
Ant Colony Optimisation: From Biological
Inspiration to an Algorithmic Framework

Technical Report: TR013

Daniel Angus

dangus@ict.swin.edu.au

Centre for Intelligent Systems & Complex Processes
Faculty of Information & Communication Technologies

Swinburne University of Technology
Melbourne, Australia

April 21, 2006



1 Introduction

The Ant Colony Optimisation algorithm framework here-on referred to as ACO is a new algorithmic
framework which is inspired by the foraging patterns of biological ants. Any ACO algorithm (of
which there are many) serves to optimise some problem instance by generating a series of solutions
to the problem and using the utility (goodness) of these solutions to influence future solution
construction.

This report outlines the biological inspiration behind the development of the first ant-inspired
algorithms. The report then identifies two of these ant-inspired algorithms, their relation to the
biological models and offers a contrast and comparison between them. Finally the report describes
and analyses the ACO meta-heuristic framework to which a subset of ant-inspired algorithms belong.

The report is organised as follows. Section 2 describes the recruitment and foraging behaviour of
four species of ants. Section 3 identifies two ant-inspired algorithms: Ant Systems (AS) and ant
colony optimisation for continuous design spaces. Finally Sec. 4 defines the ACO meta-heuristic
framework and comments on the properties of the framework and it’s relation to ant-inspired
algorithms.

2 Biological Beginnings

This section outlines the biological inspirations underpinning the recent developments in ant inspired
search algorithms for optimisation. This section highlights specific characteristics of biological
models which have been used to develop optimisation algorithms as well as highlighting other
properties of the biological systems which may provide useful inspiration for the development of
new ant inspired algorithms.

2.1 The Cataglyphis and Ocymyrmex Species

It was mentioned briefly in the introduction that ACO is based on the foraging behaviour of
(biological) ants, i.e. how the ants locate and collect food. However so many species of ant exist, each
of which exhibits a distinctly different foraging behaviour, that it is more accurate to describe ACO
as being inspired by the recruitment strategy of ants which use chemical markers (pheromone
trails) to mark the location of a rich food source such as the Iridomyrmex humilus (Argentine ant)
species. Before elaborating on this point though let’s have a look at two different species of ant,
the cataglyphis and ocymyrmex ants of the Sahara and Namib deserts respectively.

The Sahara and Namib deserts are two of the most unforgiving environments on our planet, yet
two species of ants: the cataglyphis and ocymyrmex have evolved to fill this unique ecological niche
(For a further discussion of these species refer to [14]). Both of these species rely on the harsh
environment to provide them with food, since they search their local area for insects which have
succumbed to the extreme heat and stress of this harsh environment. What is interesting about
these ants is that they don’t use a chemical marker to recruit other ants to a food source rather
they use an internal memory to influence their own choice of a direction to travel from the nest.
The rules for movement of these species have been described as:
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• Continue to forage in the direction of the preceding foraging trip whenever this trip has been
successful in finding food.

• If foraging trip is unsuccessful then abandon this direction and randomly select a new di-
rection, decreasing the probability of doing so as the number of previously successful runs
increases.

This individual behaviour leads to an efficient (for this specific environment) foraging pattern which
in the absence of food will result in the ants searching the environment at random, or in the case of
food being found will subtract foraging resources away from the global pool of resources to exploit
this discovered food source until it is eventually consumed, at which point the colony will revert to
its initial behaviour with a slight bias towards searching previously promising areas. It is important
to note that this bias will only exist for the life of the ant which found food in this sector, and that
if food is found again in this biased area then this ant will die out reverting the colony back to its
initial completely random state.

Interestingly enough if one were to hypothesise about placing two different abundant food resources
within close and far foraging range of the colony that the emergent effect would be that the members
of the colony would split randomly between the resources and stick to one even though one resource
is better (i.e. The closer the food to the nest the quicker it is to forage from hence this resource
may be considered better). This is because with the simple model described above there is no
intra-colony communication mechanism, which would allow the colony to converge on the better
resource. This is not of concern however since these species have evolved to exhibit a decentralised
control which augers well with their inherently unstable and dynamic environment.

2.2 The Tetramorium Caespitum Species

Tetramorium caespitum ants are quite distinct from the desert dwelling ants described above (This
species and its recruitment behaviour is fully described in [12]). These ants have evolved to suit a
different ecological niche where food sources are plentiful and the desired effect is to optimise the
distribution of resources to maximise the food collection activity. These ants also rely on randomness
to influence their decision making behaviour, however with the absence of a long term memory they
rely more on intra-colony communication mechanisms to influence their foraging decisions.

This species of ant exhibits three distinct behaviours: group-recruitment, mass-recruitment and
random exploration. Group recruitment occurs when an ant finds a new food source, returns to
the nest and upon returning to the nest attempts to coerce other ants to follow it back to the
food source laying pheromone along the trail as they move. This group recruitment will eventually
lead to a mass-recruitment if the food source is large enough and the pheromone trail is reinforced
enough so that ants can begin to follow the pheromone trail unled. Random exploration can occur
at any stage where an ant following a pheromone trail decides to leave the trail to search virgin
territory in the hope of finding more food or a more efficient path to already discovered food. The
probability of such an event occurring is inversely proportional to the amount of pheromone and
directly proportional to the distance away from the nest.
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2.3 The Iridomyrmex Humilus (Argentine Ant) Species

The importance of randomness in the model above is to encourage exploration and avoid exploitation
of one food source (or collection path) neglecting other possibly more rich food sources or shorter
paths [5]. This emergent effect was perhaps most profoundly demonstrated in the double bridge
experiment performed by Denebourg et. al. [4]. In this experiment a single food source was placed
away from a nest of Iridomyrmex humilus ants and two bridges of unequal length connected the
nest to the food. Initially the ants were observed to use both bridges fairly equally to retrieve the
food, however eventually the majority of the colony favoured the shorter branch over the longer
branch. The researchers explained this emergent (autocatalytic) effect by the fact that a shorter
distance means that ants can forage on this path more quickly and over time this branch will be
positively reinforced with more pheromone.

3 Ant inspired search algorithms

The biological systems described in Sec. 2 are inherently simple on an individual ant level however
they all lead to complex emergent properties such as efficient resource allocation and shortest path
finding. More-so, these emergent properties exist without the requirement for centralised control
of colony resources. It is not unexpected then that these biological systems have attracted a lot of
attention in the field of biologically inspired computation leading to the development of a new sub-
field loosely referred to as ant inspired algorithms. This section outlines two of the first algorithms
inspired by (or loosely equivalent to) the biological systems described in Sec. 2.

3.1 Ant Systems

The double bridge experiment of Sec. 2.3 led to the development of three algorithms by Dorigo
et al. [8], Ant-density, Ant-quantity and Ant-cycle for application to the Travelling Salesman
Problem (TSP) [13]. In these algorithms each (artificial) ant iteratively constructs a solution to
the TSP by probabilistically selecting an edge to include in the growing tour based on a nearest
neighbour heuristic and an artificial pheromone which is adapted by the artificial ants as the search
progresses (much like the mass-recruitment process described in Sec. 2.2), the specific way that
this pheromone is added and adapted is what distinguishes these algorithms. After experimenting
with the three simple models Ant-cycle was shown to be the most effective at optimising the TSP
problems addressed. The Ant-cycle algorithm was later refined and reintroduced as Ant Systems
(AS) [9].

3.2 An Ant-inspired Vector-based Algorithm for Continuous Spaces

The ant colony metaphor for searching continuous design spaces proposed by Bilchev and Parmee [2]
references the double bridge experiment and the work of Dorigo et al. [8] as it’s inspiration, although
it is this author’s opinion that the cataglyphis and ocymyrmex species described in Sec. 2.1, are a
closer match.
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This algorithm starts by selecting a ‘nest’ (position) in a continuous n-dimensional space which is
found by running a global search process on the search domain. Vectors are projected at random
from this position into the local area around and a series of random (successively smaller) jumps
are made from these initial vectors until a termination criterion is met. If the resultant position is
better than the initial vector than the initial vector is replaced. This process is continually repeated
with higher quality (more promising) vectors allocated more computational resource than poorer
quality vectors.

This algorithm is essentially a local search algorithm which probabilistically selects a solution from
a population of solutions and makes a random change to it. The original solution is replaced if
the random change is beneficial, and the probability of selecting this solution as a starting point is
adjusted positively or negatively based on the result of the random change.

4 Ant Colony Optimisation

From a historical perspective, after the initial work by a few researchers the field of ant-inspired
algorithms grew rapidly with a variety of adaptations and novel applications to mostly combinatorial
problem domains. As a result the algorithms which had directly quoted Ant Systems as their
inspiration were grouped together under a common framework: Ant Colony Optimisation (ACO) [7,
10, 6, 3]. This section defines the ACO meta-heuristic framework, and offers comments on specific
features of the framework as well as a critical review of the utility of defining such a framework.

4.1 The Ant Colony Optimisation Meta-heuristic Framework

The ACO meta-heuristic framework (here-on referred to as ACO) can be applied to discrete opti-
misation problems having a finite set of components with connections between these components
(with associated costs). More than this there is also a set of constraints on what components and
connections compose a feasible solution, and each feasible solution is said to have a quality which
is calculated by a function of all of the component costs. For example an ACO algorithm can be
used to find solutions to a TSP problem since this problem is represented by vertices (components)
with edges (connections) connecting the vertices each with a unique cost, as well as a constraint
which states that all feasible solutions must include every vertex once (and only once).

ACO algorithms use a population of artificial ants to construct feasible solutions to a discrete
optimisation problem. The solutions are evaluated according to a fitness function and according to
a pre-defined rule implant their solution information in a global memory known as a pheromone
mapping where each component of the pheromone mapping corresponds to an individual connection
of the problem being optimised. As well as associating a pheromone value (or long-term memory)
on each connection a problem specific heuristic can be associated to each individual connection
based on a-priori information. These two values together form an estimate as to the utility of this
specific connection and bias its inclusion in future solution construction.

Each ant has several common properties (These properties are known as ants generation and ac-
tivity):
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• An ant searches for a minimum (or maximum) cost solution to the optimisation problem being
addressed.

• Each ant has a memory used to store all connections used to date, and so that the path can
be evaluated at the completion of solution construction.

• An ant can be assigned a starting position, for example an initial city in a TSP.

• An ant can move to any feasible vertex until such time that no feasible moves exist or a
termination criterion is met (usually correlating to the completion of a candidate solution).

• Ants move according to a combination of a pheromone value and a heuristic value which
are associated with every edge in the problem, the choice of where to move is usually a
probabilistic one.

• When moving from one vertex to another vertex the pheromone value associated with the edge
connecting these vertices can be altered (known as online step-by-step pheromone update).

• An ant can retrace a constructed path at the completion of a solution updating the pheromone
values of all edges used in the solution (known as online delayed pheromone update).

• Once a solution is created, and after completing online delayed pheromone update (if required)
an ant dies, freeing all allocated resources.

Beside these properties ACO is responsible for the scheduling of two other processes, pheromone
trail evaporation and daemon actions. The purpose of pheromone trail evaporation is to regulate
the amount of pheromone on all connections of the problem being addressed. It is probably best
described as a way of forgetting older information to allow newer (better quality) solutions to
be reinforced, rather than continually positively reinforcing the older (lower quality) solutions.
Daemon actions refers to any centralised process which cannot be performed by a single ant. An
example daemon action is a local optimisation procedure applied to an individual ants solution, or
the collection of global information to update the pheromone mapping, such as identification of the
best solution in order to give this solution’s components an extra amount of pheromone (off-line
pheromone update).

To summarise, ACO is described as being responsible for the scheduling of three processes:

• Ants generation & activity

• Pheromone trail evaporation

• Daemon actions

4.2 ACO and Other Ant-inspired Algorithms

The arguments for the introduction of ACO were to provide a unitary view of on-going research,
identify the most important characteristics of the algorithms which belong to the framework, define
a common nomenclature and therefore make future development more transferable. Ant-inspired
algorithms which do not form part of this framework, such as HAS-QAP [11], ant colony optimi-
sation for continuous design spaces (presented in Sec. 3.2) and the author’s own discrete history
ant systems (DHAS) [1] are left to be categorised as ant-inspired algorithms. It is said that any
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ACO algorithm is an ant-inspired algorithm however the converse is not true. Some of the common
properties of ant-inspired search algorithms are:

• Use of a common history repository (pheromone mapping) so that every solution component is
assigned a singular value (pheromone value) representing the desirability of using this solution
component in future solution construction.

• Stepwise solution construction. Starting with an empty solution (or in some cases a partially
built solution) incrementally add solution components until a termination criterion is met.

• Use of a population of multiple individual agents (ants) to construct candidate solutions
sequentially or in parallel.

So what does this mean for on-going research in the broader field of ant-inspired algorithms? There
still exists some contusion by researchers as to what to call their ant-inspired algorithm, and it is
often the case that ant-inspired algorithms are referred to as ACO algorithms even though this may
not be strictly true. This confusion is not unexpected though as the framework was defined in 1999
and it is reasonable that it take some time to adopt a correct mainstream usage.

4.3 Distribution in ACO

The argument can be made that if a daemon process is to be included in ACO this daemon action
may break the distributed nature of ACO. For a majority of daemon actions to be applied a
knowledge of the global pheromone structure is required and this does not lend itself to a distributed
history representation (as is the case with the biological inspiration). More than this, unless the
problem can be broken down into multiple sub-problems for distribution amongst multiple ACO
threads, the algorithm will not be able to be distributed, since any ant requires the entire pheromone
mapping at any time in order to construct a complete feasible solution drawing on the most up-to-
date pheromone information. This is not to say that ACO cannot be modified to be distributed,
but that the ACO framework as described in the literature is not inherently distributed.

5 Conclusions

This report has illustrated some of the simple biological ant colony behavioural models and their
powerful resultant emergent properties. The report then went on to show how these models were
adapted for search and optimisation applications in the field of biologically inspired computation.
Finally a framework for a subset of these ant-inspired search algorithms was highlighted and com-
ments about the framework offered.

There is no doubt that there will be more algorithms developed that are based on some (or many)
aspects of ant colonies. In fact before the very first ant algorithm was published two prominent
biologists (Hölldobler and Wilson, 1990) commented:

The neglect of ants in science and natural history is a short-coming that should be
remedied, for they represent the culmination of insect evolution, in the same sense that
human beings represent the summit of vertebrate evolution.
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Even though the quote was directed at the field of ecology it could be said that it is only in the past
10 years that the computational intelligence field has begun to tap into the power that ant-inspired
search has to offer. With further research the artificial ants should no doubt find their niche in
computational intelligence as they have in the real world.
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