.14	14.03	-24.17	14.03	-24.15	14.02	-24.17	14.02
11	22-Jun-14	13:45	D	202	203	0.5	-24.20	14.04	-24.23	14.04	-24.20	14.01	-24.18	14.01
12	22-Jun-14	17:00	D	242	244	0.5	-24.25	14.02	-24.28	14.02	-24.26	13.94	-24.28	13.94
13	25-Jun-14	00:55	N	255	255	0.6	-24.28	13.99	-24.26	13.99	-24.28	13.92	-24.31	13.92
14	24-Jun-14	21:55	N	209	210	0.5	-24.20	14.00	-24.18	14.00	-24.18	14.00	-24.20	14.00
15	23-Jun-14	19:00	N	221	222	0.5	-24.19	13.98	-24.17	13.98	-24.17	13.98	-24.20	13.98
16	23-Jun-14	22:20	N	209	209	0.5	-24.13	14.01	-24.11	14.01	-24.11	14.00	-24.14	14.00
17	23-Jun-14	12:55	D	223	224	0.5	-24.08	13.97	-24.10	13.97	-24.08	13.97	-24.10	13.97
18	26-Jun-14	00:55	N	238	238	0.5	-24.16	13.94	-24.18	13.94	-24.18	13.94	-24.16	13.94
19	25-Jun-14	21:55	N	234	233	0.5	-24.18	13.95	-24.21	13.95	-24.21	13.95	-24.18	13.95
20	25-Jun-14	17:40	N	225	225	0.5	-24.26	13.97	-24.28	13.97	-24.26	13.97	-24.28	13.97
21	24-Jun-14	18:55	N	205	205	0.5	-24.30	14.03	-24.28	14.03	-24.02	14.01	-24.05	14.01
22	26-Jun-14	18:52	N	249	252	0.5	-24.23	14.02	-24.21	14.02	-24.22	13.92	-24.25	13.92
23	24-Jun-14	01:35	N	221	221	0.5	-24.21	14.03	-24.18	14.03	-24.11	13.98	-24.14	13.98
24	26-Jun-14	22:15	N	237	235	0.5	-24.10	14.04	-24.08	14.04	-24.14	13.93	-24.11	13.93

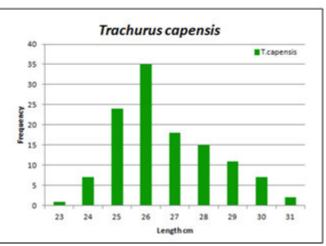
Annexure 2. Summary of weight per species per station.

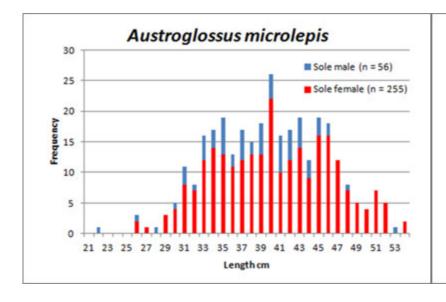
Station Number		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Sampling Time (Day/Night)		N	D	D	D	D	D	D	D	D	D	D	D	N	N	N	N	D	N	N	N	N	N	N	N
Water Depth at start (m)		229	230	241	231	218	217	213	213	198	201	202	242	255	209	221	209	223	223	238	234	205	249	221	237
Fish and Pelagic Component	Common name																								
Aequorea forskalea	Jellyfish (white)			15	4		13	17	25	39	53		32	61	6	29	13	10	13	29	11	5	30	5	3
Austroglossus microlepis	West Coast sole (female)	11	4	4	3	7	6	5	4	1	2	1	6		7	6	7	2	7	21	9	4	4	7	
Austroglossus microlepis	West Coast sole (male)	1		1	1	2	1	1	1		1	1	2		1	2	2	1	0	1	9	1	0	1	
Austroglossus sp.	Sole															0									
Brama brama	Pomfret											3													
Chelidonichthys capensis	Cape gurnard							0		0															
Chrysaora africana	Jellyfish (purple)										0														
Chrysaora fulgida	Jellyfish (red)	180	132	123	243	113	673	480	232	567	1165	11800	463	96	101	122	161	311	105	112	56	215	169	144	110
Coelorinchus simorhynchus	Rattail (short nose rough)	18	44	34	20	77	14	6	11	4	4		39	8	12	52	17	54		55	16	25	79	44	42
Helicolenus dactylopterus	Jacopever			5									7	5									35		3
Hexanchus griseus	Shark (bluntnose sixgill)			1														1							
Lophius vomerinus	Monk	37																							
Lophius vomerinus	Monk (female)	44	62	39	40	38	49	27	35	31	19	14	52	7	31	33	19	60	36	45	23	34	58	39	47
Lophius vomerinus	Monk (juvenile)					1	1	1	1				2		3	1	1	1	1	4	2	2	1	2	2
Lophius vomerinus	Monk (male)	46	63	34	32	37	31	21	29	14	15	8	52	10	13	36	15	39	24	42	21	20	87	39	44
Merluccius capensis	Hake	104	37		14	197																0			
Merluccius capensis	Hake (female)	14	38	33	48	56	66	51	73	32	41	7	87	12	42	35	31	57	17	26	41	26	33	42	31
Merluccius capensis	Hake (male)	15	30	32	35	46	39	38	43	17	21	2	57	7	36	30	20	46	8	16	23	25	31	32	17
Pterothrissus belloci	Bonefish (long fin)				0	1										1	0	0					0	0	
Scomber japonicus	Mackerel					6															2				
Sufflogobius bibarbatus	Pelagic goby	3	1	2	1	2	1	7	3	1	2	0	4	1	3	3	6	2	4	3	2	4	1	0	2
Todarodes angolensis	Squid (Angola flying)	3	20	9	31	6	22	7	14	3	2	2	19	1	2	5	2	13		3	2	2	8		3
Toderopsis sagittus	Squid (flying)																		0						
Trachurus trachurus	Maasbanker							0		3	10	8	0												


Station Number		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Sampling Time (Day/Night)		N	D	D	D	D	D	D	D	D	D	D	D	N	N	N	N	D	N	N	N	N	N	N	N
Water Depth at start (m)		229	230	241	231	218	217	213	213	198	201	202	242	255	209	221	209	223	223	238	234	205	249	221	237
Epifaunal Component																									
Astropecten sp.	Starfish (long armed)													0											
Bathynectus piperitus	Swimming crab	3	3	2	5	12	9	4	5	3	5	1	3	5	8	7	6	4	2	3	9	8	3	5	3
Callianassa africana	Mud prawn								0																
Fasciolaria lugubris	Whelk (tulip)	0	0	0	0			3						6	0	0	0	0	0	0	0	0	0	0	
Funchalia woodwardi	Prawn												0					0							
Molgula sp.	Ascidians	69	56	317	347	644	368	175	280	6	17		62		100	324	185	162	146	131	1101		8	211	23
Nassarius wolffi	Whelk (dog)													0											
Odontaster australis	Starfish (cushion star)									0	0														
Paguridae	Hermit crab													5											
Porifera	Sponge (brown)	26	28	22		12	10	2	3	0	1		20	45	1	20	3	25		26	32	3	73	12	46
Pseudocnus thandari	Sea cucumber					0	0	0								0	0				0				
Pterygosquilla armata capensis	Mantis shrimp	1	1	1	1	1	1	1	1	0	0		1	2	1	1	1	1	1	3	1	0	3	2	0
Solenocera africana	Prawn													0					0	0					0
Veretellidae	Sea pen	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total Biomass (kg)		576	522	675	826	1261	1303	847	762	724	1358	11849	907	272	367	706	491	791	366	523	1362	373	625	587	375


Annexure 3. Summary of numbers per species per station.


Station Number		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Sampling Time (Day/Night)		N	D	D	D	D	D	D	D	D	D	D	D	N	N	N	N	D	N	N	N	N	N	N	N
Water Depth at start (m)		229	230	241	231	218	217	213	213	198	201	202	242	255	209	221	209	223	223	238	234	205	249	221	237
Fish and Pelagic Component	Common name																								
Aequorea forskalea	Jellyfish (white)			215	4		29	26	55	86	114		69	116	14	64	28	21	31	64	25	71	908	12	6
Austroglossus microlepis	West Coast sole (female)	16	6	7	5	15	11	6	13	4	5	3	7		17	15	19	5	13	31	20	12	6	15	
Austroglossus microlepis	West Coast sole (male)	1		1	4	6	2	3	2		2	3	3		2	5	5	2	1	2	13	4	1	2	
Austroglossus sp.	Sole															1									
Brama brama	Pomfret											2													
Chelidonichthys capensis	Cape gurnard							1		1															
Chrysaora africana	Jellyfish (purple)										1														
Chrysaora fulgida	Jellyfish (red)																								
Coelorinchus simorhynchus	Rattail (short nose rough)	165	441	427	284	1068	234	105	251	127	41		510	94	376	783	490	57		940	344	593	874	925	402
Helicolenus dactylopterus	Jacopever			83									108	83									615		39
Hexanchus griseus	Shark (bluntnose sixgill)			1														1							
Lophius vomerinus	Monk	94																							
Lophius vomerinus	Monk (female)	68	105	69	75	92	83	27	64	45	33	13	102	18	46	58	33	93	83	88	51	57	110	68	82
Lophius vomerinus	Monk (juvenile)					12	7	8	17				11		21	8	13	7	11	25	11	17	10	11	10
Lophius vomerinus	Monk (male)	86	127	81	73	90	71	33	62	26	42	15	133	24	34	72	41	91	67	94	52	45	176	85	90
Merluccius capensis	Hake	763	310		213	730																1			
Merluccius capensis	Hake (female)	79	287	254	322	347	586	264	566	272	350	43	513	63	307	275	206	434	87	156	286	149	176	297	149
Merluccius capensis	Hake (male)	112	250	260	234	329	385	234	385	163	230	17	470	44	285	251	163	376	57	115	206	166	209	271	98
Pterothrissus belloci	Bonefish (long fin)				2	6										3	1	2					1	2	
Scomber japonicus	Mackerel					3															1				
Sufflogobius bibarbatus	Pelagic goby	139	149	173	98	309	131	462	263	74	232	1	397	53	354	350	573	270	590	424	223	459	324	340	175
Todarodes angolensis	Squid (Angola flying)	52	134	70	174	18	148	24	99	16	18	12	115	4	9	26	14	66		11	9	5	25		10
Toderopsis sagittus	Squid (flying)																		1						
Trachurus trachurus	Maasbanker							1		24	67	50	1												


Station Number		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Sampling Time (Day/Night)		N	D	D	D	D	D	D	D	D	D	D	D	N	N	N	N	D	N	N	N	N	N	N	N
Water Depth at start (m)		229	230	241	231	218	217	213	213	198	201	202	242	255	209	221	209	223	223	238	234	205	249	221	237
Epifaunal Component	Common species																								
Astropecten sp.	Starfish (long armed)													5											
Bathynectus piperitus	Swimming crab	92	88	41	117	143	204	64	145	73	107	31	87	108	172	175	156	98	66	73	176	212	68	126	79
Callianassa africana	Mud prawn								1																
Fasciolaria lugubris	Whelk (tulip)	9	3	5	10			14						89	1	15	12		6	5	3	1	8	16	10
Funchalia woodwardi	Prawn												3					3							
Molgula sp.	Ascidians	3226	7760	1275	40371	9207	5435	10939	4001	89	242		884		209	4622	2638	2308	2314	1873	15728		109	3014	328
Nassarius wolffi	Whelk (dog)													7											
Odontaster australis	Starfish (cushion star)									10	5														
Paguridae	Hermit Crab													7											
Porifera	Sponge (brown)	219	285	46		97	22	11	7	1	1		42	85	5	41	23	51		164	165	17	151	91	95
Pseudocnus thandari	Sea cucumber					6	10	1								10	12				3				
Pterygosquilla armata capensis	Mantis shrimp	54	50	39	24	34	26	18	19	2	4		39	48	12	20	40	80	44	67	36	3	124	101	18
Solenocera africana	Prawn													3					31	32					4
Veretellidae	Sea pens	3240	3240	3240	2945	3240	3352	2209	3240	3240	3240	3240	3240	2945	3240	3240	3240	3240	3600	3240	3240	3240	3240	3240	3240
Total Counts		8415	13235	6287	44953	15752	10736	14450	9190	4253	4734	3430	6734	3795	5104	10034	7707	7205	7002	7404	20592	5052	7135	8616	4835
Numbers of Taxa		17	15	18	17	19	17	20	17	17	18	12	19	18	17	20	19	19	16	18	19	17	19	17	17


Annexure 4. Length frequency graphs for the main commercial species

