2003 Game Count in Gondwana Cañon Park

Melatiolousy

OBJECTIVES OF COUNTING

Objective	Reasons why information is needed
1. Estimate the Numbers of game How many?	For: estimating stocking rates to manage the veld and grazing conditions and competition between species; - setting reasonable hunting/capture quotas determining the value of wildlife in the Park.
2. Produce Game Distribution maps. Where are they?	For land-use planning (Zonation), it is important to identity areas of high game concenirations. distributions change in future years in response to rainfall or human factors such as water distribution, removal of fences and tourism use fences and tourism use,
3. Monitoring Population Change Is wildlife increasing or decreasing?	With successive censuses, graphs can be drawn showing population changes of each species (e.g. are springbok increasing or decreasing?). This will tell managers whether or not they are achieving their game management goals and consequently indicate if it is necessary to change management strategies.

METHODS		
A vehicle-based road count method is used. This method works well for common plains game but will not give good results for all species; especially smaller secretive Road co animals, nocturnal animals, and animals in mountainous areas. Other monitoring methods (e.g. aerial census, foot patrols, specialist species monitoring) and local knowledge are also important. This means that the road counts will provide part of the information rather than replace these other methods - i.e. the methods all work together each providing a piece of the 'pie'.		
The road-count methodology has been designed so that it can be done at the local level and provide information to address the three Objectives above, while being consistent with counts being done in other parts of the country, e.g. in National Parks and on Conservancies - and thus add to the national overview of wildlife numbers and trends		
To achieve both consistency and scientific accuracy, the road-count is conducted using a standard methodology for calculating wildlife numbers and trends that has been tried and tested in many parts of the world. It is called the "Distance Method", and involves: a) standardizing as many parameters as possible, including routes, times, equipment, etc.; b) dividing the area into "zones" based on similarity of habitat and topography - essentially zones in which similar densities of particular species would be expected; and c) calculating correction factors that take into account a number of variables, including proportion of zone sampled, "observability" of different species at increasing distance, etc.		

\mathcal{N} ature Investments (Pty) $\mathcal{L} t$
http://www.gondwanapark.com PO Box 80205, Windhoek, Namibia Tel: +264 (0)61 230066; Fax: +264(0)61 251863 eMail:

FIELD RULES
For determining game NUMBERS
Centre line (the road and immediately next to the road) are priority areas for searching.
. Distance must be to the animal before it runs away
3. Distance must be at right angles to the road
4. Distance is to center of groups of animals (before the group moves away)

. Where the route travels next to a boundary fence only the animals inside the fence
are counted (the route distance is then halved for that section of the route) Routes must represent all habitats proportionally (i.e. also count low density areas) Measure strip width per route
a note of numbers of newly born juveniles

For TREND analysis, a number of additional rules are added:
9. Fixed routes will be used for subsequent counts
10. Start time is at sunrise

1. No binoculars to be used (knowing that leads to underestimation of numbers) 2. Alped must never the back of an open bakkie

For Game DISTRIBUTIONS, an additional rule is added
14. Location of each sighting is mapped using the $2 \mathrm{~km} \times 2 \mathrm{~km}$ grid map

Population changes from 1997 (estimates) to 2003

Population distributions in 2003

Total game numbers and value ($\mathbf{N} \$ \mathbf{x 1 0 0 0}$)

Species correction factors	
Species	Correction factor
Gemsbok	2.4
Springbok	2.9
Kudu	2.6
Steenbok	10.0
Klipspringer	5.0
Duiker	3.0
Zebra	2.0
Ostrich	2.1

Results

