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A B S T R A C T

An hypothesis predicting which woody species selected by elephant are at risk of local

extirpation is based on an understanding of elephant digestive physiology, foraging ecol-

ogy, attributes of individual plants and populations, and historical changes in ecosystems.

Elephant select items rich in cell solubles relative to availability for achieving maximum

throughput per unit time on account of their large energy requirement, hindgut fermenta-

tion with limited cell wall digestion, high passage rate, and inefficient recycling of micro-

bial protein. Accordingly, diet is predominantly green grass and herbs in the wet season,

green browse in the late wet and dry seasons, and bark and roots following leaf fall.

Increased consumption of woody material indicates nutritional stress. Bulls graze more

than cows and impact woody plants more when grazing deteriorates.

Species vulnerable to extirpation by elephant are those: whose attributes predispose

adults to pollarding, uprooting or ringbarking; adults coppice poorly, hence mortality

occurs; mortality is not compensated by regeneration and recruitment owing to the impact

of elephant and other agents; species have a restricted distribution; and poor dispersal abil-

ity constrains recolonisation. Threat of their local extirpation has increased because of an

increased probability of encounter with elephant attributed to artificial boundaries that

have constrained movement, and proliferation of water points that has reduced spatial ref-

uges for plants and weakened density-dependent regulation of elephant populations. Deg-

radation of grasslands, wetlands and riparian areas has forced elephant to subsist on

woody vegetation for a longer period of the annual cycle. A reduction in water points

should increase local elephant density and attendant density-dependent effects of

increased foraging distance, nutritional stress, calf and juvenile mortality, and predation,

and reduce reproduction. Eliminating human predation after 4000 years in some parks

has contributed to the problem. Mitigation of the threat of local extirpation should concen-

trate on configuration of boundaries, water provision, simulated predation, minimum

reserve size, and not pursue non-definable notions of elephant carrying capacity.
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1. Introduction

Elephant can have a dramatic impact on their habitat. The

‘elephant problem’ emerged in the 1960s on account of ele-

phant-mediated transformation of forest and woodland to

open savanna or grassland throughout Africa (summaries:

Eltringham, 1982; Owen-Smith, 1988; Spinage, 1994). These

dramatic changes in vegetation were brought about by ele-

phants, often in combination with other factors such as fire,

incurring elevated mortality of mature trees and suppressing

recruitment and regeneration. The problem was precipitated

by compression of elephant populations into parks in re-

sponse to expanding human settlement (Laws, 1970b; Cum-

ming, 1981a, 1982; Barnes, 1983b; Lewis, 1986; Hanks, 1979).

Concern prompted authorities to initiate culling of elephants

in a number of reserves in an attempt to halt woodland loss.

Thereafter poaching decimated elephant populations in east

Africa in the 1970s and 1980s (Eltringham and Malpas, 1980;

Douglas-Hamilton, 1987; Barnes and Kapela, 1991), which cur-

tailed woodland loss (Barnes et al., 1994; Leuthold, 1996), but

high elephant densities and associated woodland loss have

persisted in southern Africa (Conybeare, 2004). The validity

of concerns about increases in elephant populations, resis-

tance to culling, challenges that elephant ‘damage’ has been

ill-defined, and debate about the manner of savanna func-

tioning (Gillson and Lindsay, 2003), demand a greater under-

standing of the impact of elephant on vegetation.

Impact of elephants on woody vegetation has lead to con-

cern about possible extirpation of plant species and of animal

species whose persistence is dependent on forest or wood-

land habitat (Cumming et al., 1997; Fenton et al., 1998; Lom-

bard et al., 2001; Botes et al., 2006). The consequence of

elephant impact on woody species varies markedly from local

extirpation (Laws et al., 1975; Moolman and Cowling, 1994) to

persistence in the face of continued utilisation (Lewis, 1991;

Styles and Skinner, 2000). No clear prediction has emerged

about which woody species are prone to extirpation and un-

der what circumstances.
Further concern about elephant impact on biodiversity has

emerged in southern Africa over the past two decades. Ele-

phant populations have been re-established in a number of

small- to medium-sized reserves (<1000 km2) in order to (a)

serve the tourism industry, which involves conversion of live-

stock ranches to wildlife reserves, (b) expand the meta-popu-

lation, and (c) maintain key ecological processes through their

role as a keystone species (Western, 1989). Biodiversity con-

servation is now a key mandate for most reserves. This paper

catalogues such reserves with low elephant densities by com-

parison with some national parks, yet extirpation of certain

woody species is considered imminent although widespread

conversion of woodland may not have occurred. Elephant

and these threatened species have previously co-existed at

some spatial scale, begging the question of what ecosystem

changes have occurred to disrupt this relationship?

Management intervention has been constrained by lack of

a predictive ability about elephant–woodland relationships

for ensuring their co-existence with selected food species. Re-

search has progressed from the necessary descriptive studies

of elephant population numbers and trends, diet, and impact

on vegetation (summarised in Eltringham, 1982; Owen-Smith,

1988; Spinage, 1994), to study of plant–herbivore dynamics

(Laws et al., 1975; Caughley, 1976; Barnes, 1983a; Pellew,

1983; Dublin et al., 1990). Such study generally focussed on

dominant species rather than on plant diversity, but it has re-

vealed that sexes differ in their impact on woody vegetation

(Guy, 1976) as a consequence of the expected influence of a

twofold difference in body size on ecology (Owen-Smith,

1988), and should therefore be considered separately.

The aim of this paper is to develop an hypothesis of the rela-

tionship between elephants and vegetation that can predict

which species are vulnerable to local extirpation and under

what circumstances, and explain differences and consisten-

cies in patterns of elephant impact across a range of African

reserves and ecosystems. The hypothesis is founded upon a

functional approach to the elephant-vegetation relationship,

and is comprised of three main components. (1) The influence
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of body size, sex and digestive physiology on foraging ecology

in relation to seasonal variation in food supply is used as a basis

for predicting the selection and utilisation of vegetation types

and species by elephant. (2) The attributes of an individual

plant or plant population which render a plant species vulner-

able to local extirpation by elephant impact are predicted. (3)

The characteristics of a reserve or ecosystem that would

predispose a woody species to extirpation by elephant are

identified.

2. Elephant foraging ecology (developed by BC)

2.1. Elephant digestion

Body size and the nature of the digestive system of elephant

are used to provide a theoretical framework for predicting

their pattern of forage selection (following Hanley, 1982);

empirical evidence follows. Food requirement of an animal

increases with increasing body weight as a result of increas-

ing costs of maintenance and growth (Owen-Smith, 1988).

The absolute daily nutrient requirement of elephant is there-

fore larger than that of any other terrestrial mammal, and

that of a bull elephant greater than that of a cow. Conse-

quently, elephant need to ingest more nutrients per unit for-

aging time than smaller mammals, and bulls more than cows

or calves. Elephant should therefore favour food types that

permit a rapid rate of nutrient intake, which should be more

pronounced for bulls than for cows or calves.

From a herbivore foraging perspective, plant cells can be

divided into cell solubles contained in the cytoplasm and

cell wall material encasing the cytoplasm. Cell solubles,

which include proteins, sugars, starch and lipids, are di-

gested rapidly and almost completely. By comparison, cell

wall fibre, which includes hemicellulose, cellulose and

(mostly indigestible) lignin, is slowly digested. Elephants

are hindgut fermenters (Van Hoven et al., 1981). Unlike

ruminants, their digestive system does not have blocking

structures that limit the rate of passage of material through

the gut. Their retention time of ingesta is as short as 14 h

compared to 70–100 h in ruminants, even for coarse mate-

rial (Eltringham, 1982; Owen-Smith, 1988). Short passage

time results in fermentation of slowly digested cell wall

material, in particular cellulose, being limited, not owing

to inefficient digestion per unit time but to the limited time

spent digesting (Van Hoven et al., 1981; Meissner et al.,

1990). As a consequence of cell wall material not serving

as an important energy source, elephant should be more

reliant on easily digested cell solubles than herbivores

whose main energy source is derived from digesting cellu-

lose more completely. Dependence on cell solubles is

heightened by their inefficient recycling of microbial protein

compared with ruminants because of their hindgut diges-

tive system in which most microflora are lost in faeces (Ja-

nis, 1976; Hanley, 1982). The importance of cell solubles

combined with the poor rate of digestion of cell wall mate-

rial increases the importance of chewing for rupture of cell

walls and release of cell contents. Bulls exhibit slower in-

gesta passage rates than cows (Clauss et al., 2003) and

therefore can utilise food with high fibre content (e.g. grass)

more than cows (Buss, 1961; Guy, 1976). Rate of ingestion
should therefore be more important for foraging decisions

by bulls than by cows.

In summary, a rapid passage rate allows elephant to meet

their high absolute nutritional demands by maximising in-

take of foods rich in easily digestible cell solubles in order

to compensate for their short gut passage time, limited diges-

tion of cell wall, and inefficient recycling of microbial protein.

2.2. Nature of preferred food types

The preceding section predicts that elephant optimise their

diet by selecting food types offering the highest intake rate

of cell solubles, commonly indexed by digestible protein

(Owen-Smith, 1988). Intake rate is determined by protein con-

centration and ingestion rate, which can compensate for one

another. Protein concentration of browse can be up to twice

that of grass during the growing season and is more constant

over the annual cycle (Dougall et al., 1964; Field, 1971; Field

and Ross, 1976; Topps, 1997). Protein concentration of green

grass is high during the growing season when a high intake

rate can be achieved on account of herbage density, but pro-

tein concentration declines markedly as the dry season pro-

gresses (Field, 1971; Osborn, 2004). Intake of senescent or

structural material should be avoided because of its lack of

cell contents.

Short-term intake rate of digestible protein is influenced

by time to gather a trunk load, mass of a trunk load, handling

time (chew and swallow) per mouthful, and protein concen-

tration (distance and speed of travel between food patches

is assumed constant) (Spalinger and Hobbs, 1992; Farnsworth

and Illius, 1996, 1998). Elephant should prefer those foods

from which the greatest amount of digestible protein can be

sequestered per unit time. During the growing season, browse

usually has a higher protein concentration than grass and

handling times are similar, but a greater mass intake rate,

hence total digestible protein, is realised from grass because

larger trunkloads can be ingested than of woody foliage

(Clegg, unpublished data). Elephant select for soft, broad-

leafed grasses (e.g. Panicum, Urochloa) and soft-bodied herbs

with a high ratio of cell contents to structural material, whose

cell contents are relatively easily released with chewing, not

necessarily grasses selected by ruminants (Field, 1971; Wil-

liamson, 1975b). Ingestion rates of bark or woody roots are

the slowest because of the time taken to harvest and chew.

Food items can therefore be arrayed in terms of the potential

intake rate of cell solubles, from green grass swards offering

the highest to woody roots the lowest.

Bulls should utilise more grass longer into the dry season

than cows because their larger body size, hence larger mouth-

fuls (Stokke and du Toit, 2000) allows a greater rate of mass

intake that compensates for a lower density of cell solubles.

This prediction is consistent with the large proportion of a

bull’s diet constituted by green grass when it is available

(Buss, 1961; Guy, 1976), whereas cows concentrate on woody

browse (Barnes, 1982).

2.3. Seasonal variation in diet

The diet of elephant shows a strong seasonal pattern in

markedly seasonal environments that is consistent with the
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theoretical predictions presented above. Elephants character-

istically select green grass and herbs during the rainy season

when all food types are abundant, browse is eaten throughout

the year but intake of browse foliage increases with the onset

of the dry season when little green grass is available, and con-

sumption of bark and tree roots increases toward the end of

the dry season once browse foliage begins to fall (Buss,

1961; Napier Bax and Sheldrick, 1963; Laws, 1970a; Field,

1971; Poché, 1974; Wyatt and Eltringham, 1974; Laws et al.,

1975; Williamson, 1975b; Guy, 1976; Field and Ross, 1976;

Barnes, 1982; Owen-Smith, 1988; Viljoen, 1989; Ruggiero,

1992; Kabigumila, 1993; Tchamba and Seme, 1993; De Boer

et al., 2000; Osborn, 2004). Elephant will continue to feed on

green grass well into the dry season in those habitats (e.g.

swamps) in which it is abundantly available (Buss, 1961; Buss

and Savidge, 1966; Croze, 1974a; Wyatt and Eltringham, 1974;

Eltringham, 1977; Western and Lindsay, 1984; Lewis, 1986;

Tchamba and Mahamat, 1992; Kalemera, 1989; Kabigumila,

1993). High quality items like fleshy fruits and pods are highly

sought after but rarely available in substantial quantities

(Buss, 1961; Williamson, 1975b; Field and Ross, 1976; Lewis,

1986; Viljoen, 1989; Tchamba and Seme, 1993). This seasonal

variation in diet is consistent with elephant ensuring a near

maximum intake rate of material with a large absolute

amount of extractable cell contents relative to what is avail-

able. Bark is judged to be consumed mainly for its sugar-con-

taining phloem tissue, as it is most consistently utilised

during early spring when sap flow through phloem is most

active for flowering or leaf flush (Croze, 1974b; Williamson,

1975b; Field and Ross, 1976; Barnes, 1982; Childes and Walker,

1987; Owen-Smith, 1988; Swanepoel, 1993) and concentration

of secondary chemicals lowest (Styles and Skinner, 2000), and

relations between bark consumption and other nutrients

have been inconsistent (none shown in Anderson and Walker,

1974 or Thomson, 1975; greater nitrogen concentration of

cambial tissue in preferred species shown by Hiscocks, 1999).

The influence of body size and digestive physiology on for-

aging ecology thus have the potential to affect the success of

woody species. Elephant diet during summer, in particular of

bulls, should be composed mainly of green grass when it is

available. Their impact on woody plants should therefore be

lower during years with extended wet seasons or years with

above-average rainfall because green grass will be more avail-

able. When green grass is less available during drought years,

elephant (especially bulls) are forced to increase consumption

of woody leaves, bark and roots earlier in the season when

they are relatively the most palatable (Styles and Skinner,

1997, 2000), with a resultant increased impact on woody

plants (Napier Bax and Sheldrick, 1963; Williamson, 1975b;

Barnes, 1982; Lewis, 1991; Swanepoel, 1993; Osborn, 2004;

Birkett and Stevens-Wood, 2005). Owing to greater body size,

bulls are primarily responsible for pollarding, uprooting and

ringbarking (Guy, 1976; Barnes, 1982; Barnes et al., 1994; His-

cocks, 1999).

An elephant’s size and digestive system result in a hierar-

chy of selection for plant types, species, and plant parts in re-

sponse to seasonal changes in order to maintain a sufficient

rate of intake of food of adequate quantity and acceptable

quality. Populations in which the expected seasonal pattern

shows an increasing proportion of bark and roots being con-
sumed during the early dry or even wet seasons are likely to

be experiencing nutritional stress. Stressed, large bulls in par-

ticular will exercise greater damage on woody vegetation

(Guy, 1976; Barnes et al., 1994). The age and sex ratio of ele-

phant populations can vary substantially over time (Ross

et al., 1976; Aleper and Moe, 2006), with substantial declines

in the ratio of males to females as a result of poaching (Lewis,

1984). The consequences of such changes on the impact on

woody vegetation have yet to be described, but such an im-

pact has become increasingly apparent in southern African

reserves in which a re-introduced cohort of young animals

has matured simultaneously (Smallie and O’Connor, 2000).

3. Plant species: key determinants of
vulnerability to extirpation by elephant utilisation

Persistence of a plant species within a reserve depends on

whether the rate of recruitment and regeneration can match

the rate of adult mortality over time. The question is whether

elephant utilisation, alone or in combination with other

agents such as fire, drought, and other herbivores can force

a plant species toward local extirpation through elevating

adult mortality or decreasing recruitment or regeneration to

unsustainable levels. A list of species that may be heading

for local extirpation as a result of elephant utilisation was

compiled (Table 1). Its short length is considered to reflect

the lack of attention this issue has received. Attention has fo-

cused mainly on dominant species and a few icons such as

baobabs. Although some woodland in larger reserves may

have been lost, their dominant species may persist in coppice

form or regenerate easily (Lock, 1977; Pellew, 1983; Starfield

et al., 1993). For reserves in which plant diversity has long

been a key concern (e.g. Addo NP), there is strong evidence

that elephant have caused the extirpation of some species.

Similar evidence is emerging for a number of smaller reserves

in southern Africa (e.g. in Table 1: Ithala GR; Songimvelo GR;

Tuli GR).

Predicting which species are vulnerable to extirpation re-

quires consideration of the following:

(i) Is the primary impact of elephant on population dynam-

ics of plant species through elevating adult mortality,

reducing recruitment from shrubs/saplings, or reducing

seedling regeneration?

(ii) What attributes of an individual plant might affect its

selection and manner of utilisation by elephant, which

in turn might render it vulnerable to mortality or, con-

versely, provide tolerance of utilisation?

(iii) Is elephant impact on mortality, recruitment or regenera-

tion dependent on a synergy between elephant utilisation

and other environmental or biotic factors?

(iv) What attributes of the population biology or ecology of a

species might predispose it to local extirpation?

Elephant can incur mortality of adult woody plants or

shrubs through complete stem breakage (pollarding), ring-

barking, uprooting, or repeated, severe defoliation of foliage,

with pollarding and ringbarking being the most common

(Table 2). Recruitment of adults from shrubs has been impacted

in a similar manner (Leuthold, 1977; Dublin et al., 1990;



Table 1 – Plant species which have been extirpated, or are tending toward extirpation, across a range of African reserves

Reserve Species Description of reserve Elephant population Impact on plant species Source

Tsavo East NP,

Kenya

Adansonia digitata,

Boswellia hildebrandtii

MAR <500 mm; 13,000 km2;

flat basin with hills, few

perennial rivers

1.2 elephant km�2 in late 1960s; 15%

died in drought of 1970–1971;

subsequent poaching reduced

population to low density

Baobab killed at 2% per annum in 1967,

effectively extirpated by 1974; recovery post

elephant collapse unknown. B. hildebrandtii, a

species restricted to thicket, disappeared

from monitored plots

Laws (1970b), Leuthold (1977),

Van Wijngaarden (1985)

Commiphora spp. Dominant: 95% of adults and shrubs lost by

1976 (90–5 ha�1) between 1970 and 1974;

substantial regeneration potential; recovery

by 1994 following collapse of elephant

population

Leuthold (1977, 1996)

Lake Manyara

NP, Tanzania

Adansonia digitata MAR 750 mm; 90 km2; lake

basin with surrounding

flatlands rising steeply to

escarpment

4.9 elephant km�2 Minimal damage in 1969, 1% mortality per

year by 1981; absolute refuges on escarpment

preclude extirpation although slopes may be

cleared

Weyerhauser (1985)

Msembe,

Ruaha NP,

Tanzania

Adansonia digitata MAR 580 mm; 130 km2;

Commiphora–Combretum

woodland; ridge between

rivers

2.41 elephant km�2 in 1977;

population approximately halved by

poaching in 1980s; density in study

area maintained but with few bulls

Baobab density of 51 km�2 declined by 46%

between 1976 and 1982, but remained stable

thereafter as elephant bulls were poached

Barnes (1985),

Barnes et al. (1994)

Commiphora ugogensis Dominant species which declined from

�30 ha�1 in 1971 to 15 ha�1 in 1977 to 1–2 ha�1

in 1982; no regeneration; adults predicted to

disappear but coppices; decline of trees

arrested by poaching

Barnes (1983a, 1985)

Murchison

Falls NP,

Uganda

Rabongo Forest: many

species

MAR 1000–1250 mm;

3900 km2; river headwaters

in hill area

Small relict forest: trees ringbarked, grasses

penetrated, fire killed resprouts

Buechner and Dawkins (1961)

Queen

Elizabeth NP,

Uganda

Rhus natalensis

Bridelia scleroneuroides

MAR 600–1200 mm;

1979 km2; gentle topography;

perennial water abundant

Density up to 1.5 km�2 in wet season 100% and 77% ringbarking respectively;

predicted likely to disappear but regeneration

unknown

Field (1971)

Kalamaloue

NP,

Cameroon

Combretum aculeatum MAR 500–700 mm; 45 km2;

flat topography plus

floodplain

Floodplain was key dry season

habitat for elephant population in

north Cameroon; impact on

savannas increased post-1986

following desiccation of floodplain by

agricultural development

Was a dominant: by 1991 60% killed, 40%

damaged; regeneration also selected;

suggested as threatened because of loss of

floodplain habitat for elephant in winter

Tchamba and Mahamat (1992)

Nazinga GR,

Burkina Faso

Shrubs: Annona

senegalensis, Combretum

nigricans, Cassia

sieberiana; tree: Acacia

dudgeoni

MAR 880 mm; 940 km2; flat

topography (300 m asl)

Former dry season range of 5000 km2

system now used permanently

because water supplied; densities up

to 2.5 km�2

Near disappearance between 1986 and 1988

resulting from elephant and fire impact;

regenerative potential not assessed

Jachmann and Croes

(1991)

Chizarira NP,

Zimbabwe

Brachystegia boehmii 1910 km2; MAR 640 mm; B.

boehmii woodland occupies

10% of reserve on watershed

�1.0 km�2 in dry season of 1973, up

to 1.5 km�2 by 1980

Adult trees eliminated from patches by 1973;

B. boehmii woodlands lost by 1981; converted

to open Combretum woodland; coppice shrubs

have persisted but heavily impacted by fire

Thomson (1975), Cumming

(1981b, 1982), Starfield et al.

(1993)

(continued on next page)
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Table 1 – continued

Reserve Species Description of reserve Elephant population Impact on plant species Source

Senga Wildlife

Research Area,

Zimbabwe

Acacia robusta,

Brachystegia boehmii,

Grewia flavescens

MAR 640 mm; 373 km2; dissected

topography; southern boundary

of Chizirira NP

<1.5 km�2 until late 1970s, then

increased to 2.9 km�2

Acacia robusta (tree) and G. flavescens

(shrub) almost eliminated by 1973, not

reported on afterwards; B. boehmii almost

eliminated by 1998. Trees killed mainly by

ringbarking, resprouts killed by fire;

shrub killed by uprooting

Anderson and Walker

(1974), Conybeare (2004)

Tuli GR,

Botswana

Commiphora merkerii, C.

mollis, C. glandulosa, C.

tenuipetiolata, Lannea

schweinfurthii,

Sclerocarrya birrea

MAR 370 mm; �400 km2; mostly

gentle topography

Density in 1991 was 0.63 km�2;

gradual compression and

population increase over past

100 years

Species were relatively common; species

are not effective resprouters; no

regeneration; true local extirpation

Page, personal

communication,

University of KwaZulu-

Natal, Durban, South

Africa

Venetia-

Limpopo NR,

South Africa

Adenia spinosa MAR 370 mm; 350 km2; species

occurs in hilly terrain but no

inaccessible refuge

48 elephant introduced in 1991

(0.14 km�2)

Long-lived succulent; Limpopo valley

endemic; no regeneration; 73% mortality

by 2002 of an estimated population of 103

attributed to elephant

O’Connor, unpublished

data

Aloe littoralis Occurs on rocky and flat terrain Uncommon prior to elephant re-

introduction in 1991; none observed

during 2002 vegetation survey

Kruger

National Park,

South Africa

Aloe marlothii MAR �500 mm; small portion of

20,000 km2. Occurs on steeper

topography

Park established in 1905;

elephant maintained at

�0.4 km�2 until 1994; at 0.7 km�2

in 2005

This arborescent succulent lost before

1960; other browsing species (eland,

kudu, black rhinoceros) also implicated

Whyte et al. (2003)

Sclerocarrya birrea Lost from one habitat, similar trend in

others

Jacobs and Biggs

(2002a,b)

Addo Elephant

NP, South

Africa

Aloe africana, Euphorbia

mauritanica, Rhigozum

obovatum, 7 species of

endemic geophytes and

succulents

MAR 436 mm; 120 km2 for

elephant in 2005; gentle

topography; endemic succulent

thicket (conservation priority)

Park established in 1931 for 11

elephant; 2.2 elephant km�2 in

2005

A. africana lost; 80% loss of E. mauritanica

and R. obovatum; geophytes and

succulents: 19 species in elephant

exclosures, 12 species in park

Barrat and Hall-Martin

(1991), Moolman and

Cowling (1994), Lombard

et al. (2001)

Ithala GR,

South Africa

Acacia davyi, Aloe

marlothii, Cussonia

natalensis; Cussonia

spicata

MAR 790 mm; 297 km2; rugged

(350–1550 m asl)

Re-introduced in 1990; Reserve

density was 0.19 km�2 in 2000

but <half of reserve utilised

All on verge of extirpation from combined

impact of elephant, giraffe, black

rhinoceros, and other browsers

Bond and Lofell (2001),

Wiseman et al. (2004)

Songimvelo

GR, South

Africa

Aloe marlothii, Cussonia

spicata, Pterocarpus

angolensis

MAR 800–1400 mm (irt

topogaphy); 310 km2; rugged

(600–1800 m asl); harbours

significant plant diversity

Re-introduced from 1992, 36 by

1999; much of reserve not

accessible, hence concentrated

impact

Low levels of recruitment and high

mortality, utilisation not considered

sustainable

Steyn and Stalmans

(2001)

Welgevonden

GR, South

Africa

Aloe marlothii,

Elephantorrhiza burkei,

Pappea capensis

MAR �650 mm; 300 km2; rugged

on coarse, infertile sandstones

Small population re-introduced

in the 1990s

Severely impacted and likely to become

extinct

A. Parker (unpublished)

cited in Botha et al.

(2002)

Hluhluwe-

Imfolozi GR,

South Africa

Cussonia spicata MAR 600–1000 mm; �1000 km2;

rolling hills covered mainly by

savanna, some grassland and

forest

Re-introduced population of

about 390 (0.4 km�2) in 2006

Severely impacted by elephant and other

browsers

S. van Rensburg,

personal communication,

ecologist, HIP
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Table 2 – Level of elephant-related mortality for selected woody species illustrating the main manner in which mortality is inflicted

Species Reserve Mortality (%) Manner of mortality Comment Source

Acacia drepanolobium Sweetwaters GR, Kenya 1.9 pa Not described Rate between 1998 and 2001. Reserve is 92 km2;

elephant at 1.2 km�2

Birkett and Stevens-Wood

(2005)

Acacia erioloba Namib desert, Namibia 1.6 Ringbarking Accumulated mortality up until time of survey Viljoen and Bothma (1990)

Acacia gerrardii Kidepo NP, Uganda 10.8 pa 29% ringbarked; 61% pushed over Rate for trees >7 m in height between 1967 and

1972

Harrington and Ross (1974),

Field and Ross (1976)

Acacia nilotica Venetia-Limpopo NR,

South Africa

23.2 100% ringbarking Accumulated mortality by 1998 since re-

introduction of elephant in 1991/1994

MacGregor and O’Connor (2004)

Acacia senegal Serengeti NP, Tanzania 1.6 pa Ringbarking, crown removal, pushed

over, uprooted

Rate between 1968 and 1971, elephant feeding loci

sampled

Croze (1974b)

Acacia seyal Kalamaloue NP,

Cameroon

51 Crown removal and uprooting Accumulated mortality until survey, mainly 1986–

1991

Tchamba and Mahamat (1992)

Acacia seyal Waza NP, Cameroon 6 3% uprooted, 3% pollarded Snapshot survey Okula and Sise (1986)

Acacia tortilis Serengeti NP, Tanzania 6.3 pa Ringbarking, crown removal, pushed

over, uprooted

Rate between 1968 and 1971. Elephant feeding loci

sampled

Croze (1974b)

Acacia tortilis Serengeti NP, Tanzania 5 27% pollarding, 10.8% debarking, 2.1%

uprooted, 1.8% pushed over

Rate 1972–1982 Ruess and Halter (1990)

Acacia tortilis Lake Manyara NP,

Tanzania

5.3 pa Crown removal and ringbarking Rate 8.3% pa between 1975 and 1979, 4% pa

between 1979 and 1985; for adult trees

Mwalyosi (1987, 1990)

Acacia tortilis Sengwa WRA, Zimbabwe 86 Mainly ringbarking followed by borer

attack

Accumulated mortality until survey in 1973,

mainly from 1965

Anderson and Walker (1974)

Acacia tortilis Venetia-Limpopo NR,

South Africa

15.2 pa 50% pushed over, 35.7% pollarded, 7.1%

uprooted, 7.1% crown removal

Rate 1996–2000 following re-introduction.

Debarked trees died from subsequent pollarding

or uprooting

MacGregor and O’Connor (2004)

Acacia tortilis Tsavo NP, Kenya 15.8 pa Not described Rate of trees between 1970 and 1974, coincided

with drought

Leuthold (1977)

Acacia xanthophloea Serengeti NP, Tanzania 3.9 pa Ringbarking, crown removal, pushed

over, uprooted

Rate between 1968 and 1971. Elephant feeding loci

sampled

Croze (1974b)

Adansonia digitata Ruaha NP, Tanzania 2.7 pa Debarking and gouging Rate between 1976 and 1982, thereafter minimal

following poaching of bulls

Barnes et al. (1994)

Adansonia digitata Mana Pools NP,

Zimbabwe

7.25 pa Debarking and gouging Rate 1983–1987 close to permanent water, 0% far

from water

Swanepoel (1993)

Adansonia digitata Lake Manyara NP,

Tanzania

1.1 pa Debarking and gouging Rate for 1981, was 0% in 1969; smaller trees Weyerhauser (1985)

Adenia spinosa Venetia-Limpopo NR,

South Africa

72.8 in 5 years Detachment of plant at ground level,

gouging

Mortality preceding 2002 following re-

introduction in 1991

O’Connor, unpublished data

Aloe marlothii Songimvelo GR, South

Africa

2.9 pa Crowning 62.7%; pollarding 22.7%;

uprooted 18.8%

Mortality over 8 years since re-introduction of

elephant (0.18 km�2) in 1992/1993

Steyn (2003)

Androstachys johnsohnii Gonarezhou NP,

Zimbabwe

1.4 pa Not specified Rate between 1970 and 1983 Tafangenyasha (1997)

Balanites aegyptiaca Sengwa WRA, Zimbabwe 50 Crown removal and pollarding Accumulated mortality until survey in 1973,

mainly from 1965

Anderson and Walker (1974)

Balanites aegyptiaca Kalamaloue NP,

Cameroon

48 Crown removal and uprooting Accumulated mortality until survey, mainly 1986–

1991

Tchamba and Mahamat (1992)

Brachystegia boehmii Chizarira NP, Zimbabwe 18.3 pa 62% felled; 33% ringbarked; 5% uprooted Mean mortality for 1972/3 Thomson (1975)

Brachystegia boehmii Gwaai FR, Zimbabwe 2 Small pushed over, large ringbarked Accumulated mortality up until survey Campbell et al. (1996)

(continued on next page)
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Table 2 – continued

Species Reserve Mortality (%) Manner of mortality Comment Source

Brachystegia boehmii Sengwa GR, Zimbabwe 47 Ringbarking pronounced, pollarding and

crown removal

Accumulated mortality until survey in 1973,

mainly from 1965

Anderson and Walker (1974)

Brachystegia glaucescens Gonarezhou NP,

Zimbabwe

1.7 pa Not described Rate between 1970 and 1983 Tafangenyasha (1997)

Colophospermum mopane Gonarezhou NP,

Zimbabwe

4.7 pa Not described Rate between 1970 and 1983 Tafangenyasha (1997)

Colophospermum mopane Luangwa Valley NP,

Zambia

�8 pa 50% felled, 50% ringbarked 4% felled per year, estimates the same ringbarked Caughley (1976)

Colophospermum mopane Luangwa NP, Zambia 1.4 pa Uprooted,

ringbarked,

pollarded

Rate between 1982 and 1986; adults on east bank

of river

Lewis (1991)

Colophospermum mopane Luangwa NP, Zambia 0.5 pa 58% crown removal, 42% uprooting/

pushed over

Rate between 1982 and 1986; coppice individuals Lewis (1991)

Colophospermum mopane Sengwa WRA, Zimbabwe 22 Mainly pollarding, ringbarking minor Accumulated mortality until survey in 1973,

mainly from 1965

Anderson and Walker (1974)

Combretum aculeatum Kalamaloue NP,

Cameroon

60 Crown removal and uprooting Accumulated mortality until survey, mainly 1986–

1991

Tchamba and Mahamat (1992)

Commiphora spp. Tsavo NP, Kenya 24 pa Not described Rate of trees between 1970 and 1974, coincides

with drought (96% overall)

Leuthold (1977)

Commiphora ugogensis Ruaha NP, Tanzania 8.2 pa Mostly pushed over Rate between 1971 and 1982 Barnes (1985)

Cussonia spicata Songimvelo GR, South

Africa

5.6 pa Debarking 55.6%; pollarding 19.8%;

uprooted 16.7%

Rate since re-introduction (0.18 km�2) in 1992/

1993

Steyn (2003)

Delonix elata Tsavo NP, Kenya 12.4 pa Not described Rate of trees between 1970 and 1974, coincides

with drought

Leuthold (1977)

Euphorbia candelabrum Murchison Falls NP,

Uganda

5.7 pa Mainly ringbarking Rate between 1968 and 1973 Eltringham (1980)

Faidherbia (Acacia) albida Ruaha NP, Tanzania 6.67 Mostly ringbarked Rate between 1971 and 1984 Barnes (1983a,b)

Faidherbia (Acacia) albida Namib desert, Namibia 2.3 Ringbarking Accumulated mortality up until time of survey Viljoen and Bothma (1990)

Monotes glaber Sengwa GR, Zimbabwe 29 Mainly crown removal and pollarding,

some uprooting and ringbarking

Accumulated mortality until survey in 1973,

mainly from 1965

Anderson and Walker (1974)

Piliostigma reticulatum Kalamaloue NP,

Cameroon

39 Crown removal and uprooting Accumulated mortality until survey, mainly 1986–

1991

Tchamba and Mahamat (1992)

Pterocarpus angolensis Gwaai FR, Zimbabwe 13 Small uprooted, large ringbarked Accumulated mortality up until survey Campbell et al. (1996)

Pterocarpus angolensis Songimvelo GR, South

Africa

0.96 Ringbarking Mortality over 8 years since re-introduction of

elephant (0.18 km�2) in 1992/3

Steyn and Stalmans (2001)

Sclerocarrya birrea Kruger NP, South Africa 2.3 Ringbarking and pushed over (not

distinguished)

Rate between 1973 and 1979 for high elephant

density, low tree density region

Coetzee et al. (1979)
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Tchamba and Mahamat, 1992; Kabigumila, 1993; Höft and

Höft, 1995; Tchamba, 1995; Campbell et al., 1996; Holdo,

2003) and uprooting of regenerating individuals (<1 m high)

can be severe (Vesey-Fitzgerald, 1973; Anderson and Walker,

1974; Barnes, 1983a; Tchamba and Mahamat, 1992; Kabigu-

mila, 1993; Dublin, 1995; Tchamba, 1995; Western and Mai-

tumo, 2004; Birkett and Stevens-Wood, 2005). Regeneration

may also be indirectly impaired by elephant trampling when

a species grows in association with a highly selected species

(Lawes and Chapman, 2006).

Elephant exhibit strong species selection (Guy, 1976; Jach-

mann and Bell, 1985; Kalemera, 1989; Viljoen, 1989; Ruess

and Halter, 1990; Tchamba, 1995; Smallie and O’Connor,

2000; Holdo, 2003), but selected species may not be used in

a similar manner (Van Wyk and Fairall, 1969). The manner

in which an elephant may use a plant and the propensity of

that plant’s growth response to compensate for utilisation

should determine whether the plant survives. The manner

in which a plant is used depends, in part, on its attributes.

For woody trees, pollarding and uprooting result from an ele-

phant pushing against the main stem of a tree to gain access

to, and enable rapid harvesting of crown foliage and fruit, or

to expose roots (Croze, 1974a; Jachmann and Bell, 1985; Clegg,

unpublished data). (Proposals that bull elephants push over

trees for display (Guy, 1976; Hiscocks, 1999) are equivocal

(Croze, 1974a, p. 25).) Nutrient content of foliage, lack of toxic

compounds, and availability of foliage during the dry season

may all influence a tree’s attractiveness to elephant (Jach-

mann and Bell, 1985; Holdo, 2003). Whether the stem snaps

or the tree uproots depends primarily on stem size, strength

of stem wood, presence of a taproot, tensile strength of roots,

and inertness of the soil matrix. When pushed, a hardwood

stem in soft or sandy ground is likely to uproot rather than

be pollarded; bole diameter sets a limit to which stems can

be broken for any given wood density. A hardwood stem in

firm ground will snap or uproot depending on the strength

of the root system (Balanites aegyptiaca (Croze, 1974b)) or pres-

ence of a taproot (Guy, 1976; Eltringham, 1982). Root excava-

tion is more easily achieved in sandy substrates than in

heavy clay soils, hence species growing in sandy soils are

more likely to be dug up (e.g. Combretum species (Van Wyk

and Fairall, 1969; Hiscocks, 1999)).

Species vary considerably in the degree to which they may

be debarked depending on their attributes and growth strate-

gies, with toxic compounds in the bark preventing debarking

of some species (Sheil and Salim, 2004). Debarking of poten-

tially utilisable species depends on the ease with which bark

can be separated from the stem (resistance), whilst complete

ringbarking depends further on the structure and number of

main stems (avoidance). Species in a semi-arid savanna var-

ied from those with a clean bole and stringy bark that were

easily ringbarked, single boles whose bark has to be chiselled

off in small blocks that were eventually ringbarked, multi-

stemmed species with stringy bark that were easily debarked

but were protected from ringbarking on the inside of stems,

and a fine bark structure that limited debarking (O’Connor,

unpublished data). Only a sliver of bark need remain for a tree

to survive (Coetzee et al., 1979).

Mortality depends further on the ability of a plant to re-

grow following pollarding, debarking or uprooting. Species
whose adults lack sufficient coppicing ability (bud activation

and shoot regrowth vigour) would eventually die as a result

of severe elephant utilisation. Coppicing ability is determined

by the availability of buds around the stem base below the

common height of pollarding or ringbarking by elephant

(1–2 m), and depends on species identity and tree age (Abbot

and Loworeb, 1998; Luoga et al., 2004). Adults of some species

such as Colophospermum mopane have a strong coppicing abil-

ity (Lewis, 1991; Ben-Shahar, 1996; Styles and Skinner, 2000),

others a weak ability (e.g. Acacia tortilis, MacGregor and O’Con-

nor, 2004), and others do not coppice (e.g. Commiphora merk-

erii, O’Connor, unpublished data). Consequently in response

to elephant impact, C. mopane usually survives with the

exception of large individuals, the weak coppice growth of

A. tortilis usually dies within a year, and C. merkerii dies soon

after being pollarded. Strong coppicing ability (e.g. Brachyste-

gia boehmii) can ensure persistence following elimination of

adult woodlands (Thomson, 1975; Lock, 1977; Cumming,

1981b).

Whether a population with elevated adult mortality in-

curred by elephant would tend toward extirpation would de-

pend on whether seedling regeneration and recruitment are

sufficient for maintaining a population. Risk of extirpation

is expected to be greater for a population in which regenera-

tion is an infrequent event involving few seedlings compared

to ongoing regeneration of large numbers of seedlings. In sup-

port, most Acacia species heavily impacted by elephant (Table

2) have persisted on account of their regeneration ability

(Croze, 1974b; Leuthold, 1977; Vesey-Fitzgerald, 1973, 1974;

Pellew, 1983; Mwalyosi, 1990; Lock, 1993; Dublin, 1995; Wes-

tern and Maitumo, 2004). Rainfall, fire, and other herbivores

can complement elephant in limiting recruitment and regen-

eration to an extent that depends on species identity and hab-

itat. Forest or woodland has been converted to grassland in

moist or mesic regions as a result of the combined impact

of fire, elephant and other herbivores (Buechner and Dawkins,

1961; Laws et al., 1975; Pellew, 1983; Dublin et al., 1990; Star-

field et al., 1993), but a similar role of fire has not been re-

corded for semi-arid systems where its impact is

presumably too weak. For species in which seedling regener-

ation occurs mainly during a ‘wet’ year (O’Connor, 1995),

infrequent regeneration may occur (Jeltsch et al., 1996,

1997). Regeneration of a species restricted to a small habitat

selected by a small-bodied, herd-forming browser may be

limited to infrequent events when the browser species expe-

riences population die-off from disease (Prins and Van der

Jeugd, 1993).

It is speculated that some long-lived icon species are un-

der increased threat of local extirpation because of infrequent

regeneration related to climatic cycles. Climate over the Holo-

cene has alternated between century-long epochs of wetter,

warmer and drier, cooler conditions that differed in mean an-

nual rainfall by up to 200 mm (Huffman, 1996; Tyson and Par-

tridge, 2000; Gillson, 2004; Holmgren and Öberg, 2006). The

extended dry ‘Little Ice Age’ (1300–1800 AD) was interrupted

by short, intensely wet phases (Zawada, 2000; Lamb et al.,

2003). Based on uniform population size structures, it is sug-

gested that regeneration of species that can live for centuries

or a millennium, such as baobab Adansonia digitata (Swart,

1963) or leadwood Combretum imberbe (Vogel and Fuls, 2005),
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occurred mainly during wet epochs for populations toward

the drier end of their geographical distribution (e.g. O’Connor,

2001). High rainfall epochs have occurred with sufficient fre-

quency for populations to persist with punctuated regenera-

tion every few centuries. Such a species would be exposed

to an increased threat of local extirpation if elephant killed

off the adult population that could not be compensated by

regeneration until the next wet epoch, and the species lacked

long-lived seeds and is poorly dispersed. In support, the char-

acteristically mesic species Sclerocarrya birrea (Coates Pal-

grave, 1983) has been extirpated by elephant from the semi-

arid Tuli Block Reserve in Botswana but an abundant adult

population with no regeneration occurred on the adjacent

Venetia-Limpopo Nature Reserve prior to recent re-introduc-

tion of elephant after an absence of a century (Table 1). Future

re-establishment during a wet epoch will require dispersal on

account of its short-lived seeds.

Impacts on a population usually occur in a meta-popula-

tion context in which local extirpations can be compensated

by recolonisation (Hanski, 1999). The threat of local extirpa-

tion at a reserve level is heightened for species with a limited

meta-population structure, specifically narrow habitat speci-

ficity and restricted geographic distribution, an apparently

apt profile for a number of species listed in Table 1. Such pop-

ulation characteristics of a species selected by elephant could

predispose its population to rapid elimination through

heightened mortality. Recolonisation following extirpation

becomes dependent on the effectiveness of dispersal, which

is a function of propagule supply, efficacy of dispersal agent,

ease of seedling establishment and of growth. Species with

poor reproductive output (characteristically a few, large seeds)

and limited dispersal distances are particularly vulnerable

(O’Connor, 1991). For potentially vulnerable large-seeded spe-

cies, those with fleshy fruits (e.g. S. birrea, Commiphora spp.)

should be dispersed for greater distances by large, wide-rang-

ing mammals including elephant (Lewis, 1987; Babweteera

et al., 2007) or birds, respectively, than wind would disperse

those with large, winged pods (e.g. Pterocarpus angolensis) (Ta-

ble 1).

In summary, elephant may cause extirpation of a popula-

tion if (i) they select for a species whose attributes predispose

it to pollarding, uprooting or ringbarking; (ii) the species lacks

an adequate coppicing response hence mortality results; (iii)

regeneration and recruitment cannot compensate for ele-

vated mortality because of the impact of elephant, fire,

drought, or herbivory; and (iv) the species has a restricted dis-

tribution; and (v) recolonisation is constrained by poor dis-

persal ability of a limited number of seeds.

4. Local extirpation in relation to reserve or
ecosystem characteristics

4.1. Introduction

Plant species threatened with local extirpation by elephant

have previously co-existed with this mega-herbivore for mil-

lennia. This section proposes that changes in environment

or in key characteristics of some ecosystems or reserves

may have increased the threat of local extirpation to these

species.
4.2. System configuration: probability of encounter

An increase in elephant-related mortality of trees requires

that elephant encounter trees, the probability of which de-

pends on elephant density, size of the system and character-

istics of its environment. The probability of an elephant–tree

encounter can vary from zero for a tree growing in an inacces-

sible location to almost certainty for a tree located where ele-

phant pass daily. Probability of encounter is influenced by

both frequency and duration of visits, and resultant impact

on plants is influenced by seasonal timing of visits. Persis-

tence of a woody species should be ensured if it occurs partly

in spatial refuges from elephant. A spatial refuge is defined as

an area which decreases the probability of encounter between

elephant and a plant. A refuge may be absolute such that ele-

phant cannot physically access it, or it may be partial in

which elephant are less likely to access the site. An absolute

refuge can be provided by inaccessible topography such as

cliffs (e.g. Weyerhauser, 1985), but they are of limited occur-

rence. Rugged but accessible terrain is likely to provide a par-

tial refuge where there it is surrounded by gentle terrain with

forage because elephant prefer utilising less difficult terrain

(Thomson, 1975; Nelleman et al., 2002). Community composi-

tion may influence the degree of partial refuge afforded a spe-

cies. A vulnerable species within a poor foraging habitat is

less likely to be encountered than one in the midst of ele-

phant cornucopia because elephant show strong selection

for plant communities (Van Wyk and Fairall, 1969; Field and

Laws, 1971; Williamson, 1975a; Viljoen, 1989).

4.3. System configuration: reserve size and foraging area

In open systems, elephant commonly exhibit seasonal move-

ments or even long migrations in response to changes in

water and food availability that results in certain habitats

being used only on a seasonal basis (Buss, 1961; Buss and Sav-

idge, 1966; Laws et al., 1975; Williamson, 1975a; Leuthold and

Sale, 1973; Ross et al., 1976; Eltringham, 1977; Dunham, 1986;

Viljoen, 1989; Thouless, 1995; Leggett et al., 2003). Patterns of

movement and habitat selection differ between bulls and cow

herds (Jarman, 1972; Stokke and du Toit, 2002). Compression

of elephant into reserves or fixing of boundaries could deprive

elephant of access to a key seasonal habitat that would result

in an extended period of occupation of selected habitats with-

in a reserve. This in turn would increase the probability of

encounter of elephant with selected tree species and thus tree

mortality.

4.4. System configuration: surface water

The most important spatial refuge from elephant is distance

from water. Elephant drink on a near daily basis which re-

stricts foraging to within about 15 km from water (Conybeare,

2004). Plants occurring at greater than the maximum distance

enjoy an absolute refuge. Plants occurring toward the poten-

tial foraging range limit are afforded a partial refuge because

they are less likely to be encountered as a result of a greater

searching area and energetic influences on travelling dis-

tance. Limits on distance travelled from water differs between

bulls and cow-calf herds (Stokke and du Toit, 2002) as
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expected on the basis of energetic limitations related to body

size, with young calves limited to about 5 km (Young, 1970).

Absolute and partial refugia dependent on distance from

water have been consistently eroded in African reserves

through provision of artificial water points (Western, 1975;

Owen-Smith, 1996). These have been created to compensate

for loss of access to traditional watering areas, to ensure pro-

vision of water for all mammals during drought years, and to

increase the foraging area available to water-dependent ani-

mals (Van Wyk and Fairall, 1969; Cumming, 1981a). Reserves

derived from livestock ranches inherited a uniform distribu-

tion of water that served to maximise available range. The

net result is that no point may be more than a few kilometres

from water, former absolute refuges become partial refuges,

and probability of encounter between elephant and trees

within former partial refuges increases. This effect on acces-

sibility has been dramatic even in large reserves. In Kruger NP

(19,000 km2), addition of 310 water points resulted in 96% of

the reserve being within 8 km of water (Redfern et al., 2005);

artificial water points provided between 1936 and 1980 in-

creased the area of Hwange NP available to elephant from

35% to 75% (Cumming, 1981a).

Increased access of elephant to previously waterless habi-

tats will alter the frequency, timing and duration of utilisation

of woody vegetation. These habitats would previously have

been utilised occasionally by elephant during the wet season

when ephemeral water was available (Williamson, 1975a;

Conybeare, 2004). Browsing of foliage would have been the ex-

pected pattern of utilisation, but continued utilisation by ele-

phant exposes these species to an increased frequency of

debarking and uprooting during the dry season. Containing

the threat of local extirpation is therefore closely dependent

on maintaining the strength of partial and absolute spatial

refugia based on distance from water. Configuration of water

availability is one of the few actions available to management

through which impact on woody species in habitats not his-

torically accustomed to elephant utilisation can be reduced

or avoided.

4.5. Surface water availability: weakening of population
regulation

Density-dependent effects usually manifest in elephant pop-

ulations when numbers increase and resources decline as an

increased age of first breeding, a longer inter-calving period

(conception frequency), and increased calf and juvenile mor-

tality (Buss and Savidge, 1966; Laws et al., 1975; Laws, 1981), of

which neonatal mortality has the strongest influence on the

rate of population growth (Hanks and McIntosh, 1973). Den-

sity-dependent effects are heightened during drought events,

when entire cohorts of calves can be killed (Corfield, 1973;

Dudley et al., 2001). These effects are realised through local

density determined by available habitat in relation to water

(Owen-Smith, 1996). An increase in available water will in-

crease available habitat and thereby increase population size.

Conversely, removing artificial water will promote crowding

around remaining natural water sources, creating a high local

density that will intensify density-dependent effects resulting

from depletion of vegetation resources, loss of feeding time,

and physiological drains from increased energy expenditure
on travel for foraging (Owen-Smith, 1988). Vegetation near

perennial water will become heavily impacted. Plant species

that can tolerate, resist, or avoid impact should persist, which

may reflect the situation that once naturally prevailed assum-

ing high elephant numbers existed before ivory hunting dur-

ing the 19th century. The nature of these strategies for species

which are restricted to riparian habitats (e.g. Dunham,

1989a,b; Hughes, 1990; O’Connor, 2001) has yet to be

elucidated.

4.6. Historical vegetation change

Anthropogenic changes in vegetation over the past century

need to be accounted for when assessing elephant impact.

Degradation of grassland would result in increased utilisation

and mortality of the woody component because herbaceous

material is the mainstay of an elephant’s summer diet, espe-

cially bulls (‘Elephant foraging ecology’). Degradation would

deprive elephant of adequate grazing during summer as it is

characterised by compositional deterioration of a sward from

palatable, broad-leafed grasses to coarse, wiry grasses (O’Con-

nor, 1985) not selected by elephant, and by bush encroach-

ment (Van Vegten, 1983; Roques et al., 2001) that depresses

grass production (Smit et al., 1996). These patterns have been

most pronounced in semi-arid rather than in mesic environ-

ments. Small and medium-sized reserves can be degraded by

severe wildlife grazing pressure arising, in part, through pro-

vision of artificial water (Walker et al., 1987). Many private

wildlife reserves in southern Africa are derived from degraded

livestock areas whose poor grazing during summer can force

elephant to subsist year-round on woody vegetation (e.g.

Smallie and O’Connor, 2000).

Semi-arid regions experience a greater frequency of

droughts of greater duration than mesic areas, characterised

by reduced grass production (Dye and Spear, 1982; O’Connor

et al., 2001) but stable browse production (Kelly and Walker,

1976) although browse leaf fall occurs earlier (Dekker and

Smit, 1996). Drought years would therefore produce less her-

baceous material during the growing season for elephant,

resulting in them using woody plants earlier, and for longer,

in the dry season. Degraded semi-arid systems are therefore

predicted to be vulnerable to local extirpation of certain woo-

dy species because elephant would have to subsist almost

year-long on woody material. Tuli GR is a degraded semi-arid

reserve (Walker et al., 1987) in which a conspicuous number

of woody species have been extirpated (Table 1).

Riparian and wetland habitats can serve as key habitats for

elephant by providing forage of adequate quality at the height

of the dry season (Buss, 1961; Buss and Savidge, 1966; Jarman,

1972; Wyatt and Eltringham, 1974; Western and Lindsay, 1984;

Lewis, 1986; Tchamba and Mahamat, 1992; Kalemera, 1989;

Kabigumila, 1993). Catchment degradation, water extraction

and impoundments have impacted on the hydrological func-

tioning of rivers and consequent ecological functioning of

associated habitats (Hughes, 1988, 1990). Impoundments re-

sult in water and sediment retention, which attenuates floods

and deprives downstream floodplains and river banks of

water and sediment recharge that reduces production and

growing period, increases bank erosion, elevates tree

mortality, and desiccates wetlands (Dunham, 1989a,b, 1990;
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O’Connor, 2001). Catchment degradation results in increased

summer flows and reduced winter flows that increase ero-

sion, hence desiccation of floodplains and wetlands (Van

Wijngaarden, 1985). Foraging opportunities of elephant are

therefore compromised at a critical time of the year, which

should force them to rely on dryland browse earlier in the

season and for a greater duration. Consistent with this expec-

tation, elephant impact on dryland woody plants increased

considerably as a result of loss of floodplain through up-

stream irrigation in Kalamaloue National Park, Cameroon

(Tchamba and Mahamat, 1992), which formerly served as a

key dry season foraging area for elephant (Tchamba, 1995).

There has been an extended period during which woody

vegetation changed in the absence or lessened impact of ele-

phant and other herbivores (Dublin, 1995) owing to depletion

of elephant by hunting in the 19th century (Selous, 1972;

Croze, 1974a; Struthers, 1991; Whyte, 2001), impact of the

rinderpest pandemic (elephant were not affected) during

the late 19th century (Prins and Van der Jeugd, 1993), and

former use of many smaller reserves for livestock. Species

which expanded their habitat during this period (e.g. hills

onto plains) are expected to experience high impact as ele-

phant populations recover and reverse vegetation toward a

previous state.

4.7. Elimination of predation

Rate of population growth is sensitive to the population mor-

tality schedule (Hanks and McIntosh, 1973). Humans and

lions have historically been the most effective predators of

elephant. Elephant populations continue to increase in re-

serves lacking poaching or culling (Conybeare, 2004). It is pro-

posed that the absence of human hunting from many

reserves coupled with the manner in which an increased

availability of water has compromised predation by lion by

reducing stress on elephant calves and juveniles has contrib-

uted to current population growth rates of elephant.

Lion prey upon elephant calves and juveniles, especially

those weakened by travel (Owen-Smith, 1988; Ruggiero,

1991; Joubert, 2006). Calves are expected to be well pro-

tected from predation by a cow herd when foraging is re-

stricted to within a few kilometres of water (Western,

1975; Stokke and du Toit, 2002) because energetic costs

are reduced and body condition of even the youngest is

maintained. Foraging range from water of cow herds would

increase during the dry season, with increasing local den-

sity of elephant, and during drought years. The cost of this

increased energy demand on body condition is in relation

to body size. Calves expend proportionately a greater

amount of energy on travel than adults, and therefore be-

come considerably weakened and may die during drought

conditions (Owen-Smith, 1988). Calves would struggle to

keep up with the herd and become more vulnerable to pre-

dation by lion, hyaena or wild dog, which select for weak-

ened individuals (Kruuk, 1972; Schaller, 1972; Poché, 1974).

The impact of predation on population growth may not be

substantial because predated calves may have succumbed

anyway. Whatever its impact, it is less likely to be realised

in a system in which foraging distances have been reduced

through provision of water.
African elephant have been hunted by humans for at least

4000 years (Spinage, 1994) and proboscideans for �1.8 mil-

lion years since range expansion of Homo began (Surovell

et al., 2005). Pre-colonial hunting apparently targeted mostly

adults or sub-adults for meat and ivory whether using indis-

criminate pit-traps (Baldwin, 1967) or involving specialist ele-

phant hunters (Holman, 1967; Thomas, 1970). Humans also

created partial refuges for plants because elephant apparently

avoid areas of human settlement, as indicated by the diaries

of early European hunters (Baldwin, 1967; Selous, 1972;

Barnes, 1983b; Delegorgue, 1990; Struthers, 1991).

Lion predation of calves and juveniles and human preda-

tion of adults and sub-adults could complement density-

dependent regulation of elephant numbers, which needs to

be examined with a model that accommodates elephant

energetics on an age- and sex-specific basis in relation to for-

aging distance from water, elephant density, and a variable

supply of forage in relation to climatic variability. In the ab-

sence of such insight, it is conjectured that reinstating preda-

tion processes through configuration of water availability or

through simulation where lion are now absent could contrib-

ute to dampening elephant population growth rates.

5. Implications for management and
decision-making

Comment is offered on only those management issues di-

rectly related to the paper’s subject matter. A key challenge

for management has been to define a reserve’s carrying

capacity for elephant, but this concept is under attack (Gill-

son and Lindsay, 2003). We consider that elephant numbers

should not be the focus of attention for containing elephant

impact. First, the conventional notion of carrying capacity

addresses an inappropriate issue. It is concerned with the

number of herbivores that can be sustained, not the number

that will ensure persistence of threatened woody species,

loss of which is unlikely to affect the size of an elephant

population. Second, impact on woody vegetation differs be-

tween bulls and cows, and between juveniles and adults.

Third, determining the density of elephant appropriate for

ensuring persistence of threatened plant species is not prac-

ticable. It would depend on system configuration, reserve

area, climate, water availability, attributes of species, nature

of their utilisation by elephant, and would not be a fixed va-

lue on account of climatic variability. Finally, informal re-

view suggests that many plant species under threat of

local extirpation have become more exposed to elephant

utilisation as a result of provision of artificial water or re-

stricted movement of elephant.

We propose that management should concentrate on key

processes influencing potential extirpation of woody species.

Alteration of reserve boundaries to ensure continued access

to key habitats is highly desirable but difficult to achieve

(e.g. Western, 2002). Systems should be configured to ensure

that partial and absolute spatial refuges from elephant are

maximised, and that density-dependent processes control-

ling elephant numbers are reinforced. Limiting the distribu-

tion of water to historical sources, where practicable, is the

most pragmatic means of achieving both. Vegetation in the

vicinity of remaining water will be transformed (Van Wyk
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and Fairall, 1969; McShane, 1987; Thrash et al., 1991; Tafange-

nyasha, 1997) but the total area impacted is reduced. This

inevitable concentration of impact in the vicinity of historical

water sources would probably have prevailed in the past

(Skarpe et al., 2004). Increased local elephant density around

water and consequent increased foraging distance and weak-

ening of calves should intensify density-dependent effects

(Buss and Savidge, 1966; Laws et al., 1975; Williamson,

1975a; Laws, 1981; Owen-Smith, 1988; Ruggiero, 1992), and

facilitate predation (Ruggiero, 1991). Together these should

depress the rate of population growth and limit elephant den-

sities (Hanks and McIntosh, 1973). In addition, simulated pre-

dation is a common management practice for some smaller

reserves where large predators are lacking, and could be con-

sidered for elephant.

The content of this paper provides the following prediction

of the conditions that render a species most vulnerable to

extirpation in a small reserve: (a) terrain lacks topographic

refuges; (b) there are no absolute and only weak partial ref-

uges from elephant because distance from water is not a for-

aging constraint; (c) woody species of concern have limited

distributions and are restricted to selected foraging habitats;

(d) reserve is located in a semi-arid region that experiences

variable grass production, hence heightened utilisation of

woody material occurs; (e) reserve is a degraded semi-arid sa-

vanna in which suitable grass is infrequently available, hence

woody species constitute the mainstay of the diet; (f) the spe-

cies is highly selected, (g) frequently subjected to pollarding

or complete ringbarking, (h) lacks a coppicing ability so that

mortality usually results from pollarding or ringbarking, (i)

regenerates infrequently and usually in small numbers; (j)

grows slowly so that adults are not easily recruited, and (k)

is long-lived, regenerating only during wetter epochs and

not currently.

Extirpation of woody plants appears a reality for many

smaller reserves (Table 1), bringing into question the size

and state of reserves into which elephant are re-introduced

if local extirpation of plant species is to be avoided. An alter-

native is to accept extirpation of a species within a small re-

serve but to safeguard their persistence at a regional scale

by maintaining areas under alternative land uses (e.g. live-

stock ranching) which impact less on woody vegetation.

6. Conclusion

We have presented a mechanistic hypothesis to account for

the possible local extirpation of selected woody species by

elephant that scales from digestive physiology through to

ecosystem or reserve characteristics. This hypothesis is

equally applicable to the impact of elephant on woodlands

on which certain animal species are dependent. It awaits the-

oretical and empirical development and heuristic application

to individual cases for identifying inconsistencies, contradic-

tions, and necessary expansions. It is offered as a first step to-

ward formulating an approach for mitigation of elephant

impact in large and medium-sized reserves or for identifying

small reserves where it seems inevitable that local extirpation

of certain plant species will occur. Management tools are lim-

ited, but configuration of water supply provides a starting

template.
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