# WARMQUELLE GREEN SCHEME IRRIGATION PROJECT



# ENVIRONMENTAL MANAGEMENT PLAN

FEBRUARY 2021

PREPARED BY



&



CONSORTIUM

## **DOCUMENT CONTROL SHEET**

| Compiled By: |                |      |
|--------------|----------------|------|
| OUTRUN AND   |                |      |
| ALOE         |                |      |
| AGRICULTURE  |                |      |
| TECHNOLOGIES | J. T. MUKUTIRI | Date |
|              |                |      |
|              |                |      |
|              |                |      |

## **DISTRIBUTION LIST**

| Name                | Institution                             | Date<br>Received | Signature |
|---------------------|-----------------------------------------|------------------|-----------|
| Helao Shivolo       | Aloe Agriculture Technologies (Pty) Ltd |                  |           |
| Uushona<br>Ashipala | Dunamis Engineers & Project Managers    |                  |           |
|                     |                                         |                  |           |
|                     |                                         |                  |           |

# ENVIRONMENTAL MANAGEMENT PLAN WARMQUELLE/KHOWARIB IRRIGATION TABLE OF CONTENTS

| Section Description                                        | Page |
|------------------------------------------------------------|------|
| 1 INTRODUCTION                                             | 6    |
| 2 WARMQUELLE GREEN SCHEME STATUS QUO AND PLA               | NNED |
| ACTIVITIES                                                 | 6    |
| 2.1 Warmquelle                                             | 6    |
| 3 DESCRIPTION OF THE ENVIRONMENT AND PROJECT               |      |
| LOCATION                                                   | 9    |
| 3.1 Location                                               | 9    |
| 3.2 Soils of the project area                              | 9    |
| 3.3 Rainfall, humidity, temperature and evapotranspiration | 10   |
| 3.3.1 Rainfall                                             | 10   |
| 3.3.2 Humidity                                             | 11   |
| 3.3.3 Temperature                                          | 12   |
| 3.3.4 Demographics                                         | 12   |
| 3.4 Vulnerability to Food Insecurity                       | 12   |
| 4 ENVIRONMENTAL MANAGEMENT PLAN                            | 14   |
| 4.1 Guiding Notes Supporting the EMP                       | 23   |
| 4.1.1 Tanks                                                | 23   |
| 4.1.2 General safety of public and employees               | 23   |
| 4.1.3 Managing fuel and oil spills                         |      |

|   | 4.1.4 Detailed guidelines and conditions for managing loss of vegetation23 |
|---|----------------------------------------------------------------------------|
| 5 | EMERGENCY PREPAREDNESS AND RESPONSE PLAN25                                 |
|   | 5.1 Monitoring Plan29                                                      |
| 6 | CONCLUSION AND RECOMMENDATIONS29                                           |
|   | 6.1 Conclusion 29                                                          |
|   | 6.2 Recommendations30                                                      |
| 7 | ANNEXURES: PROJECT SITE PLANS AND DESIGNS31                                |
| 8 | ANNEXURES: SOIL AND WATER QUALITY TEST RESULTS 36                          |

# **LIST OF TABLES**

| Table 1: Warmquelle infrastructure status and respective planned activities. | 6  |
|------------------------------------------------------------------------------|----|
| Table 2: Environmental Management Plan                                       | 15 |
| Table 3: Emergency Preparedness and Response Plan                            | 26 |

# **LIST OF FIGURES**

| Figure 1: Image 1 -   | Silted water a | nbstraction weir a | t the source, Image 2    | - Water leakages      |
|-----------------------|----------------|--------------------|--------------------------|-----------------------|
| along the pipeline, I | mage 3 - Hea   | avily silted water | storage earth dam at     | Warmquelle. The       |
| pond is poorly sec    | ured, is a haz | zard to children   | from the community       | and deaths from       |
| drowning have beer    | า witnessed in | the past Source    | : Own images taken d     | during field visit. 7 |
| J                     | •              | •                  | mquelle, in relation t   | •                     |
| Figure 3: Regosols    | are the domin  | ant soils of the p | roject area. Source: C   | <i>)wn map.</i> 10    |
| Figure 4: Average     | monthly ten    | mperature, precij  | pitation and solar ir    | radiance for the      |
| Warmquelle            | area.          | Source:            | SASSCAL                  | Weathernet:           |
| http://www.sasscalv   | veathernet.org | g/weatherstat_mo   | onthly_we.php            | 11                    |
| Figure 5: The proje   | ct area's mon  | nthly average hur  | midity. Source: SASS     | CAL Weathernet:       |
| http://www.sasscalv   | veathernet.org | g/weatherstat_mo   | onthly_we.php            | 11                    |
| Figure 6: Kunene po   | opulation and  | relative proportio | on to the country's tota | al population13       |

#### 1 INTRODUCTION

The Environmental Investment Fund (employer) wishes to revive the Warmquelle Green Scheme Irrigation Projects in the Kunene Region on behalf of the Ministry of Agriculture, Water and Land Reform through a Design, Build, Operate and Transfer (DBOT) procurement process.

The work entails the DBOT of Warmquelle Green Scheme Irrigation Project in order to increase crop production as well as post-harvest life of crops.

Aloe Agri-technologies (Pty) Ltd, Outrun Consultants and Five Star Consortium were awarded the opportunity to implement the project and have prepared this Environmental Management Plan (EMP) in order to mitigate potential negative environmental impacts during the project's life cycle.

#### 2 WARMQUELLE GREEN SCHEME STATUS QUO AND PLANNED ACTIVITIES

This section presents the current state of the Warmquelle Irrigation Green Schemes, Existing Infrastructure, Project Location and the Planned Activities.

#### 2.1 Warmquelle

Table 1: Warmquelle infrastructure status and respective planned activities.

| Aspect / Infrastructure           | Status                                                                                                                       | Planned Activity                                                                                                             |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Water Source                      | Ongongo Fountain is the main water source                                                                                    | Rehabilitation of the pipeline: cleaning the pipeline and sealing leaks                                                      |
| Abstraction                       | The abstraction point comprises of the pipeline connected to a heavily silted weir at the fountain                           | Desiltation of the weir                                                                                                      |
| Water conveyance / transportation | Water is transported by a 6 km galvanized steel pipeline which has several leaks and suspected silt points along the length. | Replacing of conduits to prevent leaks, clearing sand from the pipes, building of concrete footings supporting the conduits. |
| Storage dam                       | Silted and broken boundary fence                                                                                             | Desiltation and fencing                                                                                                      |
| Crop production area              | Existing field area is clean and free of vegetation                                                                          | Land clearing on the additional 5Ha                                                                                          |

|                                                       | except for the additional 5Ha covered by Acacia trees.    | Installation of drip and micro-sprinkler irrigation systems Installation of 3500m <sup>2</sup> green houses, 3000m <sup>2</sup> net houses and 400m <sup>2</sup> nursery |
|-------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electricity                                           | On-grid electricity is available                          | No planned activities                                                                                                                                                    |
| Accommodation                                         | There is no staff accommodation onsite.                   | There are plans to build a 3 bedroomed house for the manager and 4 staff quarters rooms for agricultural interns                                                         |
| Administration, Warehouse,<br>Logistics and Equipment | Existing building is dilapidated and needs reconstruction | There are plans to construct a block to cater for offices, kitchen & canteen, cold storage facility and warehouse.                                                       |
| Hydrocarbon fuel (Diesel)                             | No fuel storage facility exists onsite                    | An above ground fuel storage tank (5000l) is planned.                                                                                                                    |



Figure 1: Image 1 - Silted water abstraction weir at the source, Image 2 - Water leakages along the pipeline, Image 3 - Heavily silted water storage earth dam at Warmquelle. The pond is poorly

secured, is a hazard to children from the community and deaths from drowning have been witnessed in the past Source: Own images taken during field visit.

#### 3 DESCRIPTION OF THE ENVIRONMENT AND PROJECT LOCATION

#### 3.1 Location

The project is planned for Warmquelle area located in Seisfontein, a settlement in the Seisfontein Constituency in Kunene Region. It has a population of 7,358 inhabitants. The project is taking place in the Kunene Region of Namibia, sub-Saharan Africa's driest country rocked with persistent droughts and erratic rains over the past decades. Kunene Region is the country's most drought affected regions.

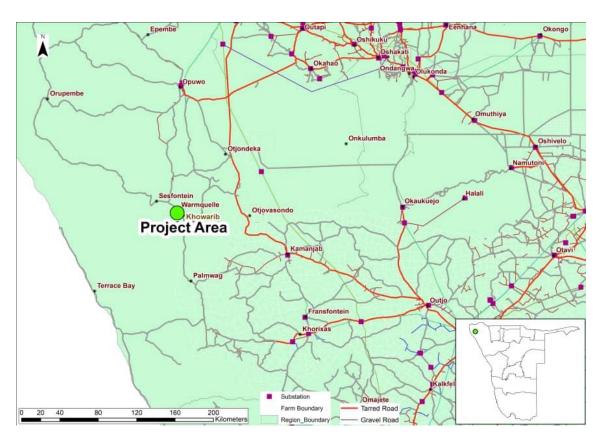



Figure 2: The location of the project area, Warmquelle, in relation to major towns in Namibia. Source: Own map.

#### 3.2 Soils of the project area

The soils of the project area comprise of a combination of regosols and unconsolidated sandy soils. These soils have a poor water holding capacity and requires frequent watering depending on the temperatures. They are characterized by low clay and organic matter content making them poor in nutrients / fertility.

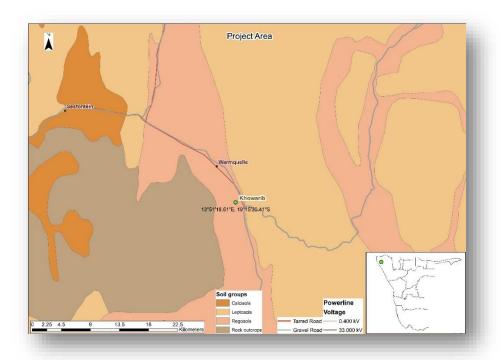



Figure 3: Regosols are the dominant soils of the project area. Source: Own map.

#### 3.3 Rainfall, humidity, temperature and evapotranspiration

#### 3.3.1 Rainfall

The median annual rainfall ranges from less than 50 mm to 250 mm in Namibia's hyper-arid southwest and coastline, and peak at 350 to 550 mm in the sub-humid northeast. Overall, about 22% of the country is classified as hyper-arid, 70% as arid, and less than 8% as dry sub-humid, (Mendelsohn, 2003). The potential evaporation is more than five times greater than average rainfall in the greater part of the country and lack of rainfall is regarded a key limitation to the country's development. This makes Namibia one of the world's most vulnerable countries with regard to climate change due to its extreme aridity and dependence on primary industry, combined with a limited adaptive capacity, (Brown, 2009). Approximately 70% of Namibia's population lives in rural areas. Farming is the dominant land use in Namibia, but it is characterized by low production and high risk due to arid conditions, infertile soils and generally poor land use practices. The project area is very arid and water is critical resource for both human beings and wildlife. It is very critical to embrace a combination of various technologies for water harvesting, efficient conveyance (zero losses) and efficient utilization on the agricultural enterprise to be established.

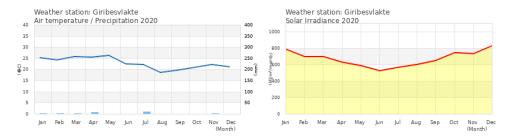



Figure 4: Average monthly temperature, precipitation and solar irradiance for the Warmquelle area. Source: SASSCAL Weathernet:

http://www.sasscalweathernet.org/weatherstat\_monthly\_we.php.

#### 3.3.2 Humidity

The air in the proposed project area is generally dry throughout the year with an average humidity of about 20%. This is too low than the tolerable humidity of 70 -80 % for fresh vegetable production. Optimum growing humidity is achievable under controlled cultivation systems using fogging systems which will be installed in both net houses and green houses.



Figure 5: The project area's monthly average humidity. Source: SASSCAL Weathernet: http://www.sasscalweathernet.org/weatherstat\_monthly\_we.php.

#### 3.3.3 Temperature

During the summer temperatures are very high and scorching, desiccating heat prevails. The average temperatures are normally between 29 and 35 °C and maximum temperatures of 43–46 °C are common. During the winter times of the year temperatures drop during the night due to the exceptional radiation loss under the clear skies. However, very rarely do temperatures drop far below freezing.

#### 3.3.4 Demographics

According to national statistics census Kunene Region has a total population of 97 865 inhabitants who are distributed 68 % and 32 % in the rural areas and urban respectively. Of these 66 % are literate and the main source of income after salaries and wages being farming, 13 %. Kunene's population is characterized by widespread poverty with a value of 41% of households rated as poor and 11 % extremely poor during the 2011 census. The region has a dualistic economy: there are the well-developed formal businesses and commercial farming sectors (tourism enterprises and accommodation, supermarkets, shops, bakeries, butcheries) and the underdeveloped and extremely poorly resourced subsistence agriculture sector. The results show that in Kunene region, agriculture, forestry and fishing was the main industry (53.2%) of the work force. Hunger is already endemic among rural and poor populations in Kunene, worsened during prolonged drought conditions. Most depend on livestock-based products such as milk and meat in their diets, and especially the Ovahimba people who live locally, are extremely vulnerable to impacts of climate change. With few opportunities for employment and cash income, they already have difficulty purchasing food. Overall, there is limited economic opportunity for local people in the Kunene Region, other than from tourism. Under the Covid-19 pandemic, food insecurity will worsen and the number of people at risk from hunger will also increase.

#### 3.4 Vulnerability to Food Insecurity

Warmquelle lies in the central highlands of the Kunene Basin and are amongst the most vulnerable areas to food insecurity in the country, due to different structural reasons including:

- Generalized poverty and few productive or domestic assets at household level;
- Few options for income diversification through income generating activities;
- Localized high population density, resulting in limited access to agricultural land;
- Impoverished soils, poor farming practices with few agricultural inputs; and
- High pressure on natural resources.

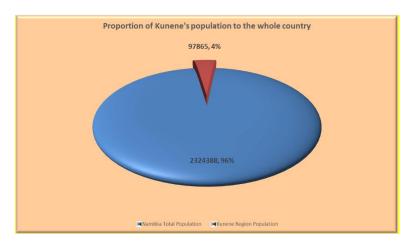



Figure 6: Kunene population and relative proportion to the country's total population.

#### 4 ENVIRONMENTAL MANAGEMENT PLAN

Farming activities have a range of impacts on the environment, depending on the scale of operations and the types of activities to be undertaken. Potential environmental and socio-cultural impacts have been identified and practical realistic measures suggested, all in the vein of trying to minimize the level of environmental deterioration (See Tables 8.1 and 8.2). It should be noted that the responsibility for implementing all the suggested mitigation measures lies with the **Developer.** He will work hand in hand with all the Supervisors manning each area. The Supervisors will implement and monitor environmental aspects as much as they do their daily production activities.

Table 2: Environmental Management Plan

| Project<br>Phase | Impact       | Positive<br>\Negative | Impact source       | Mitigation                                        | Implementing agent |
|------------------|--------------|-----------------------|---------------------|---------------------------------------------------|--------------------|
| D                | Soil Erosion | Negative              | Working on steep    | Arrange / position infrastructure on flat land    | Developer,         |
| E                |              |                       | slopes due to poor  | and avoid steep slopes                            | Design             |
| S                |              |                       | positioning on the  |                                                   | Consultant &       |
| 1                |              |                       | land.               |                                                   | Contractor         |
| G                | Low water    | Negative              | Poor choice of      | Chose high water efficient irrigation systems     | Developer,         |
| N                | use          |                       | irrigation          | taking into consideration target crops to be      | Design             |
|                  | efficiency   |                       | equipment,          | grown and high evapotranspiration of the          | Consultant &       |
|                  |              |                       | showers, cisterns   | project site.                                     | Contractor         |
|                  |              |                       | and water tapes.    | Make use of low flow water tapes and showers      |                    |
|                  |              |                       |                     | etc.                                              |                    |
|                  | Low energy   | Negative              | Poor orientation    | Use solar on boreholes, booster pumps, geysers    | Developer,         |
|                  | use          |                       | of panels and lack  | etc                                               | Design Engineer    |
|                  | efficiency   |                       | of poor choice of   | Ensure solar panels are oriented at the correct   | & Contractor       |
|                  |              |                       | energy efficient    | angle in relation to the solar azimuth.           |                    |
|                  |              |                       | technologies        |                                                   |                    |
|                  | Night        | Negative              | Low night           | Avoid night operations onsite.                    | Design Engineer /  |
|                  | ambience     |                       | ambience and        | Use bright colours.                               | Architects         |
|                  |              |                       | poor signage        | Ose bright colours.                               |                    |
|                  |              |                       | increases accident  | Use bright coloured signs that are visible in the |                    |
|                  |              |                       | risk. Poor lighting | night.                                            |                    |
|                  |              |                       | and dull colours    |                                                   |                    |
|                  |              |                       | on signs.           |                                                   |                    |

| Project<br>Phase | Impact           | Positive<br>\Negative | Impact source      | Mitigation                                         | Implementing agent |
|------------------|------------------|-----------------------|--------------------|----------------------------------------------------|--------------------|
| - 11000          | Accessibility of | Negative              | Poor accessibility | Make use of good signage and provide enough        | Design Engineer /  |
|                  | fuel point       |                       | increases accident | space for vehicles to move freely                  | Architects         |
|                  | ·                |                       | risk.              |                                                    |                    |
|                  |                  |                       | Poor design, poor  |                                                    |                    |
|                  |                  |                       | signage and        |                                                    |                    |
|                  |                  |                       | limited space      |                                                    |                    |
|                  | Groundwater      | Negative              | Sewage from        | Use conservancy tanks                              | Developer,         |
|                  | pollution        |                       | accommodation      |                                                    | Design             |
|                  |                  |                       | and                |                                                    | Consultant &       |
|                  |                  |                       | administration     |                                                    | Contractor         |
|                  |                  |                       | ablutions          |                                                    |                    |
| С                | Soil Erosion     | Negative              | Clearing of land   | Clearing of vegetation will be limited to          | Developer,         |
| 0                |                  |                       | Eroded roads       | previously cultivated sites only.                  | Design             |
| N                |                  |                       | Poor tillage       | Storm drains will be constructed along the road    | Consultant &       |
| S                |                  |                       | practice           | to minimise erosion                                | Contractor         |
| Т                |                  |                       |                    | Till across slope to minimise run-off in the field |                    |
| R                |                  |                       |                    | Use zero tillage practices / minimum tillage       |                    |
| U                | Danger of        | Negative              | Foundation and     | Temporary fencing would be done on trenches        | Developer,         |
| С                | animals and      |                       | pipeline layout    | as a safety measure for humans and animals.        | Design             |
| Т                | humans from      |                       |                    |                                                    | Consultant &       |
| l I              | falling into     |                       |                    |                                                    | Contractor         |
| 0                | foundations      |                       |                    |                                                    |                    |
| N                | and water        |                       |                    |                                                    |                    |
|                  | system           |                       |                    |                                                    |                    |
|                  | trenches         |                       |                    |                                                    |                    |

| Project<br>Phase | Impact         | Positive<br>\Negative | Impact source        | Mitigation                                            | Implementing agent |
|------------------|----------------|-----------------------|----------------------|-------------------------------------------------------|--------------------|
| 0                | Ground water   | Negative              | Oil & fuel spillages | Workshop will be concretised to avoid                 | Developer,         |
| P                | contamination  |                       | Fuels                | contamination of groundwater                          | Design             |
| E                | (Both chemical |                       |                      | Hazardous substances to be kept safe and              | Consultant &       |
| R                | and physical   |                       | Possible spillages   | secured with limited access to the workers on         | Contractor         |
| Α                | contamination) |                       | of hazardous         | the site so as to reduce the chances of               |                    |
| T                |                |                       | substances such      | unauthorised and reckless spillages. For              |                    |
| I                |                |                       | insecticides and     | accidental spillages, the Farm Manager will           |                    |
| 0                |                |                       | herbicides           | ensure that the chemicals are neutralised.            |                    |
| N                |                |                       |                      | Surface runoff would be controlled to a holding       |                    |
| Α                |                |                       |                      | storm water dam.                                      |                    |
| L                |                |                       |                      |                                                       |                    |
|                  | Compaction of  | Negative              | Farming              | Use recommended conservation tillage                  | Developer,         |
|                  | soils          |                       | equipment            | equipment such as rippers so as to minimize           | Design             |
|                  |                |                       |                      | soil disturbance.                                     | Consultant &       |
|                  |                |                       |                      | Restrict heavy moving equipment to access roads only. | Contractor         |
|                  | Solid waste    | Negative              | Packaging            | Construct a pit dedicated for solid waste             | Developer,         |
|                  |                |                       | materials            | disposal                                              | Design             |
|                  |                |                       | containing           |                                                       | Consultant &       |
|                  |                |                       | construction         |                                                       | Contractor         |
|                  |                |                       | materials such as    |                                                       |                    |
|                  |                |                       | cement etc           |                                                       |                    |
|                  | Liquid waste   | Negative              | Waste water from     | Construct a conservation tank to allow flushing       | Developer,         |
|                  |                |                       | washing, bathing,    | to the former.                                        | Design             |
|                  |                |                       | flushing etc.        |                                                       | Consultant &       |
|                  |                |                       |                      |                                                       | Contractor         |

| Project<br>Phase | Impact                | Positive<br>\Negative | Impact source                                                                                            | Mitigation                                                                                                                                                     | Implementing agent                        |
|------------------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| O<br>P           | Salinisation          | Negative              | Loss of water from saline soils                                                                          | Provide drainage including disposal of water to evaporation ponds.                                                                                             | Developer,<br>Design                      |
| E<br>R           |                       |                       | Watering crops using saline water.                                                                       |                                                                                                                                                                | Consultant & Contractor                   |
| A<br>T<br>I<br>O | Alkalization          | Negative              | Accumulation of salts in the B horizon of the soil.                                                      | Maintain channels to prevent seepage, and reduce inefficiencies resulting from siltation and weeds. Allow for access to channels for maintenance in design.    | Developer, Design Consultant & Contractor |
| N<br>A<br>L      | Soil<br>acidification | Negative              | Heavy leaching of cations due to over irrigation. Excessive use of ammonium based synthetic fertilizers. | Avoid excessive use of Nitrate fertilizers such as Ammonium Nitrate.  Carry out soil analysis regularly and monitor changes in exchangeable AL <sup>3+</sup> . | Developer, Design Consultant & Contractor |
|                  | Water logging         | Negative              | Irrigation of crops<br>during production                                                                 | Set-up irrigation drainage systems.                                                                                                                            | Developer, Design Consultant & Contractor |
|                  | De-vegetation         | Negative              | Cutting of trees<br>during<br>construction and<br>operation                                              | Limit removal of vegetation to active areas only.                                                                                                              | Developer, Design Consultant & Contractor |

| Project<br>Phase | Impact          | Positive<br>\Negative | Impact source      | Mitigation                                     | Implementing agent |
|------------------|-----------------|-----------------------|--------------------|------------------------------------------------|--------------------|
|                  | Soil            | Negative              | Oil spillages      | Workshop will be concretised to avoid          | Developer,         |
|                  | contamination   |                       |                    | contamination of the soil.                     | Design             |
|                  |                 |                       | Possible spillages | Hazardous substances to be kept safe and       | Consultant &       |
|                  |                 |                       | of hazardous       | secured with limited access to the workers on  | Contractor         |
|                  |                 |                       | substances         | the site so as to reduce the chances of        |                    |
|                  |                 |                       |                    | unauthorised use and reckless spillages. For   |                    |
|                  |                 |                       |                    | accidental spillages, the Farm Manager will    |                    |
|                  |                 |                       |                    | ensure that the chemicals are neutralised.     |                    |
| 0                | Noise from      | Negative              | Farming and land   | Use of well service machinery and also protect | Developer,         |
| Р                | machinery       |                       | clearing           | ears with ear plugs, etc.                      | Design             |
| E                |                 |                       |                    |                                                | Consultant &       |
| R                |                 |                       |                    |                                                | Contractor         |
| Α                | Effects of Dust | Negative              | Dry tillage and    | Addition of the water to hold the dust         | Developer,         |
| Т                | on human        |                       | vehicle movement   | Avoid tilling in dry soils                     | Design             |
| 1                | health.         |                       | in access road     | Again, use of protective clothing such as dust | Consultant &       |
| 0                |                 |                       |                    | masks would be mandatory.                      | Contractor         |
| N                | Depletion of    | Negative              | Pumping water for  | Control groundwater pumping, minimize over     | Developer,         |
| Α                | ground water    |                       | irrigation         | abstraction of the resource.                   | Design             |
| L                | aquifers and /  |                       |                    | Compliment groundwater abstraction using       | Consultant &       |
|                  | or fountains    |                       |                    | rain water harvesting technologies.            | Contractor         |
|                  |                 |                       |                    | Water demand should be managed with            |                    |
|                  |                 |                       |                    | compliance to the conditions of the water      |                    |
|                  |                 |                       |                    | extraction permit and according to the         |                    |
|                  |                 |                       |                    | pumping tests done.                            |                    |

| Project | Impact            | Positive  | Impact source       | Mitigation                                    | Implementing |
|---------|-------------------|-----------|---------------------|-----------------------------------------------|--------------|
| Phase   |                   | \Negative |                     |                                               | agent        |
|         | Loss and          | Negative  | Soil tillage during | Practice good farming methods, application of | Developer,   |
|         | modification of   |           | land preparation,   | organic manure from decomposed plants to      | Design       |
|         | the soil profile. |           | mechanical          | retain soil properties                        | Consultant & |
|         |                   |           | weeding and         | Minimize use of inorganic fertilizers.        | Contractor   |
|         |                   |           | moving equipment    | Apply cattle manure which can be bought from  |              |
|         |                   |           |                     | the local community.                          |              |

| Project<br>Phase | Impact                             | Positiv<br>e<br>\Negat<br>ive | Impact source                                                                          | Mitigation                                                                                                                                                                                                   | Implementing agent                        |
|------------------|------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| O<br>P<br>E<br>R | Employment creation                | Positive                      | Labour for the irrigation scheme during construction and operation                     | Only locals will be considered for unskilled labour.                                                                                                                                                         | Developer, Design Consultant & Contractor |
| A<br>T<br>I<br>O | Provision of infrastructure        | Positive                      | Road construction Accommodation                                                        | The Proponent will use existing farm access.  No staff quarters will be built except the farm manager's residence only.                                                                                      | Developer, Design Consultant & Contractor |
| N<br>A<br>L      | Negative social<br>behaviour       | Negative                      | Increased prostitution as a result of increased disposable income. Mixture of cultures | HIV/AIDS awareness sessions for the workers. Encourage the married to stay with their spouses. Have free condoms available at the farm. Recruit locals for all unskilled jobs, to reduce mixing of cultures. | Developer, Design Consultant & Contractor |
|                  | Improved<br>standards of<br>living | Positive                      | Increased availability of disposable income for the local                              | Recruit locals for all unskilled jobs                                                                                                                                                                        | Developer, Design Consultant & Contractor |
|                  | Foreign currency generation        | Positive                      | Sale of farm produce<br>to international buyers<br>especially Angola.                  | Increase production and even introduce green houses for to improve yields and shelf life of produce.                                                                                                         | Developer, Design Consultant & Contractor |
|                  | Health problems                    | Negative                      | Effects of dust, noise and other activities                                            | Provide appropriate safety clothing and equipment                                                                                                                                                            | Developer,<br>Design                      |

|               |          | associated with       | Have regular medical examinations for those    | Consultant & |
|---------------|----------|-----------------------|------------------------------------------------|--------------|
|               |          | farming on human      | who work in sensitive area                     | Contractor   |
|               |          | health                | Maintain good hygiene at all times and provide |              |
|               |          | Outbreak of water     | good sanitary facilities.                      |              |
|               |          | borne diseases and    | If there is an outbreak quickly notify the     |              |
|               |          | COVID-19              | Ministry of Health & Social Services,          |              |
|               |          |                       | quarantine the affected people and take them   |              |
|               |          |                       | to the nearest clinic/hospital.                |              |
| Injuries from | Negative | Accidents at the farm | Implement safety measures at the farm          | Developer,   |
| accidents     |          | Fumigation and        | including training, erecting warning signs at  | Design       |
|               |          | handling of hazardous | the farm.                                      | Consultant & |
|               |          | chemicals             | Train first aiders.                            | Contractor   |
|               |          |                       | Have well-equipped first aid kits on site.     |              |
|               |          |                       | Ensure all chemicals are handled with          |              |
|               |          |                       | protective clothing and during application     |              |
|               |          |                       | workers are to adhere to the rules of how to   |              |
|               |          |                       | fumigate or apply the pesticides.              |              |

#### 4.1 Guiding Notes Supporting the EMP

#### 4.1.1 Tanks

Installation of above ground fuel storage tank and pipe work shall be undertaken in compliance with AS/NZ 1418.3-1997 Cranes, hoists and winches and AS/NZ 2550.1

#### 4.1.2 General safety of public and employees

The work area should be cordoned off as a no-go area during construction and should be bund walled with a concrete floor and brick wall.

#### 4.1.3 Managing fuel and oil spills

It is highly recommended to use leak proof concrete lining on all surfaces including the base supporting the above ground storage tank.

#### 4.1.4 Detailed guidelines and conditions for managing loss of vegetation.

Irrigation impacts on vegetation were assessed and various mitigation measures presented in the EMP. The following guidelines were formulated to support the EMP with respect to managing and monitoring vegetation loss during establishment and operation of the proposed green scheme. The aspects and potential impacts of the proposed irrigation scheme that may affect flora and vegetation are:

- Disturbance and clearing land to make way for cultivation and the construction of infrastructure;
- Changes to the groundwater table, through groundwater level rises from seepage and modification of drainage; and
- Changes to surface hydrology.

Management of these aspects of irrigation and their potential impacts on flora and vegetation are described below.

#### GROUNDWATER LEVEL RISES

Water logging and inundation of vegetation may occur as a result of groundwater level rises and modified surface water drainage. These areas, in effect become permanent to ephemeral wetlands and support wetland vegetation and other semi – aquatic species.

Groundwater levels may increase due to increased drainage into an area. Aquatic ponds for fisheries can be introduced.

The established list of protected species will be expanded and maintained and will include the different tolerances of these respective species and communities to changes in soil moisture regimes. This will assist in the development of consistent, focused and comprehensive monitoring systems.

Groundwater and vegetation monitoring sites should be established where ground and surface water issues may arise. Where vegetation is impacted by elevated water tables remedial actions should be evaluated and implemented where practical. Measures may include pumping and drainage earthworks.

#### **Environmental Monitoring and Management Responsibility**

Environmental management during establishment and operation of these green schemes lie with the Developer. In the event that Contractors are engaged, it remains the responsibility of the Developer to bind them contractually and ensure that the environmental obligations are met.

## 5 EMERGENCY PREPAREDNESS AND RESPONSE PLAN

It is prescribed that every project should have an emergency preparedness and response plan for the farming operations. This is a small operation and hence most of the items will be of a house-keeping nature and would need support from different governmental organizations and hotlines of key organizations (such as hospital, police, civil protection unit) shall be collected and put on a notice board for everyone to be familiar with and use them in case of emergency.

Table 3: Emergency Preparedness and Response Plan

| Hazard            | Causes                                                                                  | Early<br>warning<br>System                                                    | Effect                                                                                | Intervention                                                                                                                                                                                                                          | By Who<br>(Responsib<br>ility)      |
|-------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Fires             | -Electrical<br>shorts                                                                   | -Alarms for accidents                                                         | Injuries<br>and loss<br>of life                                                       | -Create an emergency assembly point -Safety checks all around the buildings and equipment -Safety briefs before every shift -Clearly marked points with first aid kits -Clearly marked points for fire extinguishers and sand buckets | -Farm<br>manager<br>SHE Officer     |
| Veld Fires        | -Reckless disposal of cigarettes -Land Clearance -Absence of fire Guard -Poaching Fires | -Windy weather -Heavy rains — increases vegetation growth -Tall grass species | - Reduced grazing land and animal habitat - Destructi on of some homeste ads, animals | -Afforestation Awareness Campaign -Construction of fire guards -Train and set up firefighting teams -Warning systems in place -Clearly marked points for fire extinguishers and fire rubbers                                          | -Farm<br>Manager<br>-SHE<br>Officer |
| Deforestatio<br>n | -Used as a source of firewood                                                           | -Wood<br>demand<br>-Siltation                                                 | -Low<br>rainfall<br>-Soil<br>erosion                                                  | <ul><li>-A forestation awareness campaign</li><li>- Use of alternative source of heat sources such as gas.</li></ul>                                                                                                                  | -SHE<br>Officers                    |

| Hazard     | Causes         | Early        | Effect    | Intervention                            | By Who     |
|------------|----------------|--------------|-----------|-----------------------------------------|------------|
|            |                | warning      |           |                                         | (Responsib |
|            |                | System       |           |                                         | ility)     |
|            |                | -Soil        | -         |                                         |            |
|            |                | erosion      | Shortage  |                                         |            |
|            |                | -Electricity | of fire   |                                         |            |
|            |                | power cuts   | wood      |                                         |            |
|            |                |              | -Increase |                                         |            |
|            |                |              | wind      |                                         |            |
|            |                |              | flows     |                                         |            |
|            |                |              | through   |                                         |            |
|            |                |              | the area  |                                         |            |
| Road       | -Driving under | -Reports by  | - Injury/ | -Driving safety awareness.              | Farm       |
| accident   | influence of   | either       | loss of   | -Discipline any negligence matters with | Manager    |
|            | alcohol        | phone call   | life      | heavy penalties such as fines.          |            |
|            | -Un-serviced   | or verbal    |           | -No persons sitting on tractor mud      |            |
|            | vehicles       |              |           | guard.                                  |            |
|            | -Negligence    |              |           | -Servicing of vehicles and vehicle      |            |
|            |                |              |           | inspections every morning.              |            |
| Outbreak   | -Poor hygiene  | -Reports     | -Illness  | -Awareness campaigns on improved        |            |
| cholera or | -              | and tests    | and       | sanitation and hygiene.                 |            |
| typhoid    | Contaminatio   |              | even      | -Supply chlorine pills for water        |            |
|            | n of drinking  |              | loss of   | purification                            |            |
|            | water          |              | life      | -Train people about the disease         |            |
|            |                |              |           | -Take affected people to the nearest    |            |
|            |                |              |           | clinic or hospital for treatment.       |            |

| Hazard      | Causes      | Early    | Effect    | Intervention                               | By Who      |
|-------------|-------------|----------|-----------|--------------------------------------------|-------------|
|             |             | warning  |           |                                            | (Responsib  |
|             |             | System   |           |                                            | ility)      |
| Snake bites | -Removal of | Shouting | Injury or | -Have snake venom antidote                 | Constructi  |
|             | habitat and |          | loss of   | -Training on snake species identification  | on          |
|             | clearing of |          | life      | and first aid on snake bites – see tips on | supervisor, |
|             | vegetation  |          |           | snake bites below                          | Farm        |
|             |             |          |           | -have a stand by vehicle for such          | Manager     |
|             |             |          |           | incidents                                  |             |

#### **IF YOU GET BITTEN - mambas & cobras**

The most important thing is to try and identify the snake first  $\boldsymbol{\mathsf{AND}}$  keep calm...

These snakes' venom works by paralyzing the nervous system which means your respiratory muscles are affected, leading to lung failure.

#### **TREATMENT**

- apply a tourniquet above the bite which must be loosened every half hour so as not to restrict your blood flow completely
- 2 ampoules of polyvalent snake serum should be injected if available artificial respiration if necessary
- get to a hospital fast!

#### Venom in the eyes

- •wash out thoroughly with lots of water
- •if available, dilute one ampoule of polyvalent serum in the water

#### IF YOU GET BITTEN - boomslang & twig snake

The most important thing is to try and identify the snake first **AND** keep calm

These snakes' venom is haemotoxic and stops the blood from clotting and death will occur if left untreated. The venom is slow-acting, taking effect 2-4 hours after being bitten.

#### **TREATMENT**

- do not apply a tourniquet
- do not inject polyvalent snake serum
- •-get to a hospital as soon as possible!

Figure 11: Summary of first aids for snake bites for mambas, cobras, twig snakes (adapted from Safaribwana, 2007)

#### 5.1 Monitoring Plan

It is mandatory for the proponent to submit a biannual report to the Environmental Commission. Monitoring provides the information for periodic review and improvement of the environmental management plan as necessary, ensuring that environmental protection is optimized at all stages of development through best practice. In this way undesirable environmental impacts will be detected early and remedied effectively. It will also demonstrate compliance with regulatory requirements. Environmental monitoring is directed to the following key environmental issues: -

- ♦ Develop improved practices and procedures for environmental protection
- ◆ Detect short- and long-term trends
- Recognize environmental changes and enable analysis of their causes
- Measure impacts
- ♦ Check the accuracy of predicted impacts
- ♦ Develop improved monitoring systems and
- Provide information on the impact of irrigation and farming activities

All data collected (whether by means of visual observations, instruments readings or chemical analyses) should be recorded in environmental log books.

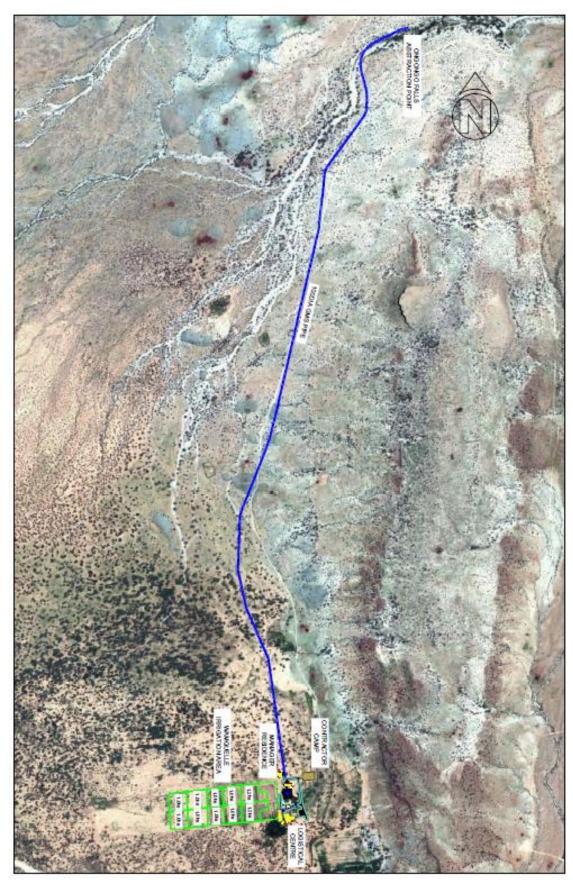
#### 6 CONCLUSION AND RECOMMENDATIONS

#### 6.1 Conclusion

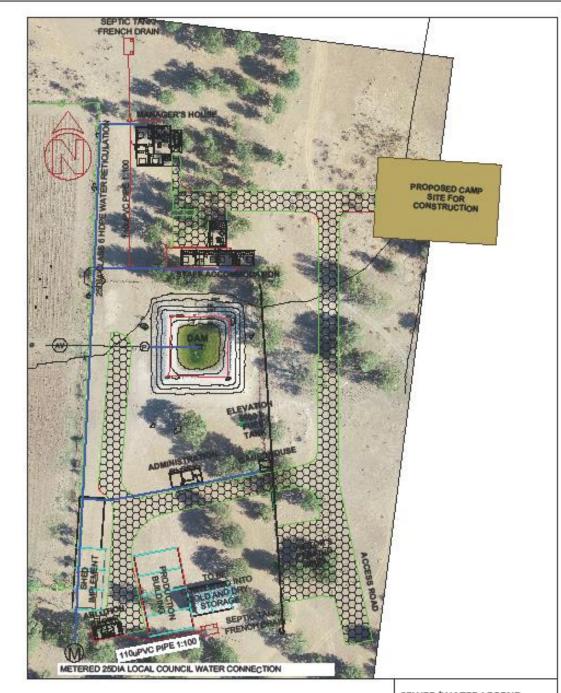
The rehabilitation and upgrading of the Warmquelle irrigation green schemes has potential negative environmental impacts. The study findings showed negative environmental impacts to the environment to varying degrees depending on the nature of the activity and impacts arising thereof. Management and corrective measures were formulated and implementation timelines proposed depending on the gravity of threat to human life and the environment.

The identified impacts, mitigation and monitoring activities, indicators, responsible parties and monitoring frequency are indicated in the EMP. The EMP should be implemented throughout the project lifecycle and an Environmental Management System formulated and implemented based on the study findings. Environmental monitoring and performance evaluations should be conducted and targets for environmental improvement set and monitored throughout the

project lifespan. It is also our determination that the findings should be incorporated earlier and sound SHE policies and supportive programmes implemented.


#### 6.2 Recommendations

Recommendations were developed to guide the Developer on the key activities that should be done to effectively manage safety, health and environment:


- Give proper induction to the Contractor to avoid unwarranted environmental degradation.
- Develop SHE policies based on the study findings and use impacts evaluation to formulate the objectives.
- Develop and implement Environmental Management Systems.
- Develop an occupational health and safety plan
- Adhere to the environmental management obligations
- Obtain other relevant permits:
  - o Permit to remove protected trees on a portion of the project site.
  - Water abstraction;
  - Access roads etc.

Provide relevant training to capacitate the workers with knowledge and skills to manage safety, health and the environment.

| 7 | ANNEXURES: PROJECT SITE PLANS AND DESIGNS |
|---|-------------------------------------------|
|   |                                           |



Environmental Management Plan (EMP) – Warmquelle Irrigation Green Schemes ALOE / OUTRUN CONSORTIUM



# ANNEXURE C1

#### SEWER/WATER LEGEND

- 110DIA uPVC PIPE 25DIA HDPE CLASS 4 DOMESTIC WATER LINE

25DIA DIAMETER KENT WATERMETER



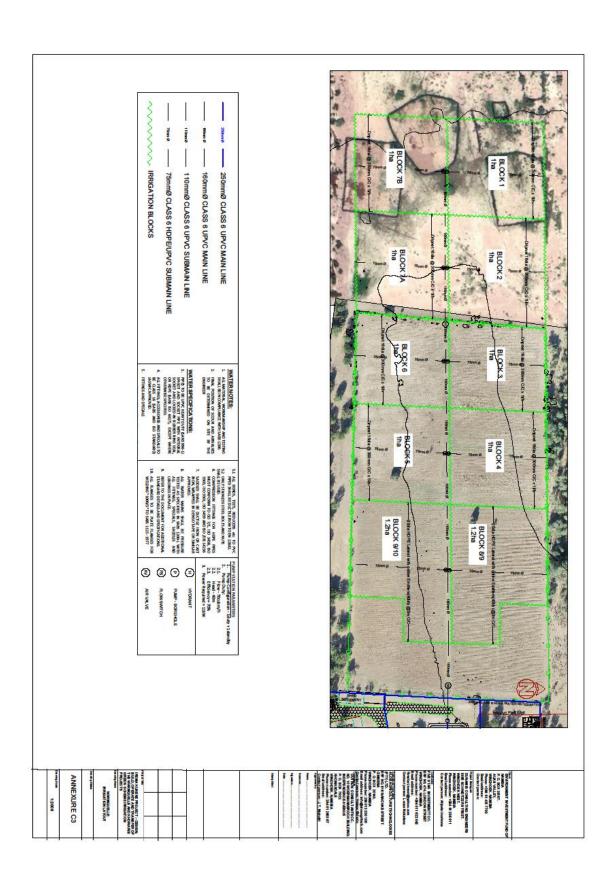
WARMQUELLE SEWER LAYOUT

#### WARMQUELLE/KHOWARIB IRRIGATION

Clere
ENVIRONMENT INVESTMENT
FUND OF NAMESIA
P. O. BOX 28167.
AUAS VALLEY,
WINDHOEK, NAMESIA
Phone: 254 81 431 7700
Email address:
Contact services

Contact person:

Project Managers
DUMAMIS CONSULTING ENGINEERS
8055 SCHWEITZER STREET.
WINDHOEK WEST.
WINDHOEK HAMIBIA
Phone:: +204 61 238 911 Contact person: A. Uushona


Contractor: FIVE STAR INVESTMENTT CC. FIVE STAR INVESTMENT CC. ERF NO. 474, LONDON STREET WINDHOEK, NAMERA Phone: + 284 811 622 042 Email: fivestar invest@yshoo.co Contact person: L. Nakatana Agricultural Consultant.
ALOE AGRICULTURE
TECHNOLOGIES (PTY) LTD.
ERF NO. 915 NANCHAB 5T.
CIMBESIA, BOX 20143.
WINDHOEK. NAMBIA
Phone: 20 413 230 188
Emsit: Info@siosagritech.con
Contact person: R. Shivolo

Consultants CC.
NO. 10 WOERNAMINEROCK BLDG.
NOEPENDENCE AVENUE
BOX 7822, KHOMASDAL
WINDHOEK, NAMEBIA
Phone: 284 81 2883 57 Contact person: J. T. Mukutiri

NTS Dwg No. Forvision

15/01/2021

Design/Drawn: JAT



| 8 | ANNEXURES: SOIL AND WATER QUALITY TEST RESULTS |  |
|---|------------------------------------------------|--|
|   |                                                |  |



analab@mweb.com.na • Tel. +264 61 210 132 Fax +264 61 210 058 71 Newcastle Street • PO Box 86782 • Eros • Windhoek • Namibia

#### TEST REPORT

To: Aloe Agriculture Technologies (Pty) Ltd Windhoek

Date received: 17-Dec-20
Date analysed: 18-30-Dec-20
Date reported: 4-Jan-21

Attn: Mr J. Mukutiri

e-mail: makkconsult@gmail.com

Your Reference: QU-5343 Lab Reference: I210124

| Type of Te   | st:                | pH (H <sub>2</sub> O) | Conductivity  | Total Nitrogen       | Organic      | Organic matter              | Phosphorus  | Sodium   | Potassium         | Magnesium          | Calcium                   |  |
|--------------|--------------------|-----------------------|---------------|----------------------|--------------|-----------------------------|-------------|----------|-------------------|--------------------|---------------------------|--|
|              |                    | 2:5                   | 2:5           | Mod. Kjeldahl method | carbon       | calculated                  | extractable |          | extractable/e     | exchangeable       |                           |  |
| Method detai | ls:                | electrometric         | electrometric | ISO 11261:1995 (E)   | Walkey Black | Walkey Black factor = 1.724 | Ohlsen      | 1M amm   | onium acetate (pl | H 7.0) followed by | 17.0) followed by ICP-OES |  |
| Units:       |                    |                       | mS/m          | mg N/kg              | % m/m C      | % m/m OM                    | mg P /kg    | mg Na/kg | mg K/kg           | mg Mg/kg           | mg Ca/kg                  |  |
| Lab No.      |                    |                       |               |                      |              |                             |             |          |                   |                    | 1.                        |  |
|              | 1 Khowarib Plot    | 8.6                   | 9.4           | 253                  | 0.1          | 0.2                         | 7           | 12       | 134               | 128                | 1426                      |  |
|              | repea              | it                    |               |                      |              |                             | 7           |          |                   |                    |                           |  |
|              | 2 Warm Quelle plot | 8.0                   | 112.4         | 1780                 | 2.0          | 3.5                         | 58          | 107      | 1449              | 1010               | 4537                      |  |
|              | repea              | it                    |               |                      |              |                             | 55          |          |                   |                    |                           |  |

| Type of Test   |                                          |                    | Particle Size Analysis pipette method | Textural class |           |  |
|----------------|------------------------------------------|--------------------|---------------------------------------|----------------|-----------|--|
| Method details |                                          | Sand (2mm - 53 µm) | Silt (53-2 µm)                        | Clay (<2 µm)   |           |  |
| Units          | 3.                                       | %                  | %                                     | %              |           |  |
| Lab No.        |                                          | 11                 |                                       |                |           |  |
|                | 1 Khowarib Plot                          | 94.2               | 3.6                                   | 2.2            | sand      |  |
|                |                                          | 95.5               | 2.7                                   | 1.8            | sand      |  |
|                | 2 Warm Quelle plo                        | 12.0               | 69.2                                  | 18.8           | silt loam |  |
|                | 20 (10 (2000) 2000) (2000) (2000) (2000) | 15.1               | 73.9                                  | 11.0           | silt loam |  |

Extractable/exchangeable calcium and magnesium

Since calcium and magnesium carbonates dissolve to a large extent in ammonium acetate at pH 7.0; the concentrations of these cations are over-estimated in calcareous soils

Silke Rügheimer Laboratory Manager

\_\_\_\_\_



Windhoek: analab@mweb.com.na Tol +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

#### TEST REPORT

To: Aloe Agriculture Technologies (Pty) Ltd.

Windhoek

Date received: 17/Dec/20 Date analysed: 19 December - 23 December 2020

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

Date reported: 11/Jan/21

Client Reference no.: verbal Quotation no.: QU-5343 Lab Reference: I210124 Attn: Mr Josiah Mukutiti e-mail: makkconsult@gmail.com

Enquiries: Ms Manuela Mayer

Sample details Location of sampling point Ongongo fountain Description of sampling point 2020/12/16 Date of sampling Test item number 1210124/1

|                                   |        |                  |         | Salinity/Chloride/RSC Hazard |                    |                |           |  |
|-----------------------------------|--------|------------------|---------|------------------------------|--------------------|----------------|-----------|--|
| Parameter                         | Value  | Units            | me      | Low                          | Medium             | High           | Very High |  |
| pH                                | 7.3    |                  |         | Acceptable pH range: 6.5-8.4 |                    |                |           |  |
| Electrical Conductivity           | 73.1   | mS/m             |         | <25                          | 25-75              | 75-225         | >225      |  |
| P-Alkalinity as CaCO <sub>3</sub> | 0      | mg/l             |         |                              |                    |                |           |  |
| Total Alkalinity as CaCO₃         | 355    | mg/l             |         |                              |                    |                |           |  |
| Bicarbonate as HCO <sub>3</sub>   | 433    | mg/l             | 7.10    |                              |                    |                |           |  |
| Carbonate as CO <sub>3</sub> 2-   | 0      | mg/l             | 0       |                              |                    |                |           |  |
| Total Hardness as CaCO₃           | 404    | mg/l             |         |                              |                    |                |           |  |
| Chloride as Cl                    | 19     | mg/l             |         | 0-105                        | 105-140            | 140-350        | >350      |  |
| Fluoride as F                     | 0.1    | mg/l             |         |                              |                    |                |           |  |
| Sulphate as SO42.                 | 8      | mg/l             |         |                              |                    |                |           |  |
| Nitrate as N                      | 4.1    | mg/l             |         |                              |                    |                |           |  |
| Sodium as Na                      | 10     | mg/l             | 0.44    |                              |                    |                |           |  |
| Potassium as K                    | 1.9    | mg/l             |         |                              |                    |                |           |  |
| Magnesium as Mg                   | 55     | mg/l             | 4.53    |                              |                    |                |           |  |
| Calcium as Ca                     | 71     | mg/l             | 3.54    |                              |                    |                |           |  |
| Manganese as Mn                   | < 0.01 | mg/l             |         |                              |                    |                |           |  |
| ron as Fe                         | 0.03   | mg/l             |         |                              |                    |                |           |  |
| Copper as Cu                      | 0.01   | mg/l             |         |                              |                    |                |           |  |
| Zinc as Zn                        | 0.02   | mg/l             |         |                              |                    |                |           |  |
| Boron as B                        | 0.02   | mg/l             |         | 0.3-1.0                      | 1.0-2.0            | 2.0-4.0        | >4.0      |  |
| Molybdenum as Mo                  | < 0.01 | mg/l             |         |                              |                    |                |           |  |
| Quality Indices:                  |        |                  |         |                              |                    |                |           |  |
| Electrical Conductivity           | 0.73   | mS/cm            |         |                              |                    |                |           |  |
| HCO₃:Ca                           | 2.00   | me/l             |         |                              |                    |                |           |  |
| Modified calcium value            | 1.26   | me/l             |         |                              |                    |                |           |  |
| Adj. Sodium Adsorption Ratio      | 0.36   | me/l             |         |                              |                    |                |           |  |
| Residual Sodium Carbonate         | -0.97  | me/l             |         | <1.25                        | 1.25-2.50          | >2.50          |           |  |
| Magnesium Ratio                   | 56.1   | me/l             |         |                              | Acceptab           | le ratio: <50  |           |  |
| Stability pH, at 25°C             | 7.07   |                  |         |                              |                    |                |           |  |
| Ryznar Index                      | 6.84   | stable           |         | <6.5-scaling,                | >7,5=corrosive, >  | 6.5 and <7.5=s | stable    |  |
| Corrosivity ratio                 | 0.10   | no corrosive pro | perties | Applies to wa                | ter in the pH rang | e 7-8          |           |  |
|                                   |        |                  |         | which also cor               | ntains dissolved o | xygen          |           |  |
|                                   |        |                  |         |                              |                    |                |           |  |

M. Mayer

Section Head: Water Quality